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Abstract: The sin ²ψ method is the general method for analyzing X-ray diffraction stress measure-
ments. This method relies on the estimation of a parameter known as 1

2 Shkl
2 , which is generally

considered as a material constant. However, various studies have shown that this parameter can be
affected by plastic deformation leading to proportional uncertainties in the estimation of stresses. In
this paper, in situ X-ray diffraction measurements are performed during a tensile test with unloads
on a low-carbon high-strength steel. The calibrated 1

2 Shkl
2 parameter varies from 3.5 × 10−6 MPa−1

to 5.5 ×10−6 Mpa−1, depending on the surface condition and on the plastic strain state, leading to
a maximum error on the stress level of 40% compared to reference handbook values. The results
also show that plastic strain is responsible for 6 to 14% of the variation, depending on the initial
surface sample condition. A method is then proposed to correct this variation based on the fit of
the 1

2 Shkl
2 evolution with respect to the peak diffraction width, the latter being an indication of the

plasticity state. It is shown that the proposed methodology improves the applied stress increment
prediction, although the absolute stress value still depends on pseudo-macrostresses that also vary
with plastic strain.

Keywords: X-ray elastic constants; plastic strain; pseudo-macrostress

1. Introduction

Accurately estimating the residual stress state is essential for sizing structural parts,
as stresses affect the mechanical behavior, fracture resistance, and fatigue life. Residual
stresses can be characterized experimentally, for example, with diffractometric methods,
such as X-ray diffraction and neutron diffraction, or with mechanical methods, such as hole
drilling and slitting [1]; or numerically, using simulations of manufacturing processes [2,3].
It should be noted that manufacturing process simulations also depend on experimental
residual stress measurements for validating the models.

This work focuses on residual stress measured using laboratory X-ray sources and the
sin2 ψ method, which is the de facto standard method for measuring residual stresses via
X-ray diffraction in materials with little or no texture and grains that are small compared
to the X-ray irradiated volume (see, for example, standards [4–6], among others). The
sin2 ψ method consists in measuring the diffracted angle 2Θ for different inclinations of the
incident X-ray beam with respect to the surface of the specimen, estimating the average
lattice strain in the direction normal to the diffraction vector in the diffracting regions using
Braggs law, and then computing stresses using Equation (1):
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εhkl
φψ = 1

2 Shkl
2

[
σ11cos2 φ + σ12sin(2φ) + σ22sin2 φ − σ33

]
sin2 ψ

+ 1
2 Shkl

2 [σ13cos φ + σ23sin φ]sin (2ψ)

+Shkl
1 [σ11 + σ22 + σ33] +

1
2 Shkl

2 σ33

(1)

This equation relates average lattice strains εhkl
φψ measured in the (φ, ψ) direction to

the components σij of the macroscopic stress field present in the material. In Equation (1),
directions 1 to 3 are as defined in Figure 3, φ and ψ are ‘sampling angles’ that characterize
the orientation of the diffraction vector with respect to the normal to the surface of the
specimen [7], and Shkl

1 and Shkl
2 are material constants that depend on the lattice planes

{hkl} being observed, called X-ray elastic constants (XECs). This model assumes that the
material is made of crystallites that are small compared to the X-ray irradiated volume, and
that crystallites are oriented perfectly randomly—i.e., that the material has no texture. For
a detailed derivation of the model, see, for example, [8]. It should be noted that a model is
needed to compute stresses from εhkl

φψ because X-ray diffraction only provides information
about (i) average strains (ii) in the direction normal to the lattice planes being observed
(iii) in diffracting crystallites only (that represent a small subset of all crystallites), and that,
unless the material is made of perfectly elastically isotropic crystallites, different subsets of
crystallites will deform differently.

If measurements are performed at a constant rotation angle, say φ = 0◦, Equation (1)
is simplified to

εhkl
φ=0◦ , ψ =

1
2

Shkl
2 σφsin2 ψ +

1
2

Shkl
2 τφsin (2ψ) + C, (2)

with
σφ = σ11 − σ33, τφ = σ13, C = Shkl

1 [σ11 + σ22 + σ33] +
1
2

Shkl
2 σ33, (3)

where the unknowns σφ, τφ, and C can be determined by fitting Equation (2) to several εhkl
φψ

measured at different ψ angles.
On the other hand, for quick or quality control measurements, the X-ray elastic

constants Shkl
1 and Shkl

2 can be assigned values picked from a handbook or computed using
a simplified micromechanics model—such as the Reuss, Voigt, or Kröner model [9]. For
accurate measurements, the X-ray elastic constants Shkl

1 and 1
2 Shkl

2 should be determined
experimentally [10], for example, by following the procedure detailed in ASTM-E1426-
14 [11]. The reason why standards recommend using experimentally determined values
is that the X-ray elastic constants depend on the microstructure of the material and can
vary from one specimen to the next, or even between regions of a specimen [12]. Another
reason for using experimentally determined constants is that, since the crystallites located
near the surface are likely to deform differently than crystallites located deeper into the
material, different penetration depths will result in different X-ray elastic constants. This
was recently pointed out in [13], which showed that this effect was all the more pronounced
as the crystallites had anisotropic elastic properties and as their size was large compared to
the maximum penetration depth of the X-rays.

