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Abstract: In this study, we successfully obtained a 2Mg-Fe mixture through mechanical alloying
(MA) and processed it via accumulative roll bonding (ARB) (MA+ARB). Our primary focus was
to analyze the impact of ambient air exposure while also evaluating the processing route. Some
powder samples were exposed to air for 12 months (stored in a glass desiccator with an average yearly
temperature and relative humidity of ~27 ◦C and 50.5%) before undergoing ARB processing. The
Mg samples obtained after ARB processing exhibited a (002)-type texture. Our results demonstrate
that all samples, including those processed via ARB, could rapidly absorb hydrogen within a matter
of minutes despite considerable differences in surface area between powders and rolled samples.
Grain size reduction by MA and ARB processing and texturing may have influenced this behavior.
ARB-processed samples reached approximately 60% (~1.8 wt.%) of their maximum acquired capacity
within just 24 min compared to powders (~2.2 wt.%) stored for a year, which took 36 min. In addition,
the desorption temperatures (~300 ◦C) were lower than those of MgH2 (~434 ◦C). The absorption
and desorption kinetics remained fast, even after prolonged exposure to air. Although there were
minor variations in capacities, our overall findings are promising since scalable techniques such as
ARB have the potential to produce hydrogen storage materials that are both safe and cost-effective in
a highly competitive market.

Keywords: 2Mg-Fe; complex hydride; oxidation; accumulative roll bonding (ARB); texture

1. Introduction

The use of Mg-based hydrides as hydrogen storage materials is quite promising.
These materials are reversible and cost-effective with high volumetric and gravimetric
capacities (MgH2: 7.6 wt.% of H, Mg2FeH6: 5.5 wt.% of H). However, their use has
some drawbacks, such as slow kinetic rates and high hydrogen absorption/desorption
temperatures. Additionally, Mg-based hydrides are prone to oxidation in air, and surface
oxides can decrease their hydrogenation kinetics and capacities [1–7]. Fortunately, there
has been the development of nanostructures through mechanical alloying (MA), which
involves high-energy ball milling (HEBM) and reactive milling (RM), in combination with
catalyst or additive doping or severe plastic deformation (SPD) methods. This has resulted
in a significant enhancement of their kinetics [6–10].

Mechanical alloying is a highly effective method for creating alloys and metallic
nanocomposites. It decreases the diffusion distance and increases the surface and interface
areas, lattice defect density, and catalyst dispersion [2,3,5,10–12]. Research conducted by
Schulz et al. has demonstrated that ball milling can significantly reduce the activation
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energy required from 156 kJ mol−1 to 120 kJ mol−1 [8]. Reactive milling, a process whereby
additives such as Fe are introduced under a hydrogen atmosphere, has been shown to
enable the formation of the Mg2FeH6 complex hydride [4,5,13]. This hydride has a lower
dissociation pressure than MgH2 and displays good cyclability due to the insolubility of
Mg and Fe [13–17]. Adding Fe as a catalyst can lower the temperature required for H-
desorption in MgH2 and the activation energy for MgH2 decomposition [16–18]. Catalysts
made out of 3d transition metals (Fe, Ti, V, etc.) have distinct electron configurations
and incomplete filled d-orbitals, which in the absorption contributes to facilitating H2
dissociation and acting as heterogeneous nucleation sites, and in the desorption weakens
the Mg-H bond and reduces thermodynamic stability, thus lowering the activation energy
barrier and improving the kinetic properties [6,19,20]. Furthermore, as an additive, it
prevents agglomeration during mechanical alloying [12]. However, the MA process can be
costly (long processing time) when considering large-scale production, and the resulting
powders may display poor resistance to the air (i.e., high reactivity) [3,10].

