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Abstract: The microstructure and mechanical properties of a low-alloy medium carbon steel (Fe-0.5C-
0.9Mn-1Cr-0.16V, in wt.%) were investigated after rapid tempering and compared with a conven-
tionally tempered counterpart. The conventional thermal cycle was performed in a laboratory-scale
box furnace while rapid heat treatments were carried out using the Gleeble 3800 thermomechanical
simulator machine. In the rapid heat treatments, the heating rate was 50 ◦C/s for austenitizing and
60 ◦C/s for the tempering process, with a cooling rate of 60 ◦C/s for both treatments. Austenitization
was performed at 900 ◦C for 3 s and tempering was conducted at 300 ◦C and 500 ◦C for 2 s. For
conventional routes, the heating rate for both austenitization and tempering was 5 ◦C/s. Likewise,
the austenitization was carried out at 900 ◦C for 45 min and tempering was carried out at 300 ◦C and
500 ◦C for 30 min. The results revealed that rapid tempering resulted in a significantly increased
impact toughness compared to conventional tempering, while maintaining a consistent high strength
level. The quenched samples showed the highest hardness and tensile strength but obtained the
lowest toughness values. The optimum combination of strength and toughness was achieved with
the sample rapidly tempered at 300 ◦C, resulting in a tensile strength of 2050 MPa and impact energy
of 14 J for sub-sized CVN samples. These desirable mechanical properties were achieved throughout
the tempered martensitic microstructure with a minor fraction of pearlitic strings.

Keywords: fast tempering; martensite; mechanical properties; ultrahigh strength steel

1. Introduction

The green transition is currently taking place in the steel industry as many steel
producers are adopting more environmentally friendly alternatives to replace traditional
blast furnace iron production and steelmaking. Direct reduced iron and electric arc furnaces
are becoming more common solutions for fossil-free or reduced CO2 steel production;
however, efforts need to be made to reduce carbon emissions in heat treatment and hot-
rolling stages. The possibility of using green heating procedures, such as induction and
laser heating, with relatively fast heating rates was recently discussed and suggested [1,2].

The microstructure and mechanical properties of the steel can be modified by dif-
ferent heat treatments to meet the requirements for a given application, and the highest
strength and hardness is generally achieved with a martensitic structure [3]. Quenching
and tempering are both essential in the processing of ultra-high strength steels in order to
achieve the desired structure and subsequent required mechanical properties [4,5]. Hence,
the rapid tempering of martensitic steels could be an initial step towards a transition to
green steel processing.

The conventional tempering of large steel sheets or plates often involves massive
furnaces, which are heated, for example, with gas or oil. Tempering times and temperatures
vary from 200 to 700 ◦C, and from minutes to hours, depending on the required final
properties. However, rapid induction heating can be utilized for much faster austenitization
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and tempering processes. Energy and time savings are essential in terms of future heat
treatments; however it is important that the properties of the rapidly tempered steels match
those of conventionally tempered steels. Rapid tempering might provide some benefits in
terms of fracture and impact toughness [6,7] improvement, which may be attributed to the
different carbide formation kinetics favoring the formation of finer particles with higher
heating rates [6]. The smaller precipitate size could be an explanation for the improved
elongation of the rapidly tempered samples. It has been suggested that the annihilation of
dislocations by recovery does not have time to occur when using rapid heating rates and fast
tempering times [6]. Consequently, the rapid tempering leads to a finer particle distribution
inside the martensite substructure due to the higher dislocation density, which then results
in improved toughness and ductility. In addition, the carbides precipitated at the grain
boundaries might become coarser, with slower heating rates degrading the fracture and
impact toughness properties [7]. Additionally, it has been suggested that the preservation
of retained austenite in rapidly tempered steels improves the toughness properties [8].
Retained austenite might be preserved in medium carbon steels during rapid tempering,
while longer tempering times result in the decomposition of any austenite, especially in the
tempered martensite embrittlement temperature range (200–400 ◦C). Therefore, there is
great potential for the use of rapid induction heating in the tempering of steels. However,
many scientific studies rely on physical simulations.