In addition to being microstructure-dependent, several experimental studies, most of
them published in the 1960s and 1970s, pointed out that the X-ray elastic constants can vary
with plastic strain. In these studies, and in the present paper, the reported variations of
XECs mean that the calibration parameter, needed to correlate an applied stress increment
to the diffraction measurements via the sin2 ψ method, varies with plastic strain. For
example, Marion and Cohen [8] reported that the X-ray elastic constants decreased by 40%
in severely plastically deformed ARMCO-9 and 1045 steels as compared to model values.
Esquivel [14] also observed variations in X-ray elastic constants with plastic deformation
in various ferrous and non-ferrous alloys, and found that relative variations were larger
for steels than for TA6V or aluminum alloys. Taira et al. [15,16] reported variations of
X-ray elastic constants with plastic deformation in pure iron and in steels with a carbon
content that ranged from 0.15%C to 0.91%C using Cr-Kα and Co-Kα radiations. The
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researchers showed that X-ray elastic constant variations were larger when the carbon
content increased, and explained this phenomenon by the stiffness difference between the
ferrite and the carbon-rich cementite phase. Dölle et al. reported a decrease of the X-ray
elastic constant in ferritic steels using {211} planes with Cr-Kα radiation [17], and similar
trends were found in copper using {331} planes with Cu-Kα radiation [18].

Similar experiments conducted by Prümmer [19] on various steels have shown that, in
addition to causing X-ray elastic constants to vary, plastic deformation also induced what is
now called ‘pseudo-macrostresses’. In an X-ray diffraction context, pseudo-macrostresses
usually designate the average of the stress field over the diffracting domain. Because diffrac-
tion only samples a subset of all grains and phases, the average over the diffracting domain
can differ from the true volume average and be wrongly interpreted as macrostresses.
This can occur when observing only one phase of a multiphase material [20,21], or one set
of diffracting planes in a plastically deformed material where intergranular stresses are
present ([22,23] sec. 5.6). Prümmer showed that both the decrease in X-ray elastic constants
and the amplitude of pseudo-macrostresses increased with carbon content, and that differ-
ent incident radiations (and thus crystallographic planes) showed different sensibility to
these phenomena.

Surprisingly, our literature review did not find any paper dealing with the variation in
the X-ray elastic constants with plastic strain in the approximatively 40-year period that
followed in the English-speaking literature. Only two publications reporting X-ray elastic
constant evolution with plastic strain were found over the past 20 years [24,25].

Although the variation in the X-ray elastic constants with plastic deformation has been
documented in all previously cited studies, there is, to the best of our knowledge, neither
a clear explanation of the physical mechanisms responsible for this phenomenon nor an
operational procedure to take it into account when measuring residual stresses using X-ray
diffraction in parts that might be affected by it.

From Equation (2), the error on the measured stress is directly proportional to the
error on the 1

2 Shkl
2 constant. Therefore, the experimental calibration of the XEC should be

performed every time quantitative results are expected. In practice, this is rarely done as
it requires in situ testing devices and time, in order to measure the sin² ψ ellipse slope for
various applied loads. Furthermore, even when the X-ray elastic constants are calibrated
experimentally, calibration is seldom performed at more than one plastic strain level.

Yet, a wide variety of commonly used industrial processes that produce internal
stresses also induce plastic strains such as cold-forming, welding, peening, machining, and
turning [1]. For all parts and specimens produced using these processes, it is expected that
the XEC will be affected. It implies that the XEC calibration should not be made for a single
plastic strain state and that the stress calculation should account for the XEC corresponding
to the plastic strain state in the gauge volume.

The objective of this study is to propose a method to calibrate X-ray elastic constants
that considers the plastic strain that goes along the evaluated residual stress. For this pur-
pose, the only available indication of plastic strain when performing X-ray measurements is
the diffraction peak width. The developed methodology thus proposes to calibrate the XEC
evolution with plastic strain and then to link the plastic strain to the peak width. It allows
the XEC value to be finally linked to the measured peak width without the need for addi-
tional measurements. In this study, the method is applied to two different surface finishings
of the same high-strength steel to highlight the importance of the constant calibration.

