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Abstract: An archaeometallurgical study of a Renaissance breach pike was performed to elucidate its
manufacturing process. Optical microscopy observations and microhardness measurements indicated
that the breach pike was forged starting from a heterogeneous steel lump. The microstructural features
were compatible with post-forging air cooling. The chemistry of a large set of nonmetallic inclusions
was investigated by scanning electron microscopy coupled with X-ray dispersive spectroscopy.
Compositional data were analyzed by multivariate statistics to distinguish smelting-related slag
inclusions. A logistic regression model indicated that the steel was probably produced by the direct
method. The liquidus temperatures of the slag inclusions indicated maximum smelting temperatures
in the range of 1200 ◦C to 1300 ◦C. A thermodynamic-based model was adopted to estimate the
average smelting conditions in terms of temperature and oxygen chemical potential and investigate
the disequilibrium of slag inclusion–metal systems. For low-disequilibrium systems, the computed
temperature values range between 1095 ◦C and 1118 ◦C, while the oxygen chemical potentials (µO2)
span from −442 to −374 kJ/mol.

Keywords: archaeometallurgy; breach pike; scanning electron microscopy; inclusion analysis;
thermodynamics

1. Introduction

This archaeometallurgical study focused on a specific type of awl-like hafted weapon
known as a breach pike. It is essentially composed of a thin, long needle with a square
cross-section, mounted on a wooden shaft, and often fixed to it by languets. Moreover, a
typical nodus is sometimes positioned between the spike base and the conical socket of the
shaft [1]. Based on iconographic sources, it is widely accepted that its initial adoption dates
back to at least the 13th century and remained in use until the 16th century (Figure 1) [2].
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Similarly to other staff weapons such as the halberd and spear, the breach pike reached
its peak of popularity, especially in Austria and Germany, during the 15th century with the
resurgence of professional infantry forces [3]. It was primarily used by the infantry as a
thrusting weapon [2]. According to di Carpegna [4], this type of weapon was commonly
used to defend breaches opened in the walls or gates of cities and forts during sieges.
Moreover, it has been hypothesized that the spread of breach pikes may have been linked
to the introduction of plate armors, against which they were highly effective [3]. As amour-
piercing weapons, breach pikes needed to possess specific mechanical features, such as
toughness, to reduce the likelihood of rupture. In fact, after being damaged in battle, a
bent breach pike could be repaired and was still more effective than a broken one [5]. It is
generally assumed that the fabrication of breach pikes did not require the use of high-quality
iron and steel or complex forging operations [5]. However, the manufacturing technology
involved in the breach pike fabrication process has not been thoroughly investigated so far.
To the authors’ knowledge, the only metallurgical analysis results currently available in the
literature refer to a breach pike from the late medieval archaeological site of Lubrza Castrum
(Poland) [5]. This study has ascertained that the breach pike was forged by combing steel
and phosphoric iron without executing any post-forging heat treatment [5].

Given this scenario, this study aims to provide new deep insights into the iron-making
technology and forging techniques employed in the production of breach pikes. To achieve
this goal, a breach pike donated from the private collection of the “The Martial Arts
Museum” in Botticino (Brescia, northern Italy) was carefully analyzed following a state-of-
the-art methodology based on a metallography and slag inclusions (SI) analysis [6–11].

2. Materials and Methods
2.1. The Breach Pike: Preliminary Description and Macro-Observations

The breach pike is characterized by a conical socket and a quadrangular spike, the
terminal portion of which is significantly bent and the tip is missing, likely due to a
damaging phenomenon (e.g., a violent impact sustained during battle) or an intentional re-
shaping process (Figure 2a). Moreover, the spike profile appears slightly buckled (Figure 2b).
A nodus between two grooves is positioned in the transition zone from the socket to the
beveled spike base (Figure 2b). For the majority of its length, the socket exhibits a seam
that is not completely sealed (Figure 2b). The total lengths of the breach pike (excluding
the absent tip), its socket, and its spike are 380 mm, 98 mm, and 265 mm, respectively. The
cone-shaped socket has an external diameter that diminishes uniformly from 29 mm to
14 mm, whereas the spike width tapers from 15 mm to 5 mm at the broken end. Furthermore,
two nail holes were punched near the socket base to reinforce the joining of the break pike
to the wooden shaft through nailing. To carry out metallographic and SI analyses, a single
transverse section (S1) was extracted from the socket, whereas a longitudinal section (S2)
and two cross-sectional segments (S3 and S4) were taken from the socket–spike transition
zone and spike, respectively. The sampling strategy is detailed in Figure 2c.