It is well known that grain refinement is an efficient way to increase the mechanical
properties of steels [9,10], especially the toughness properties. For bainitic and martensitic
steels, the prior austenite grain (PAG) size [11,12], packet size [11,13] and block size [14]
have been claimed to be important in terms of mechanical properties. Furthermore, the
effective grain size (deff), i.e., the size of grains bound by high-angle grain boundaries, has
been shown to be an essential factor [15–19]. Austenitization temperature and duration, as
well as heating and cooling rates, affect the PAG size. Rapid heating has recently become an
interesting possibility to achieve a small grain size during both austenitization [20] and tem-
pering [21,22]. Notably, induction tempering can be seen as an option for the tempering of
thin sheets. Faster and more energy-efficient processing routes are becoming more feasible
due to the increasing demand for more environmentally friendly steelmaking processes.

The aim of this study was to understand and compare the microstructure and mechan-
ical properties of 51CrV4 steel processed via two different routes. 51CrV4 is an advanced
high strength martensitic steel grade widely used as a heat-treatable steel in various appli-
cations, such as springs, shafts, and agricultural wear parts, where high strength, hardness,
and toughness are needed [23]. For this purpose, two different heating routes were utilized:
conventional and rapid heating cycles. This article focuses mainly on the feasibility of
employing green heating processes and the potential benefits of rapid tempering instead of
conventional heat treatments.

2. Materials and Methods

The microstructure and mechanical properties of a low-alloy medium carbon steel
(Fe-0.5C-0.9Mn-1Cr-0.16V, in mass contents in %) were investigated in both conventional
and rapid austenitization, quenching and tempering routes. The impurity levels of P and S
were 0.006 and 0.001%, respectively, provided by the steel producer. The 51CrV4 standard
commercial steel grade was received in as-rolled condition as heavy plates (8 mm thickness)
containing a pearlitic microstructure and having a hardness of approximately 200 Vickers.
For the conventional route, 8 × 300 × 100 mm3 plates were heat-treated in the laboratory-
scale furnace (austenitizing at 900 ◦C for 45 min, water quenching to room temperature and
then tempering at 300 ◦C and 500 ◦C for 30 min, Figure 1a). The rapid routes (austenitizing
at 900 ◦C for 3 s and tempering at 300 ◦C and 500 ◦C for 2 s, Figure 1b), were realized with a
Gleeble 3800 thermomechanical simulator machine (Dynamic Systems Inc., Poestenkill, NY,
USA). The sample sizes varied in the Gleeble trials. The sample sizes for the microstructure
investigation, tensile testing, and Charpy-V (CV) tests were 9 mm in length and 6 mm
in diameter, 120 mm in length and 6 mm in diameter and 5 × 10 × 55 mm3, respectively.
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Conventional heat treatments were performed for the plate, which was later machined to
tensile and CV sample dimensions. The major difference between the conventional and
fast treatments was the heating and cooling rates. In the rapid trials, the heating rate was
50 ◦C/s for austenitizing and 60 ◦C/s for tempering, while for the conventional route
the rates were approximately 5 ◦C/s. The conventional water quenching treatment (WQ)
had a faster cooling rate (~100 ◦C/s) to room temperature and the plates were allowed to
cool in still air after tempering (~0.5 ◦C/s), while in the Gleeble, the mean cooling rate at
quenching and tempering was ~60 ◦C/s.
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Figure 1. Temperature–time diagrams showing differences between: (a) conventional; and (b) rapid
heating, quenching, and tempering.

Additionally, JMatPro software version 14.0 (Sente Software Ltd., Guildford, UK) with
a General Steel database was used to simulate the continuous cooling transformation (CCT)
diagrams and determine the lower (A1) and upper critical (A3) temperatures of different
prior austenite grain sizes with a 900 ◦C austenitization temperature. Dilation data for the
construction of CCT diagrams were generated with a Linseis DIL L78 dilatometer (Selb,
Germany) using cylindrical samples with a diameter of 6 mm and a length of 9 mm. Linear
cooling rates in the range of 0.5–96 ◦C/s were applied. The heating rate was 10 ◦C/s
up to the holding temperature of 900 ◦C with a soaking time of 10 min. Different phase
transformation temperatures were identified from the temperature dilation data based on
the deviation from the linear thermal contraction. Furthermore, the effect of the heating
rate on the phase transformation temperature was determined with 10, 50 and 100 ◦C/s
heating rates utilizing the dilatometer.