The paper is structured as follows. Section 2 describes the materials and methods.
Section 3 presents the experimental results, focusing on the evolution of X-ray elastic
constants with plastic deformation. It also introduces as an empirical strategy to take these
variations into account when performing X-ray stress measurements. Finally, Section 4
discusses the findings and their limitations.
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2. Materials and Methods
2.1. Material Composition, Microstructure, and Macroscopic Mechanical Properties (For
Confidentiality Reasons, This Section Only Contains Limited Information)

Table 1 shows the nominal composition of the high-elastic limit ferritic-bainitic/perlitic
steel used in this study. The material was sourced in the form of 40 mm thick cold-rolled
plates. Figure 1 shows a typical micrograph and EBSD map acquired in the plane of the
plate. Both reveal a microstructure with elongated (acicular) grains. According to the
inverse pole figure shown in Figure 1b, the as-received material has a maximum texture
index of 1.54, which indicates that it initially has almost no crystallographic texture.

Table 1. Elemental composition (mass%) of the investigated HLE steel.

C S P Ti Mn Ni Cr Mo Fe

≤0.150 ≤0.005 ≤0.015 ≤0.250 ≤0.550 4.5–5.0 ≤0.550 ≤0.5 balance
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Figure 1. Microstructure of the high-elastic limit steel used in this study. (a) Typical optical micrograph
in the plane of the plate after mirror polish and chemical attack with a 97% vol. ethanol, 3% vol. nitric
acid solution. (b) Typical electron backscatter diffraction grain orientation map in the plane of the
plate. (c) Inverse pole figure in the out-of-plane direction.

Conventional quasi-static tensile tests reported in [26] and conducted on specimens
removed from the same plate found that Young’s modulus is 205 GPa, Poisson’s ratio is 0.3,
and the yield stress at 0.2% is 670 MPa.

2.2. Test Specimens

Figure 2a shows the geometry of the specimen used for all measurements presented in
the following sections. The specimens were removed from a 15 mm thick region located
at the mid-thickness of the plate using wire electrical discharge machining, as shown in
Figure 2b.

To remove initial residual stresses, the specimens were stress-relieved by heating them
to 600 ◦C for two hours in a furnace filled with an inert argon atmosphere. They were cooled
down in the furnace until the temperature fell below 150 ◦C, which took approximately
10 h, and then they were air-cooled to room temperature.
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Figure 2. (a) Geometry of the tensile specimens used to determine X-ray elastic constants. X-ray
stresses were measured at the center of the gauge length on one face while macroscopic strains
were measured using a strain gauge attached to the same location on the opposite face. (b) Cutting
plan. Specimens were removed using wire electrical discharge machining from a 15 mm thick region
centered on the midplane of the plate, as illustrated schematically. All dimensions are in mm.

One specimen was put aside to be used in the as-annealed condition (i.e., straight
out of the furnace), while three were electropolished to expose subsurface layers (Table 2).
Electropolishing was performed using a Struers LectroPol machine (Struers, Copenhagen,
Denmark) and Struer’s A2 electrolyte. Electropolishing was performed symmetrically over
the gauge length on both faces, turning over the specimen every 20 s until at least 70 µm
were removed from each face.

Table 2. Lists of the specimens and conditions.

Specimen ID Condition

A1 Annealed and electropolished
A2 Annealed and electropolished
A3 Annealed and electropolished

B1 As-annealed

2.3. Procedure for Determining X-ray Elastic Constants
2.3.1. Preliminaries

The general idea behind all procedures used to determine X-ray elastic constants (see,
for example, [9] sec. 2.133a, [12,20,27], sec. 5.13) is to apply known macroscopic stresses to
a specimen while staying well below the macroscopic yield stress, measuring lattice strains
at each stress level by X-ray diffraction, and adjusting the Shkl

1 and 1
2 Shkl

2 constants until
the model (Equation (2)) best fits the experimental data.