Nanostructures and defects in Mg-based compounds or hydrides can be produced
through Severe Plastic Deformation (SPD) methods [21–26]. Accumulative Roll Bonding
(ARB) is a promising SPD method for upscaling Mg-based hydrogen storage materials.
This method not only refines the microstructure but also enables the production of bulk
samples from powders that are less reactive to air than the precursor powders [9,10,27]. It
is important to note that cold rolling (CR) can also produce bulks, despite not undergoing
refinement. While ball milling is an option, ARB offers several benefits, such as creating a
submicrometer-ordered structure or even a nanostructure. ARB and CR make a high density
of defects, such as dislocations, stacking faults, twining, texture, or preferred orientation
along the (002) plan of Mg parallel to the rolling direction [5,10,24]. In addition, these pro-
cesses can be used to produce mixtures, to disperse the particles of catalysts [10,28–30], and
to produce intermetallic phases and alloys [10,23,24]. These characteristics in the structure
improve the diffusion/kinetics of reactions and lower the H-desorption temperature [9,24].

Numerous studies conducted by various authors [21–24,27,31–35] have explored the
impact of rolling methods on enhancing the initial hydrogenation (activation) properties. It
has been observed that the (002) texture in Mg facilitates faster activation without incubation
periods [35–38]. For hcp α-Mg, the basal plane is the main slip plane, and the preferred
diffusion pathway of an H atom is along the [002] direction [27]. Although the bulk form
of the as-rolled sample exhibits a lower surface/volume ratio compared to its powdered
counterparts, this could be advantageous for scaling up Mg materials as it reduces the
adverse effects of contact with air, resulting in better air resistance (reduced oxide/metal
content) [22,24].

In a study by Lang and Huot [21], MgH2 powders were analyzed after being processed
through cold rolling (five passes) and ball milling (30 min). The results showed that the
H-absorption kinetics of the as-rolled and as-milled samples were almost comparable.
However, excessive passes (more than 25 passes) decreased kinetics and capacities due to
the formation of oxides, which slowed down the process. Therefore, limiting the number
of passes is recommended if the procedure is performed in the air.

Research shows that combining various processing methods can enhance activation
kinetics through synergistic effects. In a study by Lima-Andreani et al. [33], a 2Mg-Fe
nanocomposite sample produced through ball milling (MA), hot extrusion (EX), and ARB
(MA+EX+ARB) exhibited improved hydrogenation properties compared to the precursor
milled powder. In a subsequent study [34], the researchers examined the effect of adding
CNT (1, 2, and 5 wt.%) to the 2Mg-Fe nanocomposite and using different processing routes
(MA, MA+EX, MA+EX+ARB, and MA+ARB); the sample with 5 wt.% CNT processed
through the MA+ARB route demonstrated the best results, achieving 73% of the theoretical
capacity of Mg2FeH6.

In a study by Floriano et al. [35], pure Mg powders were processed through 40 passes
of CR under an inert atmosphere, followed by a short, 20 min ball-milling step (CR+HEBM
combination). The microstructure of the resulting samples was significantly refined to



Metals 2023, 13, 1544 3 of 14

4–7 nm. These samples were then activated at 623 K (350 ◦C) under a hydrogen pressure
of 2 MPa for absorption. The Mg-CR sample absorbed 1.2 wt.% after 12 h. In contrast,
Mg-CR+HEBM achieved 5.7 wt.% (80.3% of its total capacity) after only 3 h, indicating a
remarkable improvement in absorption rate. Moreover, Mg’s (002) texture was preserved af-
ter ball milling. As a result, the activation kinetic curves did not show any incubation times,
suggesting that the samples’ surfaces were free from or had minimal oxide contamination,
which is one of the advantages of the (002) texture [35–38].

Several researchers have examined Mg-based hydrides that were deliberately exposed
to air. These hydrides are vulnerable to air and moisture, forming MgO/Mg(OH)2 that
inhibits hydrogen dissociation and diffusion [5,6], and it would be challenging to prevent
air contamination during processing, handling, or storage in large-scale production. In
2011, Vincent and Huot [39] conducted an experiment involving MgH2 powder. They
cold-rolled it five times and ball-milled it for 30 min to 10 h, all while exposed to air (which
they called a “worst-case scenario”). They discovered that the formation of MgO was the
primary reason for reduced hydrogen capacity. However, they also noted that air-milled
and argon-milled samples exhibited similar H-sorption kinetics for short milling times
(30 min). Air contamination did not significantly impact the kinetics and capacities [39].