2.1. Microstructural Characterization

A general characterization of the microstructures was performed with a laser scanning
confocal microscope (LSCM, Keyence VK-X200, Osaka, Japan) and a field emission scanning
electron microscope (FESEM, Zeiss Ultra Plus, Jena, Germany) on specimens etched with
2% Nital. The prior austenite grain structure was studied using LSCM after approximately
5 min of etching in picric acid (1.5 g of picric acid + 100 mL of ethyl alcohol + 1 mL sodium
alkylsulfonate (“Agepol”) + 4 − 6 drops of HCl) at room temperature [24]. The typical prior
austenite grain size was quantified by measuring the mean linear intercept (MLI) method
from five images per sample (~200 intercepts in both vertical and horizontal directions).

For electron backscatter diffraction (EBSD) imaging, an Oxford AZTEC (Oxford In-
struments, Abingdon, UK) was utilized on the JEOL JSM-7900F FESEM (Japan Electron
Optics Laboratory Co., Ltd., Tokyo, Japan) with an acceleration voltage of 20 kV and a
working distance of 18 mm. The area of examination was 48 × 33 µm with a step size of
50 nm or 20 × 14 µm with a step size of 20 nm to obtain the most reasonable measurements.
Grain boundaries with misorientations greater than 15◦ were considered as effective grain
boundaries (deff), and the size of the coarsest grains, d90%, corresponded, respectively, to
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the effective grain size at 90% in the cumulative size distribution. The equivalent circu-
lar diameter (ECD) was used to define the effective grain size and ten pixels (less than
0.18 µm) were filtered from the original acquisitions in order to mitigate the frequency of
the minuscule grains typically encountered with EBSD.

2.2. Mechanical Testing

Hardness was measured using a Wolpert DiaTestor R2 hardness tester (Amsler, KARL-
KOLB, Dreieich, Germany) in Vickers method of HV30 force. For the tensile testing, the
conventionally heat-treated samples were machined from 6 mm diameter samples to 3 mm
to avoid fractures outside of the extensometer. Therefore, the Zwick Z100 kN tensile tests
were conducted using round samples with a gauge length of 24 mm (Figure 2). During the
tensile test, the strain rate was 0.0025 s−1 to the yield point and was 0.008 s−1 after the yield
point was reached, according to the EN ISO 6892-1 standard [25]. Charpy-V notch impact
testing was performed according to the standard EN ISO 148-1 [26] at room temperature
(RT) using sub-size specimens with dimensions of 5 × 10 × 55 mm3. For the tensile and
Charpy-V tests, three samples per material variant were tested.
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Figure 2. Schematic illustration of the tensile test sample.

3. Results and Discussion
3.1. JMatPro Simulation and CCT Diagrams

Figure 3a–c illustrates the JMatPro CCT calculations with three prior austenite grain
sizes with austenitization at 900 ◦C. The simulations showed that, with the investigated
steel composition, A1 and A3 temperatures were quite close, at 750.9 ◦C (pearlite) and
756.1 ◦C, respectively. The calculated martensite start temperature was approximately
290 ◦C. The increase in the prior austenite grain size from 5 µm to 15 µm shifted the bainite
(blue) and pearlite (bright green) curves on the right, which indicated that the bainite
phase transformation was only possible with a very slow cooling rate (Figure 3a–c). The
experimental CCT based on the dilatometer simulated CCT diagram (Figure 3d) confirmed
the JMatPro calculations, as the MS temperature was ~280 ◦C and the phase transformation
curve was quite close to the calculated value. However, the prior austenite grain size could
not be determined from the CCT diagram alone (Figure 3d).