To minimize experimental error and ensure that measurements are not affected by
initial residual stresses that might be present in the specimen, the ASTM-E1426-14 [11]
and NF-EN-15305 [4] standards recommend to follow a variant of this procedure, shown
schematically in Figure 3, which consists in applying a known uniaxial stress state σ11 to a
flat specimen (Figure 3a); measuring lattice strains at several tilt angles as in the standard
sin2 ψ method; determining the slope of the X-ray lattice strain vs. sin2 ψ curves; repeating
measurements for at least 5 stress levels (Figure 3b); plotting the previously determined
slopes versus applied stresses; and determining the slope of the curve (Figure 3c). Then,
provided that Equation (2) applies, the slope of the X-ray lattice strain vs. sin2 ψ curves
is equal to 1

2 Shkl
2 σ11 and the slope of the last plot is 1

2 Shkl
2 (refer to ASTM-E1426-14 for the

detailed computation procedure).
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Figure 3. Schematic illustration of the experimental procedure used to determine X-ray elastic
constants. (a) Typical experimental setup with a flat specimen loaded in uniaxial tension. Stresses
are measured at the center of the specimen in the direction (11) in which the external load is applied.
It should be noted that, for the sake of clarity, the figure shows a diffractometer in ‘omega’ mode,
whereas measurements reported in this article were performed on a diffractometer in ‘modified-chi’
mode. (b) Lattice strains determined using X-ray diffraction versus sin2ψ for several values of applied
stress. If the specimen has small grains compared to the size of the X-ray spot and has no texture,
the points are expected to align, with a slope proportional to 1/2Shkl

2 σ11. (c) Slopes of the dashed
lines shown in (b) versus applied stress. The 1/2Shkl

2 constant is determined as the slope of the
best-fitting line.

2.3.2. Detailed Procedure

In this study, a Deben 5 kN micro-tensile stage was used to load the specimens. The
applied loads were measured using the load cell of the tensile stage. The macroscopic
strains were measured using a HBM 1-LY41-1.5-120 strain gauge attached to the back face
of the specimen, directly below the X-ray spot.

Figure 4 illustrates the loading protocol. The specimen was first loaded up to the
current maximum load with the crosshead of the tensile stage moving at 0.2 mm/s (1),
then let to relax for 120 s (2). The specimen was then unloaded by 80 MPa to point A
(Figure 4b). The X-ray elastic constants were determined as described in Section 2.3.1 using
9 stress levels linearly spaced on a 500 MPa range that started at point A. Measurements
were performed at the 9 stress levels first for decreasing applied stress (3), then at the
same 9 stress levels for increasing applied stress (4). Finally, the specimen was unloaded to
measure residual X-ray stresses at zero applied stress (5).

This procedure was repeated for increasing maximum loads until the strain gauge
failed. Measurements were automated and ran continuously one after the other. Each X-ray
elastic constant measurement took approximately 2.5 h.

This procedure complies with the NF-EN-15305 standard (sec 10.1-5). It also follows
most recommendations of the stricter ASTM-E1426-14 standard, except for the following
three major deviations:

1. Whereas ASTM-E1426-14 recommends using rectangular specimens with a length
between grips at least four times the width and a width-to-thickness ratio less than
eight, the tensile specimen’s geometry described in Section 2.2 was used due to size
and load constraints dictated by the micro-tensile stage used to load the specimen.

2. Whereas ASTM-E1426-14 recommends measuring stresses experienced by the irradi-
ated volume using calibrated strain gauges located as close as possible to the X-ray
spot, the applied loads were measured using the micro-tensile stage load cell. This was
because the steels’ Young’s modulus was known to decrease by several percentage
points with plastic deformation [28]. Using strain gauges to measure stresses would
have required re-calibrating the strain gauge at each plastic deformation level, which
would have considerably lengthened measurements.
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3. Whereas ASTM-E1426-14 recommends that applied stresses range from 10% to 70%
of the macroscopic yield stress, a constant range of 500 MPa was sampled, with
the higher applied stress equal to the macroscopic yield stress minus 80 MPa. This
procedure was chosen to minimize micro-plasticity artifacts that appear at the end
of the unloading on this material and that can be observed as the stress–strain curve
forms an open loop.
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acquired on specimen 1, where about half the dots were removed to avoid clutter. The grey line and
dots show macroscopic stresses from the load cell; while black dots show stresses measured using
X-ray diffraction. Each grey dot indicates where the loading was interrupted to perform X-ray stress
measurement and is paired with one black dot. (b) Schematic illustration of the loading procedure.
After loading and waiting for the specimen to relax, one X-ray stress measurement was performed at
the locations marked by grey points. The specimen was then unloaded to measure residual X-ray
stresses at zero applied stress.

2.4. X-ray Stress Measurements
2.4.1. Setup and Diffraction Conditions

All measurements were performed using a portable Stresstech G2R diffractometer
(Stresstech, Jyväskylä, Finland) in modified-chi mode (NF EN 15305, [4]), equipped with
two Dectris MYTHEN2 R 1D detectors (Dectris, Baden-Dättwil, Switzerland), a chromium
anode, and a 2 mm diameter collimator.