2.2. Experimental Methods

In this research work, the experimental protocol specifically tailored by the authors for
the archeometallurgical examination of other historical ferrous artefacts was applied [6–9].
In particular, each section was prepared following a standard metallographic procedure
consisting of grinding with SiC abrasive papers (grades from 600 to 1200) and polishing
with polycrystalline diamond pastes (3 µm and 1 µm). A preliminary metallographic
investigation was carried out on the as-polished sections by means of an optical microscope
(Leica DMI 5000M, Wetzlar, Germany) to characterize the SI morphology and position.
The material’s microstructure was investigated after chemical etching by immersion in
1 pct Nital solution (1 vol pct HNO3 in ethanol). Vickers microhardness measurements
were performed using a Mitutoyo HM-200 microhardness tester, imposing a 300 g load
for a 15 s dwell time on the etched section. A representative sample of SI was selected
from longitudinal S2 and transverse S3 cross-sections after repolishing, and compositional



Metals 2024, 14, 41 3 of 18

data were collected semiquantitatively through area acquisition via Energy-Dispersive
X-ray Spectroscopy (EDS) coupled with a scanning electron microscope (LEO EVO 40 XVP,
Carl Zeiss AG, Milan, Italy). The chemical analysis of multi-phase SIs was performed by
scanning all SI surfaces. The chemical data are given in terms of the following stoichiometric
oxides: Na2O, MgO, Al2O3, SiO2, K2O, CaO, TiO2, MnO, FeO, SO2, and P2O5. The SI
mineralogy was investigated by SEM in backscattered-electron mode (BSD). The carbon
content in the metal matrix adjacent to each analyzed SI was estimated using the inverse
lever rule [12]. This calculation was based on the volume fractions of ferrite and pearlite
measured by the Image J 1.54a software environment for image analysis [13].
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2.3. Slag Inclusion Classification and Data Treatment

In ancient direct and indirect iron smelting processes, the inefficient separation be-
tween molten metallurgical slag and solid ferrous alloys promoted the incorporation of
a large number of smelting-related slag inclusions (SI) into the metal matrix [14]. In fact,
direct iron ore reduction within the bloomery furnace and the indirect production of iron
and steel via the decarburation of cast iron occurred below the metal liquidus tempera-
ture [14]. Moreover, slag inclusions can also be generated during the smithing stage. For
example, iron oxide scale residues and fayalitic slag remnants originating from interactions
between flux and iron oxide scale during hammer-welding can remain embedded at weld-
ing interfaces as forging SI. The analysis of slag inclusions is a powerful tool to investigate
the iron-making method and the forging strategy adopted [10,15]. Specifically, smelting
and forging-related SI potentially encapsulate a chemical signature and thermochemical
information associated with smelting and forging systems, respectively [16]. To achieve this
goal, the classification strategies suggested by Dillmann and L’Héritier [16] and Charlton
et al. [17] were applied to differentiate smelting and forging SI. These methods describe
SI as multicomponent oxide systems for which two main oxide categories can be conve-
niently distinguished: reduced compounds (RCs) and non-reduced compounds (NRCs).
Remarkably, non-reduced compounds (NRCs) such as Al2O3, K2O, MgO, and CaO serve
as the key chemical variables for identifying slag inclusion (SI) groups associated with
distinct smelting and forging systems. In contrast, the levels of reduced compounds (RCs),
such as FeO and P2O5, are highly influenced by redox condition variations. Consequently,
RCs generally feature a high dispersion even within SI groups originating from the same
technological system. According to Dillmann and L’Héritier [16], SI derived from the same
smelting system (marked by the specific iron ore, lining, charcoal, and fluxes used) exhibit
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similar NRC ratios. On the other hand, a higher SiO2–Al2O3 ratio is a peculiar feature of
forging-related SI, as silica-rich smithing flux was often used [16]. Before performing the
PCA, the magnitude and variance of the NRCs were equalized by pre-processing the SI
compositional dataset through a centered log–ratio transformation (CLR), as expressed by
Equation (1):

XiNRC = log(EiNRC) − g(log ENRC) (1)

where XiNRC is the ith transformed value for each well-quantified NRC (i.e., CaO, MnO,
Al2O3, and SiO2), EiNRC is the amount of the ith NRC, and g(log ENRC) is the geometrical
mean of the logged NRCs. A HCA based on the Ward method with Euclidean distance was
carried out for the SI clustering. The data treatment was performed using R 3.6.1, Excel,
and OriginLab 9.9 software environment for statistical computing and graphics [18].