Figure 4 shows the effect of the heating rate on phase transformation. From the plotted
dilation curves (Figure 4b) it can be seen that, with the slowest heating rate (10 ◦C/s)
the austenite phase transformation starts at ~745 ◦C, while at the rate of 50 ◦C/s and
100 ◦C/s phase transformations started at ~750 ◦C and ~755 ◦C, respectively. Therefore,
it can be stated that the higher heating rate increases the austenite phase transformation
start temperature, which is consistent with the literature [28]. As only one cooling rate
(30 ◦C/s) was used, no difference in the martensite phase start temperatures could be
detected, and temperatures were close to 280 ◦C. as is indicated in the dilatometer CCT
diagram dilations.
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with austenitization temperature of 900 ◦C. MS temperature computed using equation given in
ref. [27] (Abbreviations: BS = Bainite start, Bf = Bainite finish, MS = Martensite start, and Mf = Marten-
site finish temperature).
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3.2. Microstructural Characterization

The typical prior austenite grain (PAG) structure of the quenched samples is shown
in Figure 5, where a major difference between the conventional and rapid heat-treated
samples can clearly be observed. The rapidly austenitized and quenched samples exhibit
smaller PAG sizes than the conventional sample, along with a narrower distribution of
PAG sizes (Figure 6). Figure 5b shows that the rapidly treated sample has a heterogeneous
prior austenite grain structure. On the other hand, the grains in the conventionally treated
sample appear quite uniformly distributed in Figure 5a; however, the grain distribution in
Figure 6 shows a different aspect as it shows a more significant fraction of larger grains
(>16 µm). Hence, the mean grain size for the rapidly austenitized materials was about
7 µm, while that of the conventional samples was around 10 µm. the minor differences in
the PAG sizes did not affect the hardenability of the materials, as the JMatPro calculations
demonstrate in Figure 3.
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Figure 6. Prior austenite grain size (in diameter) distributions of the rapid and conventional materials.

Figure 7 illustrates the EBSD characterization of the investigated samples, including
randomly colored grain maps with an overlayered band contrast map and high-angle grain
boundaries (HAGB, >15◦) plotted in black. Table 1 summarizes the statistics of the acquired
maps. Figure 7a–c shows that the microstructure of the conventionally treated samples
consists of lath-type martensite, and it is more uniform than the rapidly treated microstruc-
ture. The rapidly treated materials (Figure 7d–f) are heterogeneous, as these samples consist
of a higher fraction of fine grains along the typical lath martensite. It can be seen in Table 1
that the coarsest grain sizes are observed in the conventional samples, which are larger than
those of the rapidly treated materials. Table 1 shows that the tempering had no effect on the
effective grain sizes, which is in agreement with the results of a previous study [29].
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Table 1. Grain count, effective grain size (deff), largest grain (dmax), coarse grain size from 90%
cut-off (d90%), and fraction of low- (LAGB, 5◦–15◦) and high-angle boundaries (HAGB, >15◦) of the
investigated materials.

Material Grains
pcs.

deff,
µm

dmax,
µm

d90%,
µm

LAGB,
%

HAGB,
%

Q(Rapid) 2110 0.69 ± 0.03 5.61 2.63 11.4 88.6
Q + 300 ◦C (Rapid) 2608 0.62 ± 0.02 7.57 2.39 11.9 88.1
Q + 500 ◦C (Rapid) 2566 0.62 ± 0.02 5.64 2.79 12.6 87.4

WQ (Conv) 2178 0.64 ± 0.03 8.96 3.28 12.9 87.1
WQ + 300 ◦C (Conv) 1984 0.68 ± 0.03 9.65 3.33 13.0 87.0
WQ + 500 ◦C (Conv) 1946 0.69 ± 0.03 7.34 3.36 12.9 87.1

An efficient method for assessing local strain concentrations and revealing the local dis-
location density distribution is the local kernel average misorientation (KAM) map [30,31].
Figure 8 illustrates the KAM map, depicting misorientation angles ranging from 0◦ to 5◦

for all samples, along with the corresponding relative frequency of each misorientation
angle. In Figure 8, the color scheme represents misorientation levels: blue for very low
misorientation (below 1◦), green for angles between 1◦ and 2◦, yellow for angles between 2◦

and 3◦, and red for misorientation angles exceeding 3◦. Misorientations exceeding 5◦ were
excluded from the KAM evaluation to avoid interference with low-angle grain boundaries.