Stresses were measured along the axis of the specimens only (i.e., at constant rotation
angle) for the {211} planes of the ferrite phase (2θ ≈ 156◦), using the Kα radiation of
the chromium anode with the sin2 χ method—which is the analog of the standard sin2 ψ
method for diffractometers that operate in modified-chi mode; refer to appendix X1 of the
ASTM-E2860-12 standard [5] for a detailed derivation of the model that relates lattice strains,
goniometer angles, and components of the macroscopic stress tensor in macroscopically
isotropic materials in modified-chi mode. Each measurement used 19 tilt angles linearly
spaced between −41 and +41◦, +/−3◦ tilt oscillations, and a 5 s exposure time. Vanadium
Kβ filters were not used as none were available. The alignment of the diffractometer was
checked according to ASTM-E915-96, using a calibration specimen made of iron powder
embedded in an epoxy matrix. Figure 5 shows typical spectra acquired at 0◦ tilt (i.e.,
approximately normal to the surface of the specimen) on an electropolished (left) and
as-annealed (right) specimen.
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Figure 5. Typical raw diffraction spectra for an electropolished specimen (left) and as-annealed
specimen (right). Both spectra were acquired on untested specimens at zero tilt—i.e., approximately
normal to the surface—and normalized to make comparison easier. Also shown are the fitted spectra
used to determine the location of the peaks, the components of the fit, and the fit error (bottom).

2.4.2. Peak Fitting

Diffraction spectra returned by the detectors, which had only undergone flat field
correction, were post-processed using in-house codes. No Lorentz-polarization correction
was applied as, unlike for omega and chi modes, this correction does not depend on the
tilt angle in modified-chi mode. Each spectrum was fitted with a model consisting of the
sum of a linear background term, a pseudo-Voigt function to represent the Kα1 peak, and a
pseudo-Voigt function to represent the Kα2 peak, that is

f (x) = a0 + a1x + fpseudo−voigt(x|α, p0, p1, p2) + fpseudo−voigt(x|α∗, p∗0 , p∗1 , p∗2), (4)

where a0, a1, α, α∗, the pi, and the p∗i are adjustable parameters,

fpseudo−voigt(x| α, p0, p1, p2)
= (1 − α) fgauss(x| p0, p1, p2) + α florentz(x| p0, p1, p2),

(5)

fgauss(x, |p0, p1, p2) = p0exp

[
−ln(2)

(x − p1)
2

p2
2

]
, (6)

and
florentz(x|p0, p1, p2) =

p0

1 + (x−p1)
2

p2
2

. (7)

In the above expressions, x is the 2θ angle, a0 and a1 describe the linear background,
p0 and p∗0 the height of the peaks, p1 and p∗1 their center, p2 and p∗2 their half width at half
maximum, and α and α∗ are weights that vary between 0 and 1.

Because both Kα1 and Kα2 peaks were generated by the same diffractometer, it is
assumed that both peaks had the same shape, that is α∗ = α and p∗2 = p2. Furthermore,
since the intensity of the Kα2 peak is known to be half that of the Kα1 peak ([22], sec. 1.4),
the condition p∗0 = p0/2 was imposed. Finally, because the wavelengths of the radiations
that cause each peak are constants for a given anode, writing Braggs law for each radiation
and dividing one by the other yields

sin θ2

sin θ1
=

λ2

λ1
⇒ θ2 = arcsin

(
sin θ1

λ2

λ1

)
, (8)
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where λi is the wavelength of the radiation that causes the Kαi peak and θi is the associated
Bragg angle (between the incident and diffracted beam). This implies that

p∗1
2

= arcsin
(

sin
( p1

2

) λ2

λ1

)
. (9)

Put together, the relationships from this paragraph enable to deduce all parameters
that describe the Kα2 peak from those that describe the Kα1 peak, which reduces the number
of parameters to optimize from 10 to 6.

Fitting was performed using Scipy’s nonlinear least-squares solver, least_squares. The
gradient of the cost function was computed analytically. Initial estimations of the param-
eters were computed from the experimental spectrums as follows: p0 as the maximum
intensity of the spectrum for the height of the peak; p1 as the location of the maximum
intensity; p2 as the area divided by twice the maximum height and 0.5 for α. Figure 5 shows
typical results of the fitting procedure.

2.4.3. X-ray Stress Computations

For stress computations, lattice spacing was computed using Bragg’s law as

dhkl
ϕ , ψ =

1
2

λKα1

sin θKα1

,

where λKα1 is the Kα1 wavelength, and θKα1 is the diffraction angle of the Kα1 peak; lattice
strains were computed as

ϵhkl
ϕ , ψ =

dhkl
ϕ , ψ – d0

d0
,

where the reference lattice spacing d0 = 0.117089 nm was measured at zero tilt on a stress-
free powder. Finally, macroscopic stresses were computed using the sin ²χ method (the
analog of the standard sin ²ψ method for diffractometers in modified-χ configuration) as
described in standards NF EN 15305 and ASTM-E2860-12.