In 2018, Jung et al. [40] conducted experiments on 2Mg-Fe (molar ratio) powder
mixtures by cold rolling in air, with varying numbers of passes (0, 10, 30, and 50 times). The
hydrogenation measurements were taken at 673 K under a hydrogen pressure of 60 bar for
6 h. The formation of both MgH2 and Mg2FeH6 was only detected in samples rolled 30 and
50 times. As the number of passes increased, microstructures were refined, and the layers of
Mg and Fe became thinner, resulting in a more extensive interface area, contributing to the
kinetics of hydride formation. However, with more passes, the amount of MgO increased,
resulting in less unreacted Mg available to form MgH2, leading to fewer hydrides forming.
In 2016, Suarez-Alcantara et al. [41] prepared Mg-Fe (Fe: 3 and 6 wt.%) by MA and studied
the intentional storage in air exposure for 12 h. Capacities were measured using gravimetric
methods at 623 K (350 ◦C) and 3 MPa of H2. Pure Mg, Mg-Fe (3 wt.%), and Mg-Fe (6 wt.%)
had capacities of 5.3, 5.6, and 6.2 wt.% of H, respectively.

According to Czerwinski [42], the oxide growth in Mg alloys depends on the duration
and temperature of exposure in oxidizing environments. When formed, MgO has an amor-
phous structure at room temperature, which provides better protection than a crystalline
one. The initial MgO formed has a higher ratio of Mg to O than bulk MgO due to an oxygen
deficiency. Reaching the full stoichiometric MgO requires more prolonged exposure to
high temperatures.

Our study examined how storage and processing in air affect the hydrogenation
properties of an as-milled powder mixture. Specifically, we prepared a 2Mg-Fe (molar %)
nanocomposite through MA and stored the as-milled powders in the air for one year. The
samples were then subjected to ARB processing in the air. We thoroughly characterized all
samples regarding their structure, H-absorption (activation), and H-desorption properties.

2. Materials and Methods

Pure elemental powders of Mg (+4–30 mesh, 99.95%, Sigma Aldrich - Brazil) and
Fe (325 mesh, 97.35%, Höganäs–Brazil) were mixed to produce a stoichiometric 2Mg-Fe
composite by mechanical alloying (MA) in a high-energy planetary ball mill (Fritsch P5).
The ball-to-powder ratio was 40:1, milling was carried out under an argon atmosphere for
20 h, and 2 wt.% of stearic acid was used as a process control agent (PCA). The powders
were afterwards sieved using a 180-mesh sieve.

As-milled samples (powders) were intentionally stored in an ambient atmosphere (in a
glass desiccator) with the aim of evaluating the effect of exposure in an ambient atmosphere.
An extended period of one year of exposure was used. These samples were named MA(y).

The samples MA(y) were cold-pressed to produce cylindrical pre-forms of 10 mm
in diameter and 2 mm thick and then placed between two plates of electrolytic copper.
The resulting “sandwiches” were subjected to ARB processing using a homemade rolling
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machine with a 50% reduction in each pass. The final thickness was 0.2 mm. In order to
minimize oxide formation during rolling, 20 passes were made, as recommended in the
literature [21,40]. The ARB process was intentionally carried out in air at room temperature
and the rolling speed was 15 m/min. Following the procedures for ARB, the as-rolled
specimens were cut in half after each pass of deformation, superposed, and reinserted
between the copper foils to maintain the form. The samples in the final product were
designated as the MA(y)+ARB samples.

The hydrogen absorption properties were measured in a homemade, Sieverts-type
volumetric gas absorption apparatus at 623 K (350 ◦C) under a hydrogen pressure of 2 MPa,
aiming for the formation of MgH2 and Mg2FeH6 [14]. The hydrogen desorption behavior
of the samples was investigated using simultaneous differential scanning calorimetry–
thermogravimetry–STA apparatus (TG-DSC; Netzsch, STA 449C) in an argon overflow
regime (25 mL/min), using a heating rate of 10 K/min. DSC data were also used to calculate
the apparent activation energy for desorption (Ea) using the Kissinger method [43] using
heating rates of 5 K/min, 10 K/min, 20 K/min, and 40 K/min.