According to Figure 8, although heating took place for a very short time through the
rapid tempering regime, all the samples exhibit an almost similar trend with the distribution
of misorientations of <1◦ (blue) and 1–2◦ (green), indicating that both rapid and conven-
tional tempering were capable of relaxing the distorted fresh martensitic microstructure
and improving the ductility of the tempered samples.

A more detailed microstructural characterization shows that the microstructures of the
heat-treated materials were mainly martensitic with some fractions of pearlitic/cementite
strings and some coarse carbides i.e., Fe3C (Figures 9 and 10). In addition, the EBSD phase
characterization shows that all samples contained a small fraction of retained austenite
(blue in Figure 10c). In both cases, tempering caused the carbides to become more spheri-
cal/globular (Figure 10a). In many cases, the microstructure of Gleeble simulated samples
have significant local variations. In this study, the microstructure was likewise not as ho-
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mogeneous as that of the conventionally treated samples, as can be seen in the EBSD maps.
However, for the rapidly quenched and 300 ◦C tempered samples, the microstructures were
very fine, as is shown in Figure 9a,b. Likewise, the soaking time for the rapid treatments
was short; therefore, the original structure after rolling (as-rolled microstructure; mostly
pearlitic) may have influenced the final microstructure and caused the obscure, string-like
structures (Figure 10b).
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3.3. Mechanical Properties

Table 2 presents the tensile, Charpy-V impact test, and hardness results. Likewise,
the stress–strain curves of the investigated materials are shown in Figure 11. From the
results it can generally be seen that the strength values for the quenched samples are higher,
and the elongation values are lower, than those for the tempered samples. The increase in
the tempering temperature led to a decrease in the strength levels but an increase in the
elongation values. According to the tensile testing results, for both tempering temperatures
of 300 ◦C and 500 ◦C, the rapid tempering resulted in a higher strength and lower elongation
compared to conventional tempering. The biggest improvements were observed in the
samples tempered at 300 ◦C, which provided excellent Rm × A values (18,093 MPa% and
19,580 MPa% for the Q + 300 ◦C and WQ + 300 ◦C samples, respectively). A higher Rm
× A value means that the strength and ductile combination is enhanced. The elongation
values for the rapidly treated samples were difficult to interpret, as the localization of the
deformation occurred outside of the extensometer. Therefore, the tensile strength and
hardness values were more reliable when comparing the mechanical properties. As the
sample dimensions between the tensile and Charpy-V test samples were different, the
heating/cooling rates during the Gleeble experiments may have somewhat varied, and
this may have influenced the hardness values seen in Table 2. Therefore, the hardness was
also tested on the Charpy-V samples to obtain a more reliable comparison between the
properties of the materials. Considering only the hardness values, the major difference was
found between the conventional and rapidly quenched materials, where the conventionally
water-quenched material had a hardness of 680 HV and the rapidly treated sample had
a hardness of 582 HV. This may have been due to the different cooling rates between the
samples, as the conventionally treated samples had a very high cooling rate due to their
immersion in a water tank. It is notable that the tempering treatment did not affect the
hardness of tempered samples, as the tempering was done at the same temperature for
both the conventionally and rapidly treated samples.

Table 2. Mechanical properties of the investigated materials. In the tensile and Charpy-V impact
testing, 2 or 3 samples were performed, respectively. Hardness measured from Charpy-V impact
(CV) and Gleeble (GS) sample with 95% confidence limits of the means.