3. Results

Figure 4 illustrates the raw experiment performed on specimen A1. The grey line
is the true stress–strain curve recorded by the load cell and strain gauge. The black dots
are the XRD measurements performed at different strain levels during load and unload
phases. For these measurements, the 1

2 Shkl
2 constant was set to the textbook value of

5.76 × 10−6 MPa−1 [5]. In an ideal scenario, the black dots would superimpose with the
stress–strain curve. However, this is not the case due to the two phenomena already
mentioned in the introduction.

The first phenomenon is due to pseudo-macrostresses that causes stresses measured
using X-ray diffraction to differ from zero at zero applied stress. As in the previously
cited studies, compressive pseudo-macrostresses were measured, the amplitude of which
increases with plastic strain. This offset stress evolution is represented with a black dashed
line in Figure 4 and plotted for four tested specimens in Figure 6. The evolution of pseudo-
macrostresses depends on the surface condition. For electropolished specimens, pseudo
macrostresses are initially close to zero and reach −50 to −75 MPa at 1.8% of added plastic
strain. For as-annealed specimens, the pseudo-macrostresses are initially compressive, at
about −20 MPa, then increase up to 20 MPa, before falling back to almost zero.
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The second phenomenon is the variation of X-ray elastic constants with plastic strain.
This is illustrated in Figure 7 which shows the evolution of experimentally determined
1
2 Shkl

2 versus plastic strain. As for pseudo-macrostresses, the shape of the curves depends
on the surface condition.

Metals 2024, 14, x FOR PEER REVIEW 10 of 17 
 

 

phases. For these measurements, the ଵଶ 𝑆ଶ௛௞௟  constant was set to the textbook value of 5.76 ×  10ି଺ MPa−1 [5]. In an ideal scenario, the black dots would superimpose with the 
stress–strain curve. However, this is not the case due to the two phenomena already men-
tioned in the introduction. 

The first phenomenon is due to pseudo-macrostresses that causes stresses measured 
using X-ray diffraction to differ from zero at zero applied stress. As in the previously cited 
studies, compressive pseudo-macrostresses were measured, the amplitude of which in-
creases with plastic strain. This offset stress evolution is represented with a black dashed 
line in Figure 4 and plotted for four tested specimens in Figure 6. The evolution of pseudo-
macrostresses depends on the surface condition. For electropolished specimens, pseudo 
macrostresses are initially close to zero and reach −50 to −75 MPa at 1.8% of added plastic 
strain. For as-annealed specimens, the pseudo-macrostresses are initially compressive, at 
about −20 MPa, then increase up to 20 MPa, before falling back to almost zero. 

 
Figure 6. X-ray stresses at zero applied stress versus plastic strain for the four tested specimens. 

The second phenomenon is the variation of X-ray elastic constants with plastic strain. 
This is illustrated in Figure 7 which shows the evolution of experimentally determined ଵଶ 𝑆ଶ௛௞௟ versus plastic strain. As for pseudo-macrostresses, the shape of the curves depends 
on the surface condition. 

 

Figure 7. X-ray elastic constant 1
2 Shkl

2 versus plastic strain for the four tested specimens.

- For electropolished specimens, the constant is initially close to values reported in the
literature, and then decreases by about 6% after 2% added plastic strain.

- For as-annealed specimens, the constant is initially about 25% lower than the values
from the literature, at about 4.3 × 10−6 MPa−1, and it further decreases by about 13%,
down to 3.75 × 10−6 MPa−1.

This study aims at proposing a methodology to account for this second issue in order
to calculate stresses with the adequate 1

2 Shkl
2 value. However, the plastic strain in the

gauge volume is not a generally available piece of information when performing diffraction
measurements. The diffraction peak width is known to be an indirect measurement of
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the plasticity level. Figure 8 presents the evolution of the integral breadth as a function of
plastic strain for the four tested samples. Values vary with plastic strain from 1.5◦ to 2◦ for
electropolished samples and from 1.9◦ to 2.7◦ for the as-annealed specimen.
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and the dotted curve highlight values at zero applied stress, whereas colored dots show how tilt-
averaged integral breadth increases with applied stress.

These values are not only linked to the material and its plastic strain state but also to
the XRD measurement device, and therefore only the relative variation with plastic strain
of the integral breadth between the samples of this study can be looked at. Absolute values
cannot be compared to values in the literature as for the XEC.

