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Abstract: Coalescence-induced droplet jumping behavior (CIDJB) refers to the spontaneous jumping
of droplets on a specific superhydrophobic surface (SS) without any external energy, which offers a
new approach to the field of marine atmospheric corrosion protection by isolating corrosive media.
In this study, a flower-like micro–nanocomposite structure SS (F-SS) and a sheet-like nanostructure
SS (S-SS) were prepared on copper sheets by ammonia immersion and chemical vapor deposition.
Firstly, we observed the microstructure characteristics of the samples and secondly analyzed its
chemical composition and wettability. Moreover, the CIDJB was studied by simulated condensation
experiments, and the influence of the microstructure on CIDJB was revealed. Meanwhile, the
atmospheric corrosion resistance of samples was analyzed by electrochemical impedance spectroscopy
(EIS) measurements, and the protection mechanism of SS through CIDJB was proposed. The results
showed that the S-SS had a smaller solid–liquid contact area and lower interfacial adhesion, which is
more conducive to CIDJB. Since a larger solid–liquid contact area requires greater interface adhesion
energy for the droplets to overcome, droplet jumping behavior was not observed on the F-SS.
Compared with the F-SS, the S-SS exhibited outstanding corrosion resistance due to the wettability
transition of droplets by CIDJB, which facilitated the restoration of the air film to insulate the
corrosive medium. The present study provides a reference for a marine atmospheric corrosion
resistance technique through CIDJB on an SS.

Keywords: superhydrophobic; surface; atmosphere; corrosion; droplet; structure; area; energy

1. Introduction

Marine atmospheric corrosion is essentially electrochemical corrosion occurring be-
tween droplets or water film and a metal surface [1]. According to the bionics principle of
the “lotus effect”, a superhydrophobic surface (SS) is conducive to preventing the forma-
tion of water film on the material surface, which is mainly manifested as the deliquesced
salt particles readily slide off the inclined SS under external forces [2]. Based on this
anti-corrosion mechanism, more and more methods are being used to generate special
hierarchical micro/nanostructures on metal substrates. Bai [3] used ferric chloride to etch a
heat-transferred copper sheet and obtained a column-like structure SS after immersion in a
stearic acid solution. Zheng et al. [4] prepared a vertically oriented few-layer graphene SS
on Cu substrate by plasma-enhanced chemical vapor deposition technique. Cao et al. [5]
constructed Cu(OH)2 nano grass in situ on the surface of copper by simple anodizing and
then modified it with fluoroalkyl silane to obtain a nanoneedle-like SS. However, the “lotus
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effect” of the SS prepared by these methods is often achieved by external forces, which
limits its application in marine environments.

A characteristic droplet-jumping phenomenon was first observed on an SS in 2009 [6]
when merged droplets released excess surface energy and spontaneously jumped off the
surface without requiring any external energy. Coalescence-induced droplet jumping
behavior (CIDJB) has been widely studied and applied due to its various advantages,
with its main applications being anti-frosting [7,8], self-cleaning [9], condensation heat
transfer enhancement [10,11], and energy collection [12,13]. Theoretically, droplet jumping
induced by condensation can prevent droplets from forming water films and spontaneously
remove corrosive media, which lays the foundation for marine atmospheric corrosion pro-
tection. Previously, research on coalescence-induced droplet jumping behavior focused
on droplet parameters, such as equal size [14], distribution [15], and initial velocity [16],
but the current research direction is not limited to the droplet. Through nonequilibrium
molecular dynamics simulation and energy-based theoretical analysis, Gao et al. [17] found
that condensed droplets have different morphologies and self-propelling transitions in
nucleation, growth, and coalescence stages, which actuate droplet migration and jump-
ing. Tang et al. [18] studied a V-shaped SS with a triangular prism, which increased
the jump speed and energy conversion efficiency by 80% and 210%, respectively, due to
the reaction force exerted by the V-shaped sidewalls and the triprism. Huang et al. [19]
studied the condensation and self-propelled jumping processes of droplets on the SS of a
microcolumn structure with various dimensional parameters and found that the optimal
spacings for width and the ratio of height to width for the microcolumn used for droplet
jumping were about 0.6 and 1.0, respectively. By using a facile hydrothermal method to
fabricate a nanorod-like structure superhydrophobic surface on a zinc substrate, and then
modifying the superhydrophobic surface with three different low-surface-energy materi-
als (1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDS), decyltriethoxysilane (DTS), and
stearic acid (SA)), Liu et al. [20] obtained a superhydrophobic surface with different surface
energies and analyzed the relevant mechanisms from the perspective of energy, revealing
the key factors that affect surface energies and affect the jumping behavior of droplets. Only
a few pieces of research have focused on the structure of the superhydrophobic surface
itself, especially the scale of the composite structure [21–23].

In this study, a flower-like micro–nanocomposite structure SS (F-SS) and a sheet-like
nanostructure SS (S-SS) were constructed on copper substrates by ammonia immersion
and chemical vapor deposition. Based on the reasonable preparation of two kinds of
superhydrophobic surfaces that are beneficial and not beneficial to coalescence-induced
droplet jumping behavior, a new mechanism of atmospheric corrosion protection was
revealed by studying the correlation of the surface structure, droplet jumping behavior,
and atmospheric corrosion resistance of the two surfaces. It was found that, compared with
F-SS, the S-SS had a lower interfacial adhesion energy (Ew) due to the smaller solid–liquid
contact area, which is conducive to droplet jumping behavior. The SS with droplet jumping
behavior presented a superior anti-corrosion performance due to the droplet-jumping-
induced wetting transition, which promoted the recovery of the insulation and barrier
character of the air film. The present study provides a reference for a marine atmospheric
corrosion resistance technique through CIDJB on an SS.

2. Experimental Section
2.1. Materials

1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDS, 97%) was purchased from Sigma-
Aldrich, St. Louis, MO, USA. The Cu foil (99.5 wt.%) was purchased from Guangdong
Fuye Copper Industry Co., Ltd, Guangdong, China. Ammonium hydroxide (NH3·H2O),
hydrochloric acid (HCl), ethanol (C2H6O), and acetone (C3H6O) were purchased from
Macklin Reagent Co., Ltd, Shanghai, China.
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2.2. Preparation of Superhydrophobic Surfaces

The F-SS and the S-SS were constructed on copper substrates by ammonia immersion
and chemical vapor deposition, respectively, as shown in Figure 1. Specifically, the copper
foil was ground with sandpaper to 2000 grit, then ultrasonically washed with acetone
and anhydrous ethanol in turn to remove the grease, and then ultrasonically cleaned with
2.0 M HCI to remove the surface oxides. The washed copper foil was then dipped into
0.03 M NH3H2O solution, soaked at 50 ◦C for 48 h to prepare the F-SS, and soaked at 50 ◦C
for 72 h to prepare the S-SS, respectively. After the reaction was complete, the samples were
taken out and rinsed with water and anhydrous ethanol in turn. Finally, the sample was
placed in an autoclave; 15 µL PFDS was added and reacted at 120 ◦C for 2 h. After that, the
sample was retrieved from the autoclave and heated at 150 ◦C for 1 h.
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Figure 1. The schematic of the prepared processes of the superhydrophobic surfaces.

2.3. Characterization

The microstructure of the superhydrophobic surfaces was observed using a high-
resolution field emission scanning electron microscope (FE-SEM, Hitachi S4800, Hitachi,
Tokyo, Japan). A secondary electron detector was used in the FE-SEM analysis.

A contact-angle-measuring instrument (CA, Powereach JC2000C1, Shanghai Zhongchen
Digital Technology Equipment Co., Ltd, Shanghai, China) was used to measure the contact
angle of the surface.

The surface crystal structure analysis was recorded by an X-ray diffractometer (XRD,
Rigaku Ultima IV, Japan Science company, Tokyo, Japan) with Cu Kα radiation (λ = 1.54 Å).

The chemical composition of the superhydrophobic surfaces was analyzed by X-ray
electron spectroscopy (XPS, Escalab 250Xi, Thermo Corporation, Waltham, MA, USA), and
Al Kα rays were tested as excitation sources.

2.4. Simulated Condensation Experiments

The jumping behavior of condensate droplets on the SS was recorded by a digital
optical microscope (HiROX RH 2000, HIROX Corporation, Tokyo, Japan). The specific
process was as follows: The copper block was placed in crushed ice for cooling, and
then the sample was placed horizontally on its surface (about 1 ◦C) with a condensing
environment temperature of 21 ± 2 ◦C and relative humidity of 65 ± 5%. In the meantime,
the appropriate focal length was adjusted to take an image of the condensation droplet
jumping behavior at 1 s intervals for 999 consecutive shots.
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2.5. Electrochemical Measurements

The Gamry Electrochemical Workstation (Reference 3000) was used to perform electro-
chemical impedance spectroscopy (EIS) measurements. The measurements were conducted
in a three-electrode cell with the platinum sheet as a counter electrode, an Ag/AgCl
(3 M KCl) electrode as a reference electrode, and the SS as a working electrode. The experi-
ments were performed in a 3.5 wt.% NaCl solution. The condensation conditions on the
superhydrophobic surface in the electrochemical experiment were consistent with those in
the simulated condensation experiment. The electrochemical test area was 1 × 1 cm2, and
the frequency range was set at 10−2~105 Hz with an excitation AC voltage of 10 mV. The
test was conducted three times for each condition to ensure the repeatability of the results.

3. Result and Discussion
3.1. Morphology, Composition, and Wettability

The CIDJB on an SS is related to their microstructures. The morphological images
of the SS are shown in Figure 2. The SS that was fabricated in 0.03 M NH3H2O solution
at 50 ◦C for 48 h presented a flower-like structure (F-SS). It was a micro–nanocomposite
structure. The bottom layer was densely packed with nanosheets about 60–100 nm in
diameter, and the top layer was randomly distributed with many “flowers” about 1–3.5 µm
in diameter formed by tightly stacked nanosheets. In contrast, the superhydrophobic
surface reacted for 72 h, resulting in a sheet-like structure (S-SS). It was a nanostructure
with evenly distributed nanosheets about 90–150 nm in diameter. The FE-SEM images of
the samples soaked at 50 ◦C for different times are shown in Figure S1. We speculated
that the copper oxide formed on the surface of the copper sheet existed in the F-SS during
the early stage of soaking in ammonia. As the reaction progressed, oxygen and ammonia
were consumed in the bottle, and copper oxides began to form in the S-SS. In the later
period, as the nanosheet grew, the “flowers” on the top layer began to gradually fall off,
thus transforming the F-SS into an S-SS.
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Figure 2. FE-SEM morphology images of the (a–c) F-SS and (d–f) S-SS.

As shown in Figure 3, the XRD results indicated that CuO and Cu2O were the main
compositions of the SS. The diffraction peaks of samples at 35.5◦ and 38.6◦ could be
attributed to the [002] and [111] planes of the CuO substance (JCPD S no. 48-1548), respec-
tively. The diffraction peaks of the two samples located at 36.7◦ could be attributed to the
[111] plane of Cu2O (JCPDS no. 05-0667). The diffraction peaks for the remaining markers
were all derived from the Cu substrate (JCPDS no. 04-0836). In general, oxygen in the air
reacts with ammonia and copper to form a Cu–ammonia complex, which improves the
reducibility of copper and accelerates the oxidation of copper [24]. Cu2O was formed on
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the surface of the copper first and then oxidized to CuO. The chemical reaction involved
was as follows [25–27]:

2 Cu + 8 NH3·H2O + O2 −→ 2 [Cu(NH3)4](OH)2+6 H2O (1)

2 Cu + 2 OH− −→ Cu2O + H2O + 2 e− (2)

Cu2O + 2 OH− −→ 2 CuO + H2O + 2 e− (3)
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XPS results indicated that the PFDS successfully formed a self-assembled monolayer
on the surface of both samples, as shown in Figure 4 and Table 1. The XPS results showed
that the two samples were composed of elemental Cu, O, C, F, and Si. For both the
samples, the C 1s spectrum was resolved into four peaks with binding energies of 293.6,
291.4, 285.3, and 284.6 eV, which were consistent with the -CF3, -CF2, -C–CFx, and -C–C
bonds, respectively [27]. The -C–F bond at 688.7 eV could be recognized from the F 1 s
spectra [28]. The binding energy at 102.1 eV was consistent with the -Si–O bond on the
F-SS and the S-SS [29]. In addition, the atomic ratio of elements on the F-SS and the S-SS
could be calculated as C/Cu/F/O/Si = 23/11.26/3.96/43.39/18.39 and C/Cu/F/O/Si =
22.85/12.2/4.02/41.31/19.62, respectively. The results above showed that the non-polar
molecule -CF3 and -CF2 composed of PFDS successfully grafted to the SS during mod-
ification. The modification principle is as follows [30–32]: The functional groups of tri-
ethoxysilane present in PFDS engage in a chemical reaction with hydroxyl groups on the
copper substrate, leading to the establishment of a covalent bond. Consequently, the perflu-
orinated carbon chains within PFDS reposition themselves in a manner that directs them
away from the substrate surface, generating a self-assembled monolayer. The presence
of carbon–fluorine bonds induces a significant reduction in the surface energy, thereby
conferring superhydrophobicity upon the surface [33].
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Table 1. The peak binding energies values and FWHM fit parameters of the F-SS and the S-SS.

Samples
C 1s F 1s Si 2p

-CF3 -CF2 -C-CFx -C-C -C-F -Si-O

F-SS
Binding Energy

(eV) 293.6 291.4 285.3 284.6 688.7 102.1

FWHM 1.31 1.29 1.73 1.70 1.61 1.77

S-SS
Binding Energy

(eV) 293.6 291.4 285.3 284.6 688.7 102.1

FWHM 1.31 1.27 1.75 1.71 1.55 1.75

Fowkes theory was used to calculate the surface energy of different samples [34,35]:

γsv =
γ2

lv(1 + cosθY)
2

γd
lv

(4)

The γ represents surface energy [36], with subscripts s, l, and v corresponding to the