Material Rp0.2,
MPa

Rm,
MPa

A,
%

Rp0.2/Rm-
Ratio

Rm × A,
MPa% CV at RT, J Hardness,

HV30 (CV)
Hardness,

HV30 (GS)

Q (Rapid) 1643 2280 2.5 0.72 5700 3 582 ± 4 627 ± 13
Q + 300 ◦C (Rapid) 1563 2056 8.8 0.76 18,093 14 543 ± 4 617 ± 9
Q + 500 ◦C (Rapid) 1394 1472 7.9 0.95 11,629 18 431 ± 1 456 ± 3

WQ (Conv) 1597 2421 2.4 0.66 5810 2 680 ± 8 -
WQ + 300 ◦C (Conv) 1714 1958 10.0 0.88 19,580 6 544 ± 3 -
WQ + 500 ◦C (Conv) 1346 1434 12.2 0.94 17,495 14 409 ± 6 -
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The impact energies of the investigated materials at room temperature are given in
Figure 12a. Impact energies improved as the tempering temperature increased. Both
quenched variants were very brittle, as the CV energies were between 2–3 J. The most
notable improvement was seen after rapid tempering, where the CV energies increased
from 3 J to 18 J. Generally, the rapidly treated materials showed improved impact toughness
compared to the conventionally treated samples. Comparing the relationship between the
tensile strength and impact energies in Figure 12b, the rapidly tempered materials at 300 ◦C
and 500 ◦C have a significantly better combination of tensile strength and CV impact energy
than the conventionally tempered materials. This is the most important result of the current
study. The material behavior was totally different between the rapidly and conventionally
heated samples. For example, the conventional WQ + 300 ◦C sample had a 1958 MPa tensile
strength with 6 J impact energy, while the rapid Q + 300 ◦C sample had a tensile strength
of 2056 MPa and 14 J impact energy. Although the absolute values are somewhat low for
the impact toughness, the general relative improvement in the mechanical properties is
noteworthy. Furthermore, the finer mean grain size of the rapidly treated samples cannot
be clearly stated to have influenced the impact toughness, as both quenched, non-tempered
variants had poor impact toughness values with no significant differences. On the other
hand, the inclusion characterization was not performed. Although it is well-known that the
quantity of inclusions and inclusion size or other impurity levels can decrease the ductility
and impact energies of ultra-high-strength steels [32–34], it was assumed that the purity
level was similar for both the rapidly and conventionally heat-treated samples since the
investigated samples were cut from the same initial material.
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3.4. Microstructure-Property Relationship

Although the results showed that the sample rapidly tempered at 300 ◦C has consider-
ably better properties, further impact toughness improvement may be needed for industrial
applications where a combination of high strength and toughness is required. Presumably,
the prior austenite grain refinement of the rapid process improved the Charpy-V impact
energies. However, some presumably brittle microstructural components, such as pearlitic
strings and coarse carbides, were found in the rapidly treated samples. It is uncertain
how much better the results could be if the material consisted of only a refined martensitic
microstructure without coarse carbides and a heterogenous microstructure. However, the
precise carbide size distribution for the current study was not obtained using transmission
electron microscopy. Thus, the next step for future research is to discover how the rapid
heat-treatment parameters (austenitization together with tempering) can be engineered
to improve toughness and ductility with the rapid induction trials for on-going studies in
the pilot induction platform [35]. The current results are linked to the initiation of the local
cleavage cracks spanning across the coarsest grains [20] and in the second term, the fraction
of {100} planes close to the crack plane is linked to the propagation and arrest of local
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cleavage fractures [36]. However, a texture analysis of the current EBSD acquirements was
not possible as the samples are Gleeble simulations, and the exact orientation is undefined.

4. Conclusions

The microstructure and mechanical properties of conventionally and rapidly quenched
and tempered 51CrV4 steel grade samples were studied. The microstructural characteriza-
tion showed that the material consisted of martensite, while a small fraction of pearlite was
also found. Rapid heat treatment refined the prior austenite grain size and coarsest grain
sizes (d90%), and it was found to be an efficient way to improve the toughness properties.
While the hardness and tensile strength values were quite similar for both the conventional
and rapid materials, the rapidly quenched and 300 ◦C tempered material had the most
promising strength and toughness combination. It should be noted that the combination
of conventional austenitization and subsequent rapid tempering, not studied here, is an
interesting processing route and should be included in further studies. The parameters of
rapid treatment should be such that the grain size of austenite and martensite is fine and
uniform, and not as heterogenous as those observed in the current study. However, more
detailed studies need to be performed to understand the effect of rapid austenitization and
tempering on the microstructure and mechanical properties of ultra-high-strength steels.