4. Discussion

As integral breadth values can be linked to plastic strain and 1
2 S2 values decrease with

plastic strain, it is possible to evaluate the 1
2 Shkl

2 parameter as a function of the integral
breadth. The evolution is plotted in Figure 9 and exhibits a non-linear behavior, followed by
an asymptotic stabilized behavior. For this purpose, a decreasing exponential fit function
is chosen.

1
2

S2(B) =
1
2

Sini
2 −

(
1
2

Sini
2 − 1

2
S f inal

2

)
× (1 − exp(−ξ(B − Bini))) (10)

where ξ is the only parameter that needs to be optimized on the set of data (here, using
Scipy’s non-linear least-squares optimization algorithm). The other parameters are directly
calculated as the average on each group of experiments (electropolished and as-annealed)
as follows:
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- 1
2 Sini

2 is the 1
2 Shkl

2 value assessed on the first load of the test;

- 1
2 S f inal

2 is the 1
2 Shkl

2 value assessed on the last unload of the test;
- Bini is the tilt-averaged integral breadth at the start of the test.

Table 3 shows the fitted parameters and Figure 9 shows the fitted model superimposed
to experimental data.

Table 3. Fitting parameters obtained for the two sets of data.

Surface
Condition/Parameter

1/2Sini
2

(×10−6 MPa−1)
1/2Sfinal

2
(×10−6 MPa−1)

Bini
(Degree)

ξ
(Degree−1)

Electropolished 5.459 5.126 1.475 14.33
As-annealed 4.189 3.612 1.986 9.52

Using these evolutive 1
2 Shkl

2 parameters, the XRD measured stress values can be
corrected. To visualize the effect of this correction without results being polluted by pseudo-
macrostresses, Figure 10 shows increments of X-ray stress—i.e., X-ray stress minus X-ray
stress at zero applied stress—of all stress measurements plotted versus applied stress. Each
set of points differs by the 1

2 S2 parameters used for computing X-ray stresses:

- Black dots use the constant textbook value 1
2 Shkl

2 = 5.76 × 10−6 MPa−1 and represent
the case where no calibration test is performed (i.e., the same value for all specimens).

- Grey dots represent the standard case where a calibration test is performed on each
specimen, and stresses are calculated using the experimentally determined 1

2 S2 value
obtained at the beginning of each test (i.e., a different value for each specimen).

- White dots are obtained with the methodology proposed in this study: 1
2 Shkl

2 values
are computed with Equation (10), using the parameters listed in Table 3 (i.e., a different
value for each specimen and each plastic strain level).
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Figure 10. Scatter plots showing experimentally determined X-ray stress increments—i.e., X-ray
stress minus X-ray stress at zero applied stress—versus applied stress. Black dots show X-ray stresses
computed with a constant textbook-value of 1

2 S2, grey dots show X-ray stresses computed with
experimentally determined 1

2 S2 (Figure 7), and white dots show X-ray stresses computed using the
model in Figure 9. In a hypothetical perfect scenario, all points would converge along an unitary
slope line.

It is clear that the proposed methodology is the option where the points best corre-
spond to the unitary slope line and thus the proposed methodology is efficient to enhance
XRD-measured stress accuracy. The importance of the XEC correction is emphasized on the
as-annealed sample where its variation is the most important.

As the proposed methodology is time-consuming (60 h/specimen) and requires au-
tomation to enhance measurement accuracy and repeatability, a simplified calibration can
be made using only the initial condition of the specimen, without adding plastic strain to
the specimen, as recommend by the standards. This was performed for the calculation of
the grey dots. Although it degrades results, compared to the proposed methodology of
this paper, it still significantly enhances the accuracy of the measurements compared to
the black dots calculated with the handbook value. This is due to the fact that, even with
thermally stress-relieved specimens, the calibrated 1

2 Shkl
2 values are significantly lower than

the handbook value, respectively −5% for the electropolished specimens and −25% for the
as-annealed specimen.

The observations in Figure 10 are similar to the conclusion that is drawn from Figure 7
which validates two important points:

- Whether it is a constant or variable parameter with plastic strain, the effect of taking
into account the calibrated 1

2 Shkl
2 values is more important than other stress measure-

ment uncertainties.
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- This study is based on the experimental observation that the 1
2 Shkl

2 parameter depends
on plastic strain. In order to propose a practical solution, the peak width is used
as a variable instead of plastic strain to describe the XEC evolution. However, it
induces a secondary dependence of the XEC on the stress level as the peak width
depends on both plastic strain and stress levels (see Figure 8). Figure 10 proves that
the methodology does not suffer from this bias for the studied configurations.