Structural characterization was accomplished by X-ray diffraction using monochro-
matic Cu Kα radiation (XRD; Rigaku, Ultima IV). The XRD profiles were treated by Rietveld
refinement using MAUD software [44,45]. Crystallite size and phase abundance were ex-
tracted from the Rietveld refinement analyses.

Microstructures were observed using scanning electron microscopy (SEM; FEI, IN-
SPECT; Backscattered-Electron (BSE)). In this analysis, we observed as-milled powders and
as-rolled small plates (flakes) directly on their surface without any sample preparation.

3. Results and Discussions

In Figure 1, XRD patterns of samples MA(y) and MA(y)+ARB are shown after being
exposed to air for one year, which is the most severe scenario for oxidation. Based on
the XRD patterns, it was observed that all samples, including MA(y) and MA(y)+ARB,
exhibited only the peaks of Mg (76145-ICSD) and αFe (64795-ICSD). Magnesium oxide
may be identified, as expected for Mg oxidation at room temperature [42], by a shallow
amorphous halo at around 2θ = 42◦ (9863-ICSD), indicated in Figure 1 by a blue ellipse,
which is more intense in the rolled condition. Such a low intensity is likely due to the
relatively small volume fraction of these phases (expected mainly in the sample’s surface)
and the possible lack of fully developed, long-range order in these oxides under these con-
ditions. The increased intensity of the oxide halo in the as-rolled sample may be explained
by its breaking and concentration on the surface, as seen in Figure 2b. Jung et al. [40] did
not detect any MgO in their XRD patterns, even after cold rolling (10× to 50×) 2Mg-Fe
composites in an ambient air atmosphere. However, the diminishing intensity of the Mg
peaks with each pass led them to conclude that the amorphous MgO formed consumed
the magnesium.

Comparing the XRD patterns of MA(y) and MA(y)+ARB (Figure 1), this later as-
rolled sample showed a strong preferential orientation along the (002) diffraction peak of
Mg, indicating that the c-axis of the Mg-hcp crystal structure is oriented perpendicularly
to the rolling direction. This preferred orientation is favorable to hydrogen absorption
during activation, and this texture is expected to develop in Mg alloys processed by rolling
processes [22–24,31,33–38,46].

The results of the Rietveld refinement analysis indicate that the MA processing ef-
fectively refined the crystallite size of both Mg and αFe to a nanometric scale level. The
calculations showed that the average size of Mg crystallites was 19 nm, accounting for
40 wt.%, while the average size of Fe crystallites was 11 nm, accounting for 60 wt.%. The
Rietveld analysis was not performed for as-rolled samples because of the strong texture for
Mg observed in their XRD patterns. However, as-rolled samples are expected to have simi-
lar or even smaller crystallite sizes after ARB (20 passes) due to the additional deformation.
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Figure 2. SEM/BSE images of samples (a) MA(y) and (b) MA(y)+CR.

The SEM micrographs of samples MA(y) and MA(y)+ARB that were air-exposed
for one year are presented in Figure 2. In Figure 2a, it is evident that the particle sizes
for MA(y) are very fine, measuring below 37 µm, with irregular morphology. The fine
oxide layer covering the particle surfaces is not visible due to the electron beam interaction
volume with the matrix, which masks the oxide signal. In pure Mg, the only oxide that
forms is MgO. Due to Mg’s more potent reducing abilities than Fe, it is believed that the
preferential oxidation of Mg leads to oxidation-induced chemical segregation, as stated by
Czerwinski [42].

Figure 2b demonstrates the remarkable consolidation of particles through rolling
processing with the MA(y)+ARB sample. The images exhibit a well-distributed presence of
Fe, indicated by tiny brighter spots, which confirms the data in Figure 1 and its associated
discussion. The rolling process effectively breaks down the fine oxide layer, redistributing
it into small islands on the sample surface. These islands are observed through their
interaction with the electron beam, producing the largest white regions due to a charging
effect. However, fresh oxidation likely occurs during the rolling process, increasing the
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amount of oxides, as observed in the analysis in Figure 1. Jung et al. [40] also observed
such a phenomenon, suggesting that oxidation increases when ARB (or cold rolling) is
performed in air, resulting in less Mg forming hydrides as MgO consumes it.

Samples of both MA(y) and MA(y)+ARB conditions were hydrogenated in a home-
made Sieverts-type apparatus at 623 K (350 ◦C) under a hydrogen pressure of 2 MPa.
Figure 3 presents XRD patterns after such a procedure. Besides Fe, Mg, and MgO, which
were already present and analyzed before, these XRD patterns also revealed the presence
of MgH2 (26624-ICSD) and Mg2FeH6 (107500-ICSD) after hydrogenation. Notably, the
crystallization of MgO (9863-ICSD) took place during the heating process for hydrogen
absorption, whose crystalline peaks are indicated by the asterisks in Figure 3. As previously
discussed, the crystallization evidenced the more considerable yield of oxides in the rolled
samples than in the powders.
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Table 1 clearly shows a noteworthy rise in the average crystallite size after carrying
out a high-temperature hydrogenation treatment at 623 K, as evidenced by the Rietveld
analysis results for XRD patterns of powders taken before and after hydrogenation. It is
crucial to recognize that even with the rise, the nanoscale level remains, and it may not
considerably impact the ultimate capacity or hydrogenation kinetics. More than 50% of the
mixture was converted into hydrides (MgH2 or Mg2FeH6).

Table 1. Phases and average crystallite size estimated by Rietveld refinement of XRD patterns of
powders (Figures 1 and 3) using MAUD software.

SAMPLES PHASES
AVERAGE

CRYSTALLITE
SIZES (NM) ± 5 NM

FRACTION OF
PHASE (WT.%)

MA(Y)
Mg 19 40.0
Fe 11 60.0

HYDROGENATED
MA(Y)

Mg 99 0.3
Fe 44 42.1

MgH2 46 19.8
Mg2FeH6 58 31.3

MgO 100 6.4

Figure 4a displays the H-absorption curves for samples MA(y) and MA(y)+ARB. It is
worth noting that neither of the samples showed any incubation time, as also observed in
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our previous works [33,34]. Through its catalytic properties, Fe effectively facilitates the
penetration of hydrogen by transposing the oxide barrier in both cases, assisted by the (002)
texture in the ARB-processed samples [35–38]. Although there were some differences in
initial kinetics, both samples had high rates of H-absorption and reached near saturation
in roughly 6 h (360 min). The maximum capacities attained after 14 h were 3.7 wt.% for
MA(y) and 3.0 wt.% for MA(y)+ARB, representing a decrease of approximately 19% in
capacity. The reduction in capacity can probably be attributed to the thicker bulk samples,
which obstruct complete hydrogen penetration [33,34,36]. In addition, as stated above and
confirmed in reference [40], oxidation increases when ARB is performed in the air, resulting
in less Mg to form hydrides as MgO consumes it. This MgO was unevenly dispersed
between the Mg and Fe interlayer regions and, as seen in Figure 2b, was observed to have
broken and redistributed on the as-rolled sample’s surface in thick oxide islands, affecting
the hydrogenation process and leading to decreased capacities.
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To sum up, the decrease in capacity can be attributed to various factors. These
include the notable variation in thickness (bulk and powders) [33,34,36] and the presence
of thick oxide layers on the ARB processed samples (Figures 1, 2b and 3), along with
the development of new interparticle oxide layers and even on their surface during ARB
processing, thus decreasing the amount of disposal Mg to form hydrides [40]. These factors
collectively contribute to reducing the available amount of Mg for forming a hydride.

Thicker samples have decreased surface areas compared to powders; therefore, the
hydrogen evolution into thicker specimens is hindered, and oxides consume Mg. Moreover,
the formation of oxides before and post-ARB processing, and the resulting layer concen-
trated in islands on ARB-processed materials from previously formed oxide layers, are
other crucial factors.

Czerwinski [42] discovered that the growth of oxide in Mg alloys’ dependence on
the duration and temperature of exposure in oxidizing environments is due to several
factors. The short-time-thinner and more compact amorphous structure of MgO at room
temperature provide superior protection due to its more compact structure than a crystalline
one. The initial MgO formed has a higher ratio of Mg to O than bulk MgO due to an
oxygen deficiency. Prolonged exposure to high temperatures is required to achieve full
stoichiometric MgO. In the beginning, the oxide growth happens quickly and then slows
to a constant rate until the metal surface is completely covered. During this stage, the
growth process relies on the diffusion of Mg2+ cations outward through the oxide layer.
When temperatures are below 200 ◦C, a dense layer of MgO forms during oxidation;
such a layer, combined with slow lattice diffusion that restricts the movement of Mg2+

cations, creates an effective barrier that prevents hydrogen from penetrating the sample.
With the growth of the oxide film, the surface of both the metal and the oxide alters their
structure. As Mg2+ cations disperse, they give rise to vacancies and voids at the metal–oxide
interface, creating channels facilitating magnesium transportation. It is worth noting that
this phenomenon can create stress points that may cause film cracking, making hydrogen
penetration more likely.

Moreover, the difference in volume between the MgO film and the metallic substrate
induces tensile stress and fissures. Therefore, oxidation is not reliant on the thickness of
the scale, and it is believed that oxygen can penetrate, causing nonprotective oxidation.
The compact oxide is replaced by uneven oxide ridges distributed over the metal surface,
unrelated to the substrate features. The formation of ridges occurs when air enters through
cracks and reacts with the metal, causing hills to grow outward. Prolonged exposure to
high temperatures (or very long time periods) can make the oxide scale less protective and
porous, allowing hydrogen to take advantage of the situation and improve capacities. This
behavior is evident in as-ARB processed powder samples.

We meticulously investigated the impact of oxide thickness, porosity, and efficacy
in hindering hydrogen permeation. Employing the same techniques as previously, we
produced powders and preserved them for a month in an air atmosphere before expos-
ing them to 20 passes of ARB processing. Afterward, the resulting samples, MA(m)
and MA(m)+ARB, were hydrogenated similarly to the previous specimens (MA(y) and
MA(y)+ARB). In this way, the oxide’s effects were emphasized in the comparison because,
as the ARB processed samples had the same thickness, its impact was eliminated. The
comparison of hydrogenation behavior is illustrated in Figure 4b. It is evident that the
MA(m) and MA(m)+ARB specimens displayed lower capacities in contrast to the MA(y)
samples, solidifying the notion that the oxide formed post-short-term air exposure played
a crucial role in obstructing hydrogen absorption. As predicted by Czerwinski [42], the
MA(m) samples showcased a thinner yet more protective oxide layer, consequently leading
to reduced capacity compared to the MA(y) ones. However, as the amount of MgO was
smaller in the MA(m) samples, more Mg was prone to be hydrided than in the MA(y)+ARB
samples, thus leading MA(m) to have a higher capacity than MA(y)+ARB. Nonetheless, the
MA(m)+ARB samples’ broken thinner oxide layer probably generated fewer oxide scales
on the surface when compared to the MA(y)+ARB specimens, resulting in an amplified
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capacity. During ARB, the previous oxide layer was broken, but a new thinner layer was
formed again, increasing the capacity of the MA(m)+ARB compared to the MA(m) samples.
In a previous study [33], a similar outcome was observed for 2Mg-Fe that was processed
using MA and a combination of MA+EX+CR, (EX = extrusion, CR = cold rolling) without
exposing the as-milled sample to air. The as-rolled sample in bulk form displayed superior
capacity compared to the as-milled samples.

Figure 4b indicates that, after 14 h, the highest capacities achieved were 3.7 wt.% for
MA(y), 3.4 wt.% for MA(m)+ARB, 3.2 wt.% for MA(m), and 3.0 wt.% for MA(y)+ARB. How-
ever, absorption kinetics are also crucial. In Figure 4c, it is worth noting that MA(m)+ARB,
MA(m), and MA(y)+ARB samples reached around 60% of their maximum acquired ca-
pacity in 24 min, while the MA(y) sample took 36 min. After this short initial period, the
MA(y) sample reached approximately 95% of its maximum acquired capacity in about
4 h, while all others took around 6 h. This behavior suggests that a porous oxide layer
on the powder surface may maintain the hydrogenation property expected for powders
of very high surface area compared to bulks. However, as also observed in Figure 4c,
ARB processing proved efficient in improving kinetics, likely due to the presence of the
(002) preferential texture [22–24,33,34,36]. Despite their thickness (reduced surface area
compared to powders) and thicker oxide scales accumulating on the surface of samples
during ARB, which may hinder more hydrogen penetration than in thinner oxide layer
ones and may impact the final capacity, they were able to absorb hydrogen at a similar rate
to powders with a higher surface area.

When comparing the results of our current work to previous studies where samples
were not exposed to air [33,34], we found that our as-rolled samples had smaller hydrogen
capacities than those from such works. This result confirms that exposure to air leads to
the degradation of hydrogen capacities, regardless of the time the samples were stored
(one month or one year). A study by Huot and Vincent [39] discovered that prolonged
milling time in air leads to the formation of MgO, which causes only the degradation in
hydrogen capacity without affecting kinetics. These conclusions confirm our findings and
show that hydrogen’s first absorption (activation) was possible in a few minutes for all
samples despite long exposure times to air.

In Figure 5, the DSC results are compared between hydrogenated MA(y), MA(y)+ARB,
and commercial MgH2. The DSC curves of MA(y) and MA(y)+ARB exhibit two desorption
endothermic peaks. According to research by [16,47], the smaller peaks (at lower tem-
peratures) are linked to the decomposition of Mg2FeH6, which acts as a catalyst for the
desorption of MgH2, represented by the second and more intense peaks. Such hydrides are
in agreement with those identified by XRD analyses (as shown in Figure 3). The discrepancy
in peak intensities for the complex hydride is likely due to varying amounts of Mg2FeH6
in each sample, with the rolled sample having less. The MgH2 serves as an intermediate
product, and when combined with Fe in a 2MgH2 + Fe mixture, it produces Mg2FeH6 [4,47].
As shown in Figure 3, the MA(y)+CR sample had a higher yield of MgO, which resulted in
less Mg being available to form MgH2. Thus, this sample had a lower yield of Mg2FeH6.

The MA(y) sample exhibits the lowest desorption temperature, starting at approxi-
mately 190 ◦C and peaking at about 300 ◦C. The MA(y)+ARB sample displays a slightly
higher starting desorption temperature of around 195 ◦C (a difference of only ~5 ◦C), with
its peak at roughly 309 ◦C (a difference of only ~9 ◦C). The higher peak area in the MA(y)
sample indicates that there is a greater amount of desorbed hydrogen, which is consistent
with the XRD patterns shown in Figure 3. This shift towards higher temperatures in the
as-rolled sample has also been observed in our previous research [33], which was attributed
to the surface area reduction after consolidation. When comparing these temperatures
to those of MgH2, a significant difference of approximately 198 ◦C and 130 ◦C on aver-
age for the starting and peak temperatures, respectively, is evident. These reductions in
temperature are due to the microstructural changes by MA and MA+ARB and the effect
of Fe and Mg2FeH6 as catalysts in the 2Mg-Fe samples. This observation also suggests
a strong catalytic effect of Fe, which has also been noted in other studies [16–18,33,34].
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Floriano et al. [35] also observed that after CR, the peak desorption temperature of MgH2
decreased from 458 ◦C to 388 ◦C and then to 381 ◦C after adding Fe as a catalyst before CR.
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Enthalpies for the decomposition of commercial MgH2 and hydrides formed in sam-
ples MA(y) and MA(y)+ARB hydrides were determined from the DSC curves using the
peak area. While not highly precise, this method can provide qualitative information
regarding composition, processing route, and sample oxidation on hydride decomposi-
tion. The calculations reveal that the enthalpies of commercial MgH2 and the MA(y), and
MA(y)+ARB samples were approximately 77 kJ mol−1, 79 kJ mol−1, and 75 kJ mol−1,
respectively. Similar values for hydride decomposition enthalpies were also found in
the literature for MgH2 [48] and the complex hydride [49]. These results indicate that all
calculated enthalpies are quite similar. Based on the findings from the XRD results and
DSC curves, one may anticipate that the similarity between the processed samples and
MgH2 would be observed. This is because the processed samples’ hydrides are mostly
MgH2. Therefore, the response of these cases is expected to resemble that of MgH2. The
observed trend suggests that the extreme grain size reduction after MA and the subsequent
ARB processing leading to further refinement and generation of the (002) texture may
have influenced this behavior. Furthermore, the presence of Mg2FeH6 and mainly Fe in
the mixture produces a catalytic effect on hydrogen desorption kinetics from MgH2, as
evidenced by a reduction in the decomposition peak temperature by more than 100 ◦C and
a reduction in the starting desorption temperatures by about 200 ◦C.

The Kissinger method [43] was used to calculate the apparent activation energies (Ea)
for desorption to confirm the findings on the decrease in desorption temperatures across
various samples. Figure 6 presents Kissinger plots showing the results yielded for Ea that
gave values of 105 kJ mol−1, 110 kJ mol−1, and 173 kJ mol−1 for the MA(y), MA(y)+ARB,
and commercial MgH2 samples, respectively. The literature [16,50] (please note also the
articles’ references) reports similar activation energy values. As expected from the DSC
results (also shown previously in the literature [16,50]), it is clear that the decrease in the
Ea supports the positive impact of the processing route, which has a positive effect on
reducing grain sizes after MA and ARB processing, thereby leading to further refinement
and the generation of the (002) texture. Additionally, the presence of Fe and the complex
hydride act as catalysts for the dehydrogenation reaction.
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Figure 7 displays the results of the thermogravimetric analysis (TGA) and the des-
orption kinetics, which were calculated from the data gathered in Figure 7a. These results
complement and corroborate the above-presented and discussed enthalpy and Ea findings.
Similarly to the DSC results presented in Figure 5, TGA curves show the same starting
desorption temperatures. Additionally, as one may observe in Figure 7, the amounts of
desorbed hydrogen of the MA(y) and MA(y)+ARB samples are almost the same as the
amounts of absorbed hydrogen shown in Figure 4, and are, as expected, smaller than the
amounts observed for the commercial MgH2 (~6.5 wt.%). Furthermore, the kinetics results
(Figure 7b) show that the 2Mg-Fe samples demonstrate equal (dashed lines) desorption
kinetics to MgH2, even though the latter’s desorption was at the highest temperatures and
despite the thickness of the MA(y)+ARB sample, meaning that this processing route is very
interesting for producing a safe hydrogen storage material.
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However, more importantly for the current work, the results obtained for enthalpies,
Ea, absorbed and desorbed capacities, and kinetics indicate that oxidation is not a significant
factor when following this particular processing route.

4. Summary

Our study involved the successful production of a mixture consisting of 2Mg and Fe
through mechanical alloying (MA). We then processed the mixture using accumulative
roll bonding (ARB) to consolidate the powders (MA+ARB). Our primary focus was to
evaluate the processing route and analyze the impact of ambient air exposure. Some
powder samples were exposed to air for 12 months before undergoing ARB processing.
These samples were stored in a glass desiccator with an average yearly temperature and
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relative humidity of approximately 27 ◦C and 50.5%. The Mg samples obtained after ARB
processing exhibited a (002)-type texture. The results clearly demonstrate that all samples,
including those processed by ARB, could have initial hydrogen absorption within just a
few minutes, despite significant differences in surface area between powders and rolled
samples. Furthermore, the desorption temperatures were markedly lower compared to
MgH2. Despite extended exposure to air, absorption, and desorption kinetics remained
rapid. Although there were some minor differences in capacities, the overall findings are
highly encouraging, indicating that scalable techniques such as ARB can produce hydrogen
storage materials that are both safe and competitively cost-effective.
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