2.4. Thermodynamic Modelling of Slag Inclusion–Metal Systems

The thermodynamic-based model developed and described in detail by the authors
in previous research work [6] was employed to estimate the temperature (T) and oxygen
chemical potential (µO2) of the gas phase equilibrated with each SI–metal system (i.e., SI
along with the surrounding metallic phase). These thermochemical parameters can provide
an indication of the iron smelting working conditions. Notably, this model relies on the
assumption that thermodynamic equilibrium was locally attained. In this respect, it is
worth noting that an inverse correlation between the iron oxide concentration in smelting
slag inclusions and the carbon content in the metal matrix has been frequently reported for
ancient heterogeneous ferrous alloys produced through direct and indirect iron-making
processes [19]. This phenomenon indicates that some SI–metal systems likely approach
thermodynamic equilibrium [6,20]. Moreover, it was assumed that the iron oxide content in
SI and the carbon concentration in the metal matrix are mainly governed by the gas phase
generated from the reaction of air oxygen with charcoal in bloomery or fining furnaces.
The gas phase was modelled as a CO/CO2/N2 mixture with small traces of oxygen at a
pressure of 1 bar (0.1 MPa). The temperature (T) and oxygen chemical potential (µO2) were
computed by solving Equation (2) for each SI–metal system:

µO2 ([C], T, [wM]) = µO2 ((FeO), T, (wS)) (2)

where [C] and (FeO) are the weight percentages (wt%) of carbon and iron oxide in the
austenitic metal (γ) and liquid (or glass) SI phases, respectively. In addition, [wM] and (wS)
correspond to the weight percentages (wt%) of other elements and constituents in the metal
and SI phases, respectively. The equilibrium condition for each SI–metal system graphically
corresponds to the intersection point of the iso-C and iso-FeO concentration curves in the
oxygen chemical potential space. On the other hand, some SI–metal systems do not follow
the FeO-C inverse correlation and, therefore, exhibit a significant degree of thermodynamic
disequilibrium (e.g., high-FeO and low-FeO SI encased within high-C and low-C steel,
respectively). It has been speculated that the disequilibrium level of SI–metal systems
can be exacerbated by post-smelting thermochemical treatments such as carburization
and decarburization [19]. Moreover, the SI–metal systems generated by the incorporation
of forging SI at hammer welding joints are likely marked by higher disequilibrium than
those that originated from the iron smelting process. Consequently, the characterization
of the SI–metal systems’ disequilibrium potentially provides the opportunity to expand
the SI classification and obtain valuable technological information concerning the breach
pike manufacturing process. To highlight and identify both low- and high-disequilibrium
systems, the thermodynamic model was applied to all the SI–metal systems. The high level
of positive or negative deviation from the central tendency in the frequency distribution
of the estimated equilibrium temperatures was used as a selection criterion for high-
disequilibrium SI–metal systems. Specifically, significant negative and positive deviations
are expected for high-FeO SI surrounded by a high-C metal matrix (labelled “A” in Figure 3)
and low-FeO SI surrounded by a low-C metal matrix (labelled “C” in Figure 3). It is
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important to remark that, for these latter systems, the model outcomes do not reflect real
thermochemical conditions but serve as proxies for assessing the level of disequilibrium.
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levels of SI–metal systems.

3. Results and Discussion
3.1. Metallographic Examination and Microhardness Measurements

A detailed metallographic investigation was conducted on all four sections taken
from the breach pike socket (S1), socket–spike transition zone (S2), and spike (S3, S4).
The examination by light optical microscopy of the as-polished sections S1 (Figure 4a), S2
(Figure 5a), S3 (Figure 6a), and S4 (Figure 6c) revealed a considerable quantity of SI
and cracks. The as-polished transverse section S1 featured surface cracks which are par-
tially filled with oxidation products and surrounded by clusters of nonmetallic inclusions
(Figure 4b). These cracks may have originated during the socket shaping process through
hot working operations. Furthermore, an internal crack was identified within section S1
(Figure 4c), which is likely due to an incomplete hammer-welded seam between the two
flaps that were wrapped around a mandrel to form the conical socket. This hypothesis is
supported by the previously described imperfect seam on the socket surface (Figure 2b).

The core region of the longitudinal section S2 is characterized by cracks and SI align-
ments oriented along the main hot plastic deformation direction (Figure 5b). These features
likely correspond to the incomplete seam previously observed in section S1. Moreover,
discontinuous SI bands were observed near the surface, suggesting that the circular grooves
were obtained by post-forging grinding operations (Figure 5c).

Highly scattered SI were detected in the spike transverse sections S3 and S4
(Figure 6a,c). In addition, a slightly distorted SI line extending from the outer to the
inner portion of the S3 section was observed (Figure 6c).

Chemical etching with 1 pct Nital of the S1 section highlighted a highly heterogeneous
microstructure, suggesting a non-uniform carbon content. As shown in Figure 6a, the
majority of the section is characterized by equiaxed ferrite grains (F) (Figure 7b) and
ferritic–pearlitic zones (F + P) (Figure 7c). In addition, an elongated and irregularly shaped
region is marked by pearlite with minor fractions of idiomorphic, allotriomorphic, and
Widmanstätten ferrite (P + F*) (Figure 7d).
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Coherently, the longitudinal section S2 is characterized by a multi-layered microstruc-
ture (Figure 8a). In particular, the core and outer regions of the section are formed by
equiaxed ferrite grains (F) (Figure 8b). Furthermore, the ferritic microstructure is locally
characterized by the abnormal growth of some ferrite grains (F**) (Figure 8c). It is worth not-
ing that the coexistence of SI aligned with the plastic deformation directions and equiaxed
ferrite grains clearly indicates that a recrystallization phenomenon occurred during material
permanence above the recrystallization temperature. In addition, intragranular needle-like
carbides were precipitated within the larger ferrite grains (Figure 8c, high-magnification
image in Figure 9). In accordance with the observed coarsening of ferrite grains, the pre-
cipitation of these intragranular carbides likely occurred during a prolonged annealing
of carbon-supersaturated ferrite. The remaining portion of the section is characterized by
layers of equiaxed ferritic grains with pearlite traces (F + P) (Figure 8d) and ferritic–pearlitic
bands with idiomorphic, allotriomorphic, and Widmanstätten ferrite (P + F*) (Figure 8e).

Consistent with the previous results, the optical examination of the etched section
S3 exhibited a highly heterogeneous microstructure consisting of ferrite and pearlite
(F + P) (Figure 10a). Similar to what was observed in section S2, the ferritic zones (F**)
are featured by coarse grains with intragranular acicular carbides (Figure 10b). The other
regions of section S3 are characterized by ferritic–pearlitic zones (F + P) (Figure 10c) sur-
rounding mainly pearlitic regions with a minor amount of idiomorphic, allotriomorphic,
and Widmanstätten ferrite (F* + P) (Figure 10d).
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Figure 10. Microstructural features of section S3. (a) Distribution map of the main microstructural
constituents and features observed on the transverse section S3 and (b–d) some representative optical
micrographs at 200× magnification (F = idiomorphic ferrite, F* = idiomorphic, allotriomorphic and
Widmanstätten, ferrite, F** = ferrite characterized by abnormal grain growth, P = pearlite, SI = slag
inclusions).

The etched transverse section S4 taken from the end portion of the spike exhibited
a complex microstructure (Figure 11a). The majority of the section is characterized by a
mixture of ferrite–austenite aggregates, often referred to as granular bainite (GB), with large
martensite/retained austenite islands (MA) and ferrite (F) (Figure 11b; high-magnification
SEM-SE image in Figure 12a) [21,22].

In a restricted zone located near the upper right corner of the section, the steel reached
a hypereutectoid composition. In fact, its microstructure is characterized by a proeutectoid
cementite network (C) formed at the prior austenite grain boundaries and bainite (B)
(Figure 11c; high-magnification SEM-SE image in Figure 12b). Moreover, two regions
positioned near the section corners featured a ferritic microstructure with slightly stretched
grains (F) (Figure 11d). On the other hand, close to the lower right edge of the section, the
ferrite grains exhibited noticeable elongation, likely due to the cold working induced by
cold hammering, possibly during reworking operations or as a result of a tip damage event.
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Figure 11. Microstructural features of section S4. (a) Distribution map of the main microstructural
constituents and features observed on the transverse section S4 and (b–d) some representative optical
micrographs at 200× magnification and (e) 100× magnification (F = ferrite, GB = granular bainite,
MA = martensite/austenite islands, B = bainite, C = cementite, SI = slag inclusions).
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Figure 12. Scanning electron microscopy images (SEM-SE) of microstructures observed in section
S4. (a) Mixture of granular bainite (GB), martensite/retained austenite islands (MA), ferrite (F), and
(b) bainite (B) along with proeutectoid cementite (C).

Vickers microhardness measurements were performed for all four sections to validate
the metallographic results. At least five indentations were carried out for each relevant
microstructure. Specifically, in the ferritic zones, the microhardness values vary in the range
of 97 to 140 HV0.3, whereas a range of 103 to 168 HV0.3 was observed in the ferritic–pearlitic
regions. On the other hand, in predominantly pearlitic areas featuring idiomorphic, al-
lotriomorphic, and Widmanstätten ferrite, the microhardness values varied from 131 to
179 HV0.3. In addition, the mixture of granular bainite, martensite/retained austenite
islands, and ferrite featured microhardness values between 200 and 272 HV0.3. In par-
ticular, the microhardness values of granular bainite and martensite/retained austenite
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island constituents are in the ranges 241 to 320 HV0.05 and 418 to 485 HV0.05, respectively.
Moreover, the bainitic microstructure with proeutectoid cementite featured microhardness
values varying between 317 HV0.3 and 387 HV0.3.

Based on the results, it can be concluded that the breach pike was forged by hot
hammering. In particular, the breach pike was shaped from a heterogeneous hypoeutectoid
steel block. One side of this lump was flattened and coiled around a mandrel to obtain
the conical socket of the breach pike. The intermediate region between the socket and the
spike was then rounded, possibly using a dedicated swage block. On the other hand, the
quadrangular spike was formed by drawing out and pointing operations. After forging,
the breach pike was cooled in air, as pointed out by the presence of ferrite and pearlite
in sections S1, S2, and S3. Conversely, in accordance with the bainitic microstructure
detected in section S4, the region near the spike tip underwent more rapid cooling. This
phenomenon can be intentionally promoted to increase the tip hardness, and it may be
further exacerbated by the decreasing thickness of the spike toward its tip. However, these
hypotheses should be considered with caution as the original microstructure of the pike,
especially towards its end, could have been altered during the possible reworking process.
In addition, the circular grooves at the socket–spike transition zone were carved by a
post-forging material removal process with a specialized tool.

3.2. Slag Inclusion Classification

The compositional data of 43 SI were collected via an SEM/EDS analysis (Supplemen-
tary Table S1). The results of the multivariate statistical analysis, performed using PCA
in conjunction with HCA, are provided in Figure 13. Specifically, two SI clusters were
detected in the PC space (Figure 13a) after cutting the dendrogram plot at a height of two
(Supplementary Figure S1).
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Figure 13. Results of multivariate statistical analysis (PCA/HCA). (a) Projection of SI chemistry on
PC1–PC2 plane (solid and open versions of the same symbol refer to transverse, S2, and longitudinal,
S3, sections, respectively) with loading vectors plot (the percentage of variation explained by each PC
is indicated in brackets) and location of SI groups on microstructural constituents maps of (b) section
S2 and (c) section S3 (F = idiomorphic ferrite, F* = idiomorphic, allotriomorphic, and Widmanstätten
ferrite, F** = ferrite characterized by abnormal grain growth, P = pearlite, SI = slag inclusions).

For each SI group, the area-weighted mean percentages of oxides were calculated
using Equation (3):

wt% Oxide∗j = ∑
nj
i=1 wt% Oxideij ×

Sij

STj
(3)
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where wt% Oxide*j represents the weighted average percentage of a specific oxide for the
jth group, wt%Oxideij denotes the oxide weight percentage for the ith SI in the jth cluster,
Sij corresponds to the ith SI surface in the jth group, and STj is the total surface area of
the jth group. The weighted average percentages of oxides for each SI group are listed in
Table 1.

Table 1. Average weighted oxide percentages (wt%) for each SI group.

Group Na2O MgO Al2O3 SiO2 K2O CaO TiO2 MnO FeO SO2 P2O5

1 0.07 4.03 6.96 36.84 2.08 11.93 0.88 18.87 17.75 0.30 0.27
2 0.00 4.24 1.15 12.18 0.42 4.15 0.49 22.88 53.82 0.02 0.67

It was found that group 1 (blue circles), which includes the majority of the analyzed SI,
is mainly located near the origin of the PC1–PC2 plane (Figure 13a). According to Charlton
et al. [17], this result supports the hypothesis that group 1 contains smelting-related SI.
This assumption is further confirmed by the significant amounts of MnO, which are likely
derived from manganiferous iron ore gangue (Table 1). Moreover, the high percentages of
Al2O3 and CaO can be attributed to clay and CaO-rich iron ore or lime flux contaminations,
respectively. On the other hand, group 2 (red triangles) is positioned in opposition to the
Al2O3 loading vector in the PC1–PC2 plane (Figure 13a). Accordingly, this group exhibits
decreased concentrations of Al2O3, SiO2, and CaO with respect to group 1, while showing
elevated levels of FeO and MnO (Table 1). As previously noted for group 1, the high level of
MnO serves as an effective indicator that allows us to classify group 2 as smelting-related.
To confirm the SI classification, an FeO–SiO2 (Figure 14a) scatterplot was examined, along
with two NRC bivariate scatterplots: SiO2–Al2O3 (Figure 14b) and MnO–SiO2 (Figure 14c).
Consistent with the PCA/HCA results, the point clouds for groups 1 and 2 reveal divergent
trends attributable to their differing NRC ratios. In particular, group 1 exhibits lower
SiO2–Al2O3 and MnO–SiO2 ratios than group 2. It should be noted that group 1 displays
a high degree of scatter in the MnO–SiO2 plot, deviating significantly from the expected
linear trend. This phenomenon can be explained by a significant variation in MnO in the
iron ore, which promotes a higher variation in Mn [23].

The positions of the SI groups on the microstructural constituent maps of sections
S2 and S3 are shown in Figure 13b,c. Notably, smelting-related group 1 is located in the
external part of section S2. Except for one SI, all the analyzed SI in section S2 belong to
group 1. On the other hand, group 2 is preferentially positioned in the mainly ferritic
inner portions of sections S2 and S3. To expand the SI characterization, the mineralogy of
each SI was investigated by SEM/EDS. Based on their mineralogical features, two main
SI types were identified, i.e., two-phase manganese–wüstite–olivine SI (Figure 15a) and
single-phase glassy SI (Figure 15b). Example chemical data for the mineralogical phases
indicated in Figure 15 are detailed in Table 2. It was found that the majority of SI included
in group 2 are predominantly composed of manganese–wüstite with small traces of olivine.
These mineralogical characteristics explain the observed chemical diversity of group 2 with
respect to group 1 due to the poor compatibility of silicon, aluminum, and calcium with
the manganese–wüstite phase.
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Figure 15. SEM micrographs of the two main SI mineralogical types. (a) two-phase manganese–
wüstite (grey)–olivine (dark grey) SI and (b) single-phase glassy SI; Wu: manganese–wüstite; Ol:
olivine; Gl: glass. The letters A, B, and C indicate the zones chemically analyzed by SEM/EDS.

Table 2. SEM/EDS microchemical analyses (wt%) of the areas highlighted in Figure 15.

Na2O MgO Al2O3 SiO2 K2O CaO TiO2 MnO FeO SO2 P2O5

A 0.00 2.60 0.00 0.00 0.00 0.00 0.00 19.46 77.93 0.00 0.00
B 1.04 2.61 6.84 36.77 2.23 12.64 0.00 16.13 20.51 0.00 1.22
C 2.44 5.53 7.82 44.89 2.29 14.51 0.73 19.50 2.31 0.00 0.00

3.3. Analysis of the Steel Technological Origin

The logistic regression model suggested by Disser et al. [15] was applied to investigate
the technological origin of the ferrous material utilized in the manufacturing of the breach
pike. Based on the chemical composition of smelting-related SI, this methodology permits
estimating the probability of the breach pike’s raw iron/steel being produced through either
direct or indirect iron-making routes by comparison with a reference database. According
to Disser et al. [15], the average weight oxide percentages of smelting-related SI (Oxide*)
were converted into subcompositional ratios (Oxide**) using Equation (4):

wt% Oxide** = (wt% Oxide* × 100)/(100 − wt% FeO*) (4)
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where the term “Oxide” denotes each oxide involved in the statistical model (i.e., MgO,
Al2O3, SiO2, P2O5, K2O, CaO, MnO). Given the preprocessed compositional data and the
model parameters reported in Table 3 (β0, βMg, βAl, βSi, βP, βK, βCa, βMn), the logistic
regression model allows us to compute the probability (p) that the ferrous material was
obtained by the indirect iron-making method, as shown in Equation (5):

Logit(p) = log [p/(1-p)] = β0 + βMg [wt.% MgO**] + βAl [wt.% Al2O3**] + βSi

[wt.% SiO2**] + βP [wt.% P2O5**] + βK [wt.% K2O**] + βCa [wt.% CaO**] + βMn

[wt.% MnO **]
(5)

Table 3. Logistic regression model parameters.

Parameter Value

Intercept β0 5.22
MgO βMg 0.13
Al2O3 βAl −0.95
SiO2 βSi 0.007
P2O5 βP 0.16
K2O βK −0.84
CaO βCa 0.088
MnO βMn 0.018

In particular, if the computed value of p is either below 0.3 or above 0.7, the iron-
making process is predicted to be direct or indirect, respectively. Conversely, due to the
existence of an overlapping area for the chemical features of SI derived from direct and
indirect smelting processes, the attribution should be labelled ‘undetermined’ when the
value of p lies within the range of 0.3 to 0.7 [15]. In the present research, only the smelting-
derived SI of group 1 were considered. The calculated oxide subcompositional ratios for
this group are detailed in Table 4.

Table 4. Oxide subcompositional ratios for smelting-derived SI of group 1.

Group MgO** Al2O3** SiO2** K2O** CaO** MnO** P2O5**

1 4.89 8.47 44.79 2.53 14.50 22.94 0.33

Applying the logistic regression model to group 1, a p value of 0.09 was calculated.
Since this outcome is below the 0.3 threshold, it strongly suggests that the breach pike
material was linked to a direct iron-making process.

3.4. Thermodynamic Analysis

The lower limit of the maximum temperature attained during the direct smelting
process was roughly evaluated with a ternary phase diagram and Rhyolite–MELTS software
(https://melts.ofm-research.org/ accessed on 26 December 2023). In particular, the average
chemical compositions of groups 1 and 2 (Table 1) were projected into the FeO–SiO2–CaO
ternary system (Figure 16). Minor oxides were included in the analysis, pairing acidic
oxides (Al2O3, TiO2, P2O5) with SiO2 and basic oxides (MgO, Na2O, K2O) with CaO,
whereas MnO was combined with FeO. It was observed that group 1 was situated near the
boundary between the tridymite and wollastonite primary fields, while group 2 fell within
the wüstite primary field. Accordingly, the liquidus temperatures for groups 1 and 2 were
approximately 1200 ◦C and 1300 ◦C, respectively (Figure 16).

https://melts.ofm-research.org/
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– (CaO + MgO + Na2O + K2O) system.

The liquidus temperature corresponding to group 1 was also estimated by employing
the Rhyolite-MELTS software, which is effective for modeling multicomponent oxide sys-
tems [24,25]. A thermodynamic computation was conducted based on the mean chemical
composition of group 1 (Table 1). Additionally, a constant pressure of 1 bar (0.1 MPa) was
set, whereas the oxygen fugacity was constrained to the iron–wüstite (IW) buffer (input
files are provided in the Electronic Supplementary Material). The outcome for smelting-
related group 1 was 1275 ◦C. This result can be considered an indicator of the minimum
temperature peak reached during the smelting process.

To estimate the bloomery working conditions (i.e., the temperature and oxygen chem-
ical potential of the reducing gas phase) and expand the SI classification in terms of
disequilibrium levels, the thermodynamic-based strategy described in the Section 2 was
adopted. The computed thermochemical parameters for each equilibrium-constrained SI–
metal system are shown in Figure 17a. It was observed that the equilibrium temperatures
exhibit a bell-shaped distribution in the relative frequency histogram, spanning a range
from 816 ◦C to 1353 ◦C (Figure 17b).

Moreover, a central tendency was found at 1100 ◦C. The SI–metal systems that equili-
brated between 1000 ◦C and 1200 ◦C were classified as low-disequilibrium systems (labelled
“B” in Figure 17b). It should be emphasized that only for these systems did the modelled
thermochemical parameters likely approximate real equilibrium conditions. Specifically,
the values of the temperature and oxygen chemical potential for low-disequilibrium SI–
metal systems positioned in the three main zones (F + F**, F + P, and P + F*) are summarized
in Table 5. In particular, the equilibrium temperatures vary between 1095 ◦C and 1118 ◦C,
whereas the oxygen chemical potentials (µO2) range from −442 to −374 kJ/mol. These ther-
mochemical parameters provide a reasonable approximation of the operating conditions for
the bloomery smelting process. In addition, it was noted that low-disequilibrium systems
are prominently observed in both the highest and lowest carburized zones (Figure 17c,d).
In particular, the systems located in high- and low-C zones were associated with low and
high values of oxygen chemical potential, respectively (Table 5). These features seem
to exclude the occurrence of post-smelting carburization and decarburization, as these
thermochemical treatments would greatly increase the degree of disequilibrium [19].
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Figure 17. (a) Equilibrium conditions for the SI–metal systems. Quartz–fayalite–iron (QFI) and C–CO–
CO2 (CCO) buffers delimit the austenite stability field (grey-colored area). (b) Frequency distribution
of estimated equilibrium temperatures (A, C = high disequilibrium, B = low disequilibrium). Position
of high- and low-disequilibrium systems on microstructural constituent maps of (c) section S2
and (d) section S3 (F = idiomorphic and equiaxed ferrite, F* = idiomorphic, allotriomorphic, and
Widmanstätten ferrite, F** = ferrite characterized by abnormal grain growth, P = pearlite, SI = slag
inclusions; SI of types A, B, and C are represented in blue, green, and red colors, respectively).

Table 5. Values of equilibrium temperature (T) and oxygen chemical potential (µO2) for low-
disequilibrium SI–metal systems (F = idiomorphic and equiaxed ferrite, F* = idiomorphic, al-
lotriomorphic, and Widmanstätten ferrite, F** = ferrite characterized by abnormal grain growth,
P = pearlite).

Metal Microstructure T (◦C) µO2 (kJ/mol)

F + F** 1118 −374
F + P 1084 −411
P + F* 1095 −442

Conversely, few SI–metal systems exhibit notable positive and negative deviations
from the central tendency. These systems were likely characterized by a high disequilib-
rium level, and, therefore, the corresponding equilibrium-constrained results are probably
not representative of real thermochemical conditions. In particular, SI–metal systems that
equilibrate at a temperature above 1300 ◦C were interpreted as high-disequilibrium sys-
tems (labelled “C” in Figure 17b), typically featuring high-FeO SI surrounded by a high-C
metal matrix (Figure 17c,d). In addition, SI–metal systems that equilibrated at tempera-
tures below 900 ◦C were also classified as high-disequilibrium systems (labelled “A” in
Figure 17b), predominantly consisting of low-FeO SI interfacing with a low-C metal matrix
(Figure 17c,d).
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4. Conclusions

This research work was dedicated to the archaeometallurgical investigation of a Renais-
sance breach pike. The aim of this study was to effectively reconstruct its manufacturing
process in terms of the iron-making and forging technologies employed. For this pur-
pose, a strategy based on metallography, Vickers microhardness tests, and slag inclusion
analysis was adopted. In particular, the metallographic results and microhardness mea-
surements point out that the breach pike was forged by hot hammering starting from a
highly heterogeneous hypoeutectoid steel bar characterized by a significant amount of
SI. Specifically, the conical socket was formed by first flattening one side of the lump and
then wrapping it around a mandrel. Subsequently, the socket–spike intermediate zone
was rounded by means of a proper swage block. In addition, the quadrangular spike was
shaped by drawing out and pointing smithing operations. After forging, the geometry of
the socket–spike transition zone was modified by carving two circular grooves. Moreover,
the ferritic–pearlitic microstructures detected in sections S1, S2, and S3 taken from the
socket, the socket–spike transition zone, and the middle spike, respectively, are consistent
with iron/steel air cooling. The presence of a bainitic microstructure in section S4, which
was sampled near the spike tip, can be explained by more rapid cooling, which may have
been intentionally promoted to increase the tip hardness. The compositional data of a large
sample of slag inclusions were collected by SEM/EDS microchemical analysis. To detect
smelting-related SIs, the dataset was explored following a methodology based on multivari-
ate statistics (PCA/HCA) and an analysis of non-reduced compounds. It was found that
all the analyzed SI were likely derived from the smelting process. Moreover, the analysis
of the SI chemical composition by a logistic regression model revealed that the breach
pike raw iron/steel was likely produced through a direct iron-making method. The lower
limit of the maximum temperature reached during the bloomery smelting process was
estimated by computing the slag inclusion liquidus temperatures following two different
approaches: a ternary phase diagram and Rhyolite–MELTS software. The analysis revealed
that the minimum temperature peak was in the range of 1200 ◦C to 1300 ◦C. Finally, a
thermodynamic-based model was used to expand the SI classification in terms of disequilib-
rium levels and compute the average thermochemical parameters (i.e., the temperature and
oxygen chemical potential of the gas phase) of the bloomery smelting process. Focusing
on low-disequilibrium systems, the computed temperature values vary from 1095 ◦C to
1118 ◦C, and the oxygen chemical potentials (µO2) range between −442 and −374 kJ/mol.
Additionally, the identification of low-disequilibrium slag inclusion–metal systems in all
low- and high-carbon areas rules out the possibility of post-smelting carburization and
decarburization phenomena.
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