The effect of the correction on the absolute stress value accuracy also depends on the
pseudo-macrostress level. For electropolished specimens, the contribution of the variation
of 1

2 Shkl
2 is small (≈5%), compared to the contribution of pseudo-macrostress that can be as

high as −70 MPa for plastic strains of a few tenths of a percent. In other words, the error
introduced by neglecting pseudo-macrostresses is significantly larger than that introduced
by neglecting the variation of X-ray elastic constants with plastic strain. For this surface
condition, the relevance of the proposed correction method is therefore limited, especially
if the amplitude of residual stresses is small. On the other hand, for as-annealed specimens,
the contribution of the variation of 1

2 Shkl
2 is more important (≈15% decrease) whereas the

contribution of pseudo-macrostresses is smaller (±20 MPa).
In some rare cases, uncertainty on the XEC is not a problem and the proposed method-

ology is not necessary. For example, when post-processing treatment parameters are
optimized based on the optimal observed fatigue life of a material, it can be assumed that
the uncertainty is the same during the parameter’s optimization phase and the subsequent
production control tests, as long as the measurement protocol is constant.

In most cases, however, XEC uncertainty is a major issue for the following stress
evaluation purposes:

- Stress values can be used to validate process simulation models. In this case, also,
absolute macroscopic stress values are of interest and constants should be corrected.

- More critically, stresses can be used for design purposes. The mean stress effect deter-
mines fatigue life [29,30], corrosion cracking [31,32], and fracture failure [33,34]. The
corresponding design criteria are generally calibrated on simple specimens designed
for laboratory testing. In the case where the surface and plastic strain states of the cali-
bration specimen differ from those of the application cases, different constants should
be used for the stress evaluation of the two configurations, which is not generally
done as it is assumed that the material is the same.

To conclude on this part, it must be reminded that if the calibrated XEC depends on
the plastic deformation, it also depends strongly of the surface condition. Common practice
is to consider that XEC depends on the diffracting plane and material microstructure.
However, the surface condition also makes a major contribution to the uncertainty of the
XEC value, which leads to direct uncertainty on the assessed stress values.

5. Conclusions

This study presented a series of in situ X-ray stress measurements performed on small
specimens of a high-elastic limit steel loaded in uniaxial tension. The experimental results
reveal that the 1

2 Shkl
2 X-ray elastic constant decreases with plastic strain, which is consistent

with earlier studies from the literature conducted on other metals.
Although the variation of 1

2 Shkl
2 with plastic strain is documented since the 1950s, to

the best of our knowledge, no method has been proposed to take this effect into account
when performing X-ray stress measurements on plastically deformed parts. In fact, al-
though international standards recommend using experimentally determined X-ray elastic
constants, from our experience, these measurements are seldom conducted in industrial
practice, with most measurements using tabulated X-ray elastic constant values.

The main contribution of this work is to propose a methodology to correct XRD
measurements using a 1

2 Shkl
2 value calibrated to the tilt-averaged integral breadth. For

this purpose, a calibration function is used. This procedure allows the method to be
transposed to any sample at no additional cost as once the function parameters are known,
all information needed is obtained during a classic XRD measurement.
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The proposed methodology can be applied to any material suited to X-ray stress
measurements, assuming a one-to-one relation between peak width and 1

2 Shkl
2 , which

implies that the influence of the stress level on peak width is neglected. The application
of the method on a thermally stress-relieved high-strength steel submitted to uniaxial
tensile testing with two surface preparations has proven the efficiency of the method in
this particular case. The methodology remains to be validated for other materials, as well
as for other loading paths.

Apart from the 1
2 Shkl

2 variation, this study also highlights the fact that the X-ray elastic
constant can vary strongly with the near-surface microstructure. Measurements on EDM-
cut and annealed specimens have shown that the variation of the X-ray elastic constant
is very sensitive to the surface state of the specimen as these samples exhibit a relatively
important X-ray elastic constant decrease (−14%) compared to the same samples which
underwent additional electropolishing (−6% variation).

It is also important to note that the initial X-ray elastic constant value of the electropol-
ished specimen of about 5.42 × 10−6 MPa−1 was close to the 5.76 × 10−6 MPa−1 textbook
value, whereas the initial value for the as-annealed specimen of about 4.28 × 10−6 MPa−1

is lower. This highlights the importance of calibrating the X-ray elastic constant value
on the exact same surface state, whether this value is assumed to be constant or not with
respect to the plastic strain. The total obtained X-ray elastic constant values vary from 3.5
to 5.5 ×10−6 MPa−1, leading to proportional errors on the evaluated stress.

Further investigations would include testing additional surface states on the same
material, such as laser or shot-peened surfaces, as well as testing the influence of multiaxial
loading paths on the X-ray elastic constant evolution.
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