Author Contributions: Conceptualization, A.K. and V.J.; Methodology, A.K.; Validation, A.K., O.H.
and S.S.; Investigation, A.K. and O.H.; Writing—original draft, A.K. and O.H.; Writing—review and
editing, S.S. and V.J.; Supervision, J.K.; Project administration, A.K.; Funding acquisition, A.K. and
J.K. All authors have read and agreed to the published version of the manuscript.

Funding: Financial assistance from the Business Finland, project FOSSA–Fossil-Free Steel Applica-
tions “Dno 5397/31/2021”, is acknowledged.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to ongoing study.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this study.

References
1. Matlock, D.K.; Kang, S.; De Moor, E.; Speer, J.G. Applications of Rapid Thermal Processing to Advanced High Strength Sheet

Steel Developments. Mater. Charact. 2020, 166, 110397. [CrossRef]
2. Gaggiotti, M.; Albini, L.; Di Nunzio, P.; Di Schino, A.; Stornelli, G.; Tiracorrendo, G. Ultrafast Heating Heat Treatment Effect on

the Microstructure and Properties of Steels. Metals 2022, 12, 1313. [CrossRef]
3. Göken, J.; Maikranz-Valentin, M.; Steinhoff, K.; Golovin, I.S.; Ivleva, T.V.; Flejszar, A.; Riehemann, W. Mechanical Spectroscopy

Study of Thermo-Mechanically Treated 51CrV4 Steel. Mater. Sci. Eng. A 2009, 521–522, 335–339. [CrossRef]
4. Zhang, L.; Gong, D.; Li, Y.; Wang, X.; Ren, X.; Wang, E. Effect of Quenching Conditions on the Microstructure and Mechanical

Properties of 51CrV4 Spring Steel. Metals 2018, 8, 1056. [CrossRef]
5. Lee, W.-S.; Su, T.-T. Mechanical Properties and Microstructural Features of AISI 4340 High-Strength Alloy Steel under Quenched

and Tempered Conditions. J. Mater. Process. Technol. 1999, 87, 198–206. [CrossRef]
6. Revilla, C.; López, B.; Rodriguez-Ibabe, J.M. Carbide Size Refinement by Controlling the Heating Rate during Induction Tempering

in a Low Alloy Steel. Mater. Des. 2014, 62, 296–304. [CrossRef]
7. Furuhara, T.; Kobayashi, K.; Maki, T. Control of Cementite Precipitation in Lath Martensite by Rapid Heating and Tempering.

ISIJ Int. 2004, 44, 1937–1944. [CrossRef]
8. Euser, V.K.; Williamson, D.L.; Clarke, A.J.; Speer, J.G. Cementite Precipitation in Conventionally and Rapidly Tempered 4340

Steel. JOM 2022, 74, 2386–2394. [CrossRef]
9. Luo, Z.F.; Liang, Y.L.; Long, S.L.; Jiang, Y.; Wu, Z.L. Effects of Ultra-Refine Grain and Micro-Nano Twins on Mechanical Properties

of 51CrV4 Spring Steel. Mater. Sci. Eng. A 2017, 690, 225–232. [CrossRef]
10. Zhang, C.; Wang, Q.; Ren, J.; Li, R.; Wang, M.; Zhang, F.; Sun, K. Effect of Martensitic Morphology on Mechanical Properties of an

As-Quenched and Tempered 25CrMo48V Steel. Mater. Sci. Eng. A 2012, 534, 339–346. [CrossRef]
11. Hanamura, T.; Yin, F.; Nagai, K. Ductile-Brittle Transition Temperature of Ultrafine Ferrite/Cementite Microstructure in a Low

Carbon Steel Controlled by Effective Grain Size. ISIJ Int. 2004, 44, 610–617. [CrossRef]
12. Han, J.; da Silva, A.K.; Ponge, D.; Raabe, D.; Lee, S.-M.; Lee, Y.-K.; Lee, S.-I.; Hwang, B. The Effects of Prior Austenite Grain

Boundaries and Microstructural Morphology on the Impact Toughness of Intercritically Annealed Medium Mn Steel. Acta Mater.
2017, 122, 199–206. [CrossRef]

https://doi.org/10.1016/j.matchar.2020.110397
https://doi.org/10.3390/met12081313
https://doi.org/10.1016/j.msea.2008.09.151
https://doi.org/10.3390/met8121056
https://doi.org/10.1016/S0924-0136(98)00351-3
https://doi.org/10.1016/j.matdes.2014.05.053
https://doi.org/10.2355/isijinternational.44.1937
https://doi.org/10.1007/s11837-022-05285-1
https://doi.org/10.1016/j.msea.2017.02.078
https://doi.org/10.1016/j.msea.2011.11.078
https://doi.org/10.2355/isijinternational.44.610
https://doi.org/10.1016/j.actamat.2016.09.048


Metals 2024, 14, 60 12 of 12

13. Wang, C.; Wang, M.; Shi, J.; Hui, W.; Dong, H. Effect of Microstructural Refinement on the Toughness of Low Carbon Martensitic
Steel. Scr. Mater. 2008, 58, 492–495. [CrossRef]

14. Morris, J.W., Jr. On the Ductile-Brittle Transition in Lath Martensitic Steel. ISIJ Int. 2011, 51, 1569–1575. [CrossRef]
15. Bhattacharjee, D.; Knott, J.F.; Davis, C.L. Charpy-Impact-Toughness Prediction Using an “Effective” Grain Size for Thermome-

chanically Controlled Rolled Microalloyed Steels. Metall. Mater. Trans. A 2004, 35, 121–130. [CrossRef]
16. Hwang, B.; Lee, C.G.; Lee, T.-H. Correlation of Microstructure and Mechanical Properties of Thermomechanically Processed

Low-Carbon Steels Containing Boron and Copper. Metall. Mater. Trans. A 2010, 41, 85–96. [CrossRef]
17. Hwang, B.; Lee, C.G.; Kim, S.-J. Low-Temperature Toughening Mechanism in Thermomechanically Processed High-Strength

Low-Alloy Steels. Metall. Mater. Trans. A 2011, 42, 717–728. [CrossRef]
18. Gutiérrez, I. Effect of Microstructure on the Impact Toughness of Nb-Microalloyed Steel: Generalisation of Existing Relations

from Ferrite–Pearlite to High Strength Microstructures. Mater. Sci. Eng. A 2013, 571, 57–67. [CrossRef]
19. Morris, J.W.; Kinney, C.; Pytlewski, K.; Adachi, Y. Microstructure and Cleavage in Lath Martensitic Steels. Sci. Technol. Adv. Mater.

2013, 14, 014208. [CrossRef]
20. Javaheri, V.; Kolli, S.; Grande, B.; Porter, D. Insight into the Induction Hardening Behavior of a New 0.40% C Microalloyed Steel:

Effects of Initial Microstructure and Thermal Cycles. Mater. Charact. 2019, 149, 165–183. [CrossRef]
21. Judge, V.K.; Speer, J.G.; Clarke, K.D.; Findley, K.O.; Clarke, A.J. Rapid Thermal Processing to Enhance Steel Toughness. Sci. Rep.

2018, 8, 445. [CrossRef]
22. Kaiser, D.; Damon, J.; Mühl, F.; de Graaff, B.; Kiefer, D.; Dietrich, S.; Schulze, V. Experimental Investigation and Finite-Element

Modeling of the Short-Time Induction Quench-and-Temper Process of AISI 4140. J. Mater. Process. Technol. 2020, 279, 116485.
[CrossRef]
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