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Abstract: Reactive air brazing of porous SiO2 ceramic (p-SiO2) was achieved using Ag-CuO filler
metal. When brazing p-SiO2, two main problems existed. Firstly, the wettability of the Ag filler
metal on the surface of p-SiO2 was poor. Secondly, the residual stress caused by the mismatch of the
coefficient of thermal expansion was high in the joint. In order to solve these problems, the effects
of CuO contents on the p-SiO2 brazed joint were analyzed. In a wetting experiment, the addition
of CuO significantly improved the wettability of the Ag-CuO/p-SiO2 system. With the content of
CuO increasing, the contact angle decreased from 90◦ to 0◦. In addition, when the content of CuO
increased to 0.5 mol%, the contact angle decreased from 90◦ to 52◦. Then, during brazing p-SiO2

with the Ag-xCuO filler metal, the typical interfacial microstructure of the joints brazed at 1000 ◦C
for 30 min was p-SiO2 ceramic/Ag (s,s) + SiO2 + CuO/Ag (s,s)/Ag (s,s) + SiO2 + CuO/p-SiO2

ceramic. Meanwhile, Ag-CuO infiltrated into the p-SiO2 ceramic and an infiltration layer formed. The
infiltration layer was composed of Ag (s,s) + SiO2 + CuO and the infiltration layer was conductive
to form a good gradient transition of the coefficient of thermal expansion (CTE). Then, the residual
stress in the joint was released and the shear strength improved. In addition, with the content of CuO
increasing, the depth of the infiltration layer increased. Furthermore, when the content of CuO was
0.5 mol%, the maximum shear strength of the joint was 55 MPa.

Keywords: reactive air brazing; Ag-CuO; wettability; infiltration layer; residual stress

1. Introduction

Great attention has been paid to porous ceramic due to its good properties, such
as high specific surface area, low thermal conductivity, and density. Furthermore, the
advantages of SiO2 ceramic, such as fracture toughness, thermal stability, and corrosion
resistance, have satisfied the demands of the aerospace, optics, bioengineering, and elec-
tronics industries [1,2]. It was concluded that the development of porous SiO2 ceramic
(p-SiO2) was very important. However, p-SiO2 was difficult to process into complex struc-
tural parts, resulting from its high brittleness and hardness. Therefore, the realization
of p-SiO2-p-SiO2 joints was indispensable. In recent years, brazing was regarded as one
of the most important methods for jointing ceramic joints [3,4]. The methods of brazing
were divided into active metal brazing (AMB) and reactive air brazing (RAB). When using
AMB to braze ceramic joints, due to the difficulty in wetting ceramics, active elements
were usually added in the filler metal to react with ceramics, such as Ti, Zr, and Cr. Thus,
chemical bonding between the ceramic and filler metal was achieved [5–8]. However, the
resulting joints were easily oxidized at high temperatures, and the shear strength and
hermeticity of joints reduced [9]. High vacuum and inert atmosphere limited the wide
application of AMB [10–17], while it was worth noting that the joints brazed using RAB
possessed excellent high-temperature oxidation resistance [18,19]. During the RAB process,
the oxide compound may react with the surface of the ceramic, newly forming a surface
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wetting ceramic. Glass was one of the main filler metals used in RAB, but due to its poor
fluidity and high brittleness, pores and cracks easily formed in the joint. Another filler metal
was composed of noble metals (Ag, Au, Ag-Pt [20]) and metal oxides (Al2O3, CuO [21],
V2O5 [22]). Compared to the above filler metal systems, Ag-CuO was less expensive and
could provide better wettability and toughness. During brazing p-SiO2 and p-SiO2 (p-SiO2
joint) with the Ag-CuO filler metal, two major issues existed. Firstly, the wettability of the
Ag-CuO/p-SiO2 system was poor and the shear strength of the joint reduced. Secondly,
the high mismatch of the coefficient of thermal expansion (CTE) between the Ag-CuO filler
metal and p-SiO2 resulted in forming residual stress and decreased the shear strength of
the joint.

Recently, scholars have carried out some research on Ag-CuO filler metal. For in-
stance, Kati Raju et al. brazed GDC-LSCF ceramics with Ag-10 wt.% CuO paste [23]. The
experiment showed that although CuO did not react with ceramic to form an interme-
diate compound, the wettability of Ag-10 wt.% CuO on the ceramic was adequate. The
reason was that a sufficient liquid–solid interaction formed during RAB. Cao et al. brazed
YSZ and Al2O3 using Ag-CuO filler metal through RAB [9]. It was found that the Al2O3
substrate reacted strongly with the Ag-8 mol% CuO filler metal. A continuous CuAl2O4
layer and atomic bonding formed at the interface, which improved the wettability of the
Ag-CuO/Al2O3 system. Gui et al. successfully brazed Si3N4 with itself using Ag-CuO filler
metal [24]. It was revealed that the wettability of the Ag-CuO/Si3N4 system was improved
by the SiO2 layer. However, due to excessive CuO, cracks and pores formed in the joint.
Based on the above research, it can be seen that the wettability and the interfacial reaction
of Ag-CuO on ceramic joints have mainly been studied by scholars, while the influence
of residual stress has been neglected. At present, the interfacial structure of joints was
designed by scholars to relieve residual stress. Sun et al. brazed p-Si3N4 to Invar alloy with
Cu-20 wt% Ti filler metal [25]. The investigation showed that a continuous infiltration layer
formed in the surface of p-Si3N4. The infiltration layer was beneficial in terms of improving
the shear strength of the joint. Zhao et al. investigated the vacuum brazing of p-Si3N4
ceramic and TiAl alloy with AgCu filler [26]. It was seen that an appropriate thickness of
the infiltration layer was beneficial for the formation of a good transition of CTE, relieving
residual stress and improving the shear strength of the joint.

Therefore, to achieve a high-quality joint, here, we designed an infiltration layer to
assist brazing p-SiO2 with itself and with Ag-CuO filler metal. The effects of the CuO
components on the wettability of the Ag-CuO/p-SiO2 system were analyzed, and the
microstructure and mechanical properties of the p-SiO2 joint were explored with emphasis.
Then, the strengthening mechanism of the p-SiO2 joint was clarified.

2. Experiment Procedures
2.1. Sample Preparation

p-SiO2 ceramics (Shenzhen Haitao Technology Co., Ltd., Shenzhen, China) and cross-
sections of joints were cut using an automatic precision cutting machine (Shenyang Kejing
Automation Equipment Co., Ltd., Shengyang, China). The shear strength of the p-SiO2
ceramic was about 60 MPa. The basements were cut into 5 mm × 5 mm × 5 mm pieces and
10 mm × 10 mm × 5 mm pieces for microstructure observation and mechanical testing,
respectively. Before wetting and brazing experiments, p-SiO2 ceramics were polished
with 400#, 800#, 1000#, and 1500# sandpaper and then cleaned ultrasonically with alcohol
for 15 min. The Ag-xCuO filler metal employed in this study consisted of Ag and CuO
powders. Ag powders (purity: 99.9%, average particle size: 5 µm) and CuO powders
(purity: 99.9%, average particle size: 5 µm) were purchased from Bisley New Materials
(Suzhou) Co., Ltd., Jiangsu, China. Three Ag-xCuO (x = 0, 0.5, 1.0 mol%) powder mixtures
were prepared by ball-milling for 1.5 h using a planetary ball miller at a speed of 400 r/min.
Then, the mixed powders were heated in a water bath and dried. Subsequently, the Ag-
xCuO filler metals were pressed into pieces with dimensions of Ø15 mm × 100 µm using a
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tablet press (FW-4, Tianjin Tianguang Optical Instrument Co., Ltd., Tianjin, China) to make
it easier to assemble.

2.2. Wetting and Brazing Process

During wetting experiments, a vacuum wetting angle measuring instrument (OCA20,
Stuttgart, German) was used to measure the contact angle. According to the order in
Figure 1a, Ag-xCuO filler metal was sandwiched between two p-SiO2 ceramic surfaces.
Then, the specimens were placed in a muffle furnace for RAB. The brazing process pa-
rameters are shown in Figure 1b. Firstly, the specimens were heated to 1000 ◦C (brazing
temperature) at a rate of 10 ◦C/min, then held for 30 min (brazing time). Finally, in order
to decrease the thermal stress generated in the cooling process, the specimens were slowly
reduced to room temperature at a rate of 5 ◦C/min. In addition, a small amount of the
Ag-xCuO filler metals was, respectively, placed on the surfaces of p-SiO2, then heated with
the same parameters to prepare the wetting sample. The shear test of joints is shown in
Figure 1c. The shear strength of the brazing joint was the average value of five samples
with the same brazing parameters.
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Figure 1. The process of brazing p-SiO2 joint: (a) specimen assembly diagram; (b) brazing process
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2.3. Microstructure Analysis and Property Measurement

The microstructure of the p-SiO2 joints was analyzed using a scanning electron micro-
scope (SEM, JSM-6480, Akishima, Japan) equipped with an energy-dispersive spectrometer
(EDS, INCA Energy 300, Oxfordshire, UK). An X-ray diffractometer (XRD-6000, Shimadzu,
Japan) was used to detect the phases in the brazing seam from the angle of 10◦ to 90◦ at
a rate of 4◦/min. The shear strength of joints was tested using an electronic universal
testing machine (Instron-1186, Instron, Shanghai, China) at a rate of 0.5 mm/min. After
shear testing, the fracture surfaces of the joints were observed using an emission scanning
electron microscope (SEM, Helio Nanolab600i, Hillsboro, OR, USA).

3. Results and Discussion
3.1. The Effect of Content of CuO on the Wettability of Ag-CuO/p-SiO2 System

The wettability of the Ag-CuO filler metal on the surface of the p-SiO2 ceramic played
a crucial role in determining the brazing joint quality. In this analysis, the effect of the
content of CuO on the wettability of Ag-CuO/p-SiO2 was investigated. The contact angle
and wettability of the Ag-xCuO (x = 0, 0.5, 1.0 mol%) filler metals on the surface of p-
SiO2 is shown in Figure 2. It can be seen in Figure 2 that the contact angle showed a
significant downward trend with the content of CuO increasing, and with the content
of CuO increasing from 0 mol% to 1.0 mol%, the contact angle decreased from 90◦ to 0◦.
The wetting area and the decrease rate of the wetting angle gradually increased, and the
maximum rate was reached at Ag-1.0 mol% CuO. When the content of CuO was same
and the brazing temperature was 1000 ◦C, with the brazing time increasing, the contact
angle first rapidly decreased, then stabilized. In addition, macroscopic morphologies of the
contact angle of the Ag-xCuO/p-SiO2 system are shown in Figure 2. It can be observed that
the contact angles of Ag/p-SiO2, Ag-0.5 mol% CuO/p-SiO2, and Ag-1.0 mol% CuO/p-SiO2
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were 90◦, 52◦, and 0◦, respectively. Therefore, it can be inferred that the wettability of
Ag-xCuO/p-SiO2 was significantly improved by the addition of CuO.
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Then, in order to further explore the reasons for the improved wettability of the Ag-
xCuO/p-SiO2 system, the microstructure of the Ag-xCuO/p-SiO2 system was observed.
As shown in Figure 3, it can be seen that with the content of CuO increasing, the contact
angle of the Ag-xCuO/p-SiO2 system decreased, and the Ag-xCuO filler metal gradually
infiltrated into the surface layer of the p-SiO2 ceramic. It is worth noting that as shown
in Figure 3, it can be seen that due to the large mismatch of CTE between Ag-CuO and
p-SiO2 and the high cooling rate, cracks formed in the cross section. From Figure 3a,b,
it can be observed that as the content of CuO increased from 0 to 0.5 mol%, the contact
angle of the Ag-CuO/p-SiO2 system was apparently reduced from 90◦ to 52◦, indicating
wettability was improved by the addition of CuO. When the content of CuO was further
increased to 1.0 mol%, it was found that the contact angle was nearly 0◦, and almost all of
the Ag-1.0 mol% CuO infiltrated into the surface layer of the p-SiO2 ceramic (see Figure 3c).
Based on the above discussion, it can be inferred that with the content of CuO increasing,
the depth of Ag-CuO filler metal infiltration into the surface layer of p-SiO2 increased and
the contact angle of Ag-CuO/p-SiO2 decreased. This may be because the surface energy
increased with the introduction of CuO. The Ag-CuO filler metal was more hydrophilic and
the contact angle of Ag-CuO/p-SiO2 system reduced, indicating the wettability improved.
In addition, the affinity between the surface of p-SiO2 and CuO was high, which facilitated
the Ag-CuO filler metal infiltrating into the surface layer of p-SiO2. Then, as the content of
CuO increased, the concentration of CuO available for interaction with the p-SiO2 surface
was high and the depth of the infiltration layer increased.

Metals 2023, 13, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 3. Microstructure morphology of Ag-xCuO wetting on the surface of p-SiO2: (a) Ag, (b) Ag-
0.5 mol% CuO, (c) Ag-1.0 mol% CuO. 

3.2. The Typical Microstructure of p-SiO2 Brazed Joints 
Understanding the microstructure of a brazing joint was important for evaluating the 

quality of the p-SiO2 joint. Thus, the typical microstructure of the p-SiO2 joint was ana-
lyzed. With the brazing temperature of 1000 °C for 30 min, the typical microstructure of 
p-SiO2 joint brazed using Ag-0.5 mol% CuO is shown in Figure 4. As shown in Figure 4a, 
the brazing seam of the p-SiO2 joint was divided into two regions: Region I (brazing seam 
center) and Region II (infiltration layer). The enlarged microstructure of Region II is 
shown in Figure 4b. According to the results of EDS and XRD (see Table 1 and Figure 5), 
the main composition of points A and B was 87.98 at.% Ag and 78.78 at.% Ag; thus, it can 
be inferred that the points A and B were Ag. The main composition of point C was 32.69 
at.% Si and 63.33 at.% O, and the atomic ration of Si and O was close to 1 to 2. Thus, it can 
be inferred that the point C was SiO2 phase. The main composition of point D was 47.65 
at.% Cu and 43.33 at.% O, and the atomic ration of Cu and O was close to 1 to 1. Thus, it 
can be inferred that the point D was CuO phase. In addition, the Ag-0.5 mol% CuO filler 
metal infiltrated into the surface layer of the p-SiO2 ceramic and formed Region II. Ag 
distribution was uniform in Region II. It is worth noting that the CuO phase still existed 
in the microstructure of the p-SiO2 joint. This may be because CuO and SiO2 were both 
stable compounds and no strong reactivity was exhibited under the brazing condition. 
Overall, while no typical chemical interaction was exhibited between CuO and SiO2, sur-
face phenomena or weak physical interactions may have occurred in this study. Because 
of the polar nature, the affinity of CuO for the surface of SiO2 was high, which facilitated 
the Ag-CuO filler metal to infiltrate into the surface layer of p-SiO2. Then, an infiltration 
layer formed, and the infiltration layer was conducive to form a good gradient transition 
of CTE. The residual stress of the joint was released, so the shear strength of the joint in-
creased to 55 MPa. 

 

Figure 3. Microstructure morphology of Ag-xCuO wetting on the surface of p-SiO2: (a) Ag, (b) Ag-0.5
mol% CuO, (c) Ag-1.0 mol% CuO.



Metals 2023, 13, 1561 5 of 11

3.2. The Typical Microstructure of p-SiO2 Brazed Joints

Understanding the microstructure of a brazing joint was important for evaluating
the quality of the p-SiO2 joint. Thus, the typical microstructure of the p-SiO2 joint was
analyzed. With the brazing temperature of 1000 ◦C for 30 min, the typical microstructure of
p-SiO2 joint brazed using Ag-0.5 mol% CuO is shown in Figure 4. As shown in Figure 4a,
the brazing seam of the p-SiO2 joint was divided into two regions: Region I (brazing seam
center) and Region II (infiltration layer). The enlarged microstructure of Region II is shown
in Figure 4b. According to the results of EDS and XRD (see Table 1 and Figure 5), the main
composition of points A and B was 87.98 at.% Ag and 78.78 at.% Ag; thus, it can be inferred
that the points A and B were Ag. The main composition of point C was 32.69 at.% Si and
63.33 at.% O, and the atomic ration of Si and O was close to 1 to 2. Thus, it can be inferred
that the point C was SiO2 phase. The main composition of point D was 47.65 at.% Cu and
43.33 at.% O, and the atomic ration of Cu and O was close to 1 to 1. Thus, it can be inferred
that the point D was CuO phase. In addition, the Ag-0.5 mol% CuO filler metal infiltrated
into the surface layer of the p-SiO2 ceramic and formed Region II. Ag distribution was
uniform in Region II. It is worth noting that the CuO phase still existed in the microstructure
of the p-SiO2 joint. This may be because CuO and SiO2 were both stable compounds and
no strong reactivity was exhibited under the brazing condition. Overall, while no typical
chemical interaction was exhibited between CuO and SiO2, surface phenomena or weak
physical interactions may have occurred in this study. Because of the polar nature, the
affinity of CuO for the surface of SiO2 was high, which facilitated the Ag-CuO filler metal
to infiltrate into the surface layer of p-SiO2. Then, an infiltration layer formed, and the
infiltration layer was conducive to form a good gradient transition of CTE. The residual
stress of the joint was released, so the shear strength of the joint increased to 55 MPa.
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Table 1. EDS results of p-SiO2 joint.

Position
Composition (at.%)

Phases
Ag Si Cu O

A 87.98 4.35 2.38 5.29 Ag
B 78.78 1.64 0.11 19.47 Ag
C 3.97 32.69 0.01 63.33 SiO2
D 4.48 4.54 47.65 43.33 CuO

In order to further investigate the interfacial bonding mechanism between Ag-0.5 mol%
CuO and p-SiO2 ceramic, element line scanning and mapping of the infiltration layer was
conducted and is presented in Figure 6. From Figure 6a, it can be seen that the element
Ag diffused from the brazing seam to the p-SiO2 ceramic, and no interaction with p-SiO2
existed. The element Cu mainly diffused to the surface of the SiO2 particles because of the
physical association between CuO and SiO2 particles. From Figure 6b–d, it can be seen
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that the element Ag was mainly distributed in the pores on the surface of p-SiO2. The
element Cu was hard to detect, due to its little additive amount. The element Si was mainly
distributed the in p-SiO2 ceramic; no diffusion occurred. According to the line scan results
and the distribution of the main elements, it can be inferred that Ag was concentrated in
the brazing seam center, while SiO2 and diffused Ag were distributed in the infiltration
layer. It is worth noting that the element Cu showed almost no diffusion. This may be
because the amount of CuO was too small to be detected.
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3.3. The Effect of CuO Content on the Microstructure and Mechanical Property of p-SiO2

The influence of the content of CuO on the microstructure of the p-SiO2 joint brazed at
1000 ◦C for 30 min was investigated. Ag, Ag-0.5 mol% CuO, and Ag-1.0 mol% CuO filler
metals were used to braze the p-SiO2 joint, respectively. The microstructure of the p-SiO2
joint brazed with the Ag-xCuO filler metal is shown in Figure 7. It can be observed that
with the content of CuO increasing, the depth of infiltration layer decreased. As shown in
Figure 7a, cracks formed in the brazing seam of thep-SiO2 joint brazed with pure Ag and
the width of the brazing seam was 50 µm. This may be because the wettability of Ag on the
surface of p-SiO2 was poor and the mismatch of CTE in the joint was high. The residual
stress formed and the shear strength of the joint were only 25 MPa (see Figure 8). When
the content of CuO increased to 0.5 mol%, the microstructure of the p-SiO2 joint was good,
without pores and cracks (see Figure 7b), and the width of the brazing seam was 302 µm.
It is worth noting that a continuous infiltration layer formed in the brazing seam, and its
thickness was 58 µm. Moreover, the shear strength of the joint was further improved to
55 MPa (see Figure 8). While the content of CuO increased to 1.0 mol%, the p-SiO2 ceramic
was filled with Ag(s,s) phase and a small amount of CuO phase, as shown in Figure 7c. No
metallurgical bonding formed in the joint and the infiltration layer disappeared, then cracks
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formed. Therefore, the shear strength of the joint was reduced to 12 MPa (see Figure 8).
Based on the above analysis, it can be inferred that with the content of CuO increasing
from 0 mol% to 0.5 mol%, the width of the brazing seam increased, which may be because
1000 ◦C was higher than the melting point of Ag, so Ag transitioned from a solid to a
molten state. The fluidity of Ag was enhanced and the width of the brazing seam decreased.
In addition, resulting from the addition of CuO, the binding of Ag-O ionic bonds was
promoted, and Ag/O-CuO and Ag/O-SiO2 interfaces in the infiltration layer formed [24].
Then, the infiltration layer formed in the p-SiO2 joint, while when the content of CuO
further increased to 1.0 mol%, the width of the brazing seam decreased. This may be
because as the content of CuO increased, the concentration of CuO available for interaction
with the p-SiO2 surface was improved, and the depth of the infiltration layer increased.
Then, the width of brazing seam decreased. Furthermore, because of the infiltration layer
forming, a good gradient transition of CTE formed, so the residual stress of the joint was
released and the shear strength was increased to 55 MPa.
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Figure 8. Shear strength of p-SiO2 joints with different CuO contents.

3.4. The Interfacial Formation Mechanism of p-SiO2 Joint

According to the above analysis, a model was established to illustrate the formation
mechanism of the p-SiO2 joint brazed with Ag-CuO in air. As shown in Figure 9, the
interfacial mechanism of the joint was clarified. The brazing process was divided into two
parts. As shown in Figure 9a, with the brazing temperature increasing to 1000 ◦C, the Ag-
CuO filler metal began to melt and CuO diffused to the surface of the SiO2 particles. Then,
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the surface energy between Ag/p-SiO2 changed and the Ag-CuO filler metal infiltrated
into the surface layer of the p-SiO2 ceramic, as shown in Figure 9b. Furthermore, due to
the addition of CuO, the formation trend of the Ag-O ion bond and interfacial bonding
of Ag/O-CuO or Ag/O-SiO2 were enhanced. Then, with the brazing time extending,
Ag-0.5 mol% CuO infiltrated into the surface layer of the p-SiO2 ceramic and formed
a buffer layer composed of Ag, CuO, and SiO2, In addition, the infiltration layer was
beneficial for forming a good gradient transition of CTE, releasing residual stress and
improving the shear strength of the joint.
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In order to better understand the strengthening mechanism of p-SiO2 joints brazed
with Ag-CuO filler metal, the microstructure of the fracture surfaces of the p-SiO2 joints
brazed with Ag-xCuO filler metal were investigated and are shown in Figure 10. As shown
in Figure 10a, the fracture surface of the joint brazed using the pure Ag filler metal was
composed of pores and the p-SiO2 ceramic. The pores existed in the p-SiO2 ceramic and
the cracks formed in the brazing seam close to the p-SiO2 ceramic. This may be because
the wettability of the Ag filler metal on the surface of the p-SiO2 ceramic was poor and
metallurgical bonding was weak, so cracks formed at the interface of Ag/p-SiO2. Therefore,
the shear strength of the p-SiO2 joint brazed with the Ag filler metal was low. The fracture
surfaces of the p-SiO2 joint brazed with Ag-xCuO were the same, and the typical fracture
was analyzed. Figure 10b displays the fracture surface of the joint with the content of CuO
increased to 0.5 mol%. It seems that the fracture surface of the p-SiO2 joint brazed with
Ag-0.5 mol% CuO was composed of the Ag-0.5 mol% CuO filler metal and p-SiO2 ceramic.
Thus, it can be inferred that cracks formed on the infiltration layer. In other words, the
interface strength and wettability of Ag-0.5 mol% CuO/p-SiO2 were fine during the brazing
process, with no cracks or pores occurring at the interface. Therefore, the shear strength of
the joints was effectively improved. It is well known that grain boundary strengthening is
an important method to impede crack propagation and improve the mechanical property
of joints [27–35]. In addition, for p-SiO2 joints brazed with the Ag-1.0 mol% CuO filler
metal, the fluidity of the filler metal was improved and all the filler metal infiltrated into
the p-SiO2 ceramic, as shown in Figure 10c. No metallurgical bonding formed with the
p-SiO2 ceramic, then fracture occurred in the brazing seam. Based on the above analysis, it
can be inferred that because of the addition of CuO to the system, the surface energy of
the infiltration layer increased, and the hydrophily of Ag-CuO/p-SiO2 improved. Tshe
formation trend of the Ag-O ion bond and interfacial bonding of Ag/O-CuO or Ag/O-SiO2
were enhanced. Then, the Ag-CuO filler metal infiltrated into the surface layer of the p-SiO2
ceramic and formed an infiltration layer mainly composed of Ag (s,s), CuO, and SiO2.
Therefore, the residual stress of the p-SiO2 joints was released and the shear strength of the
joints was increased. In summary, it was critical to use the Ag-xCuO filler metal with the
proper content of CuO to promote the formation of the infiltration layer, while the good
wettability of the Ag-xCuO/p-SiO2 system was maintained.
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4. Conclusions

In this work, p-SiO2 joints were successfully brazed using Ag-CuO filler metal. The
effect of the content of CuO on the wettability of the Ag-CuO/p-SiO2 system and the
interfacial microstructure and mechanical property of the p-SiO2 joint were systematically
investigated. The conclusions obtained were as follows:

(1) With the content of CuO increasing from 0 mol% to 0.5 mol%, the surface energy
between the Ag-CuO filler metal and p-SiO2 ceramic was increased. The wetting
angle of the Ag-CuO/p-SiO2 system decreased from 90◦ to 52◦, and the wettability
was greatly improved. When the content of CuO increased to 1.0 mol%, Ag-CuO
completely infiltrated into the surface layer of the p-SiO2 ceramic and the wetting
angle was reduced to 0◦.

(2) The typical microstructure of the p-SiO2 joint brazed using Ag-0.5 mol% CuO at
1000 ◦C for 30 min was p-SiO2/Ag (s,s) + SiO2 + CuO/Ag (s,s)/Ag (s,s) + SiO2 +
CuO/P-SiO2. The infiltration layer was composed of Ag (s,s) + SiO2 + CuO. In
addition, the infiltration layer was conducive to forming a good gradient transition
of CTE, releasing the residual stress in the joint, and improving the shear strength of
the joint.

(3) When the p-SiO2 joint was brazed with the Ag filler metal, the fracture was formed in
the brazing seam close to the p-SiO2 ceramic, and when the joint was brazed with the
Ag-xCuO filler metal, the fracture was formed in the infiltration layer. Furthermore,
the shear strength of the joint increased first and then decreased with the content
of CuO increasing. When the content of CuO was 0.5 mol%, the maximum shear
strength of the joint was 55 MPa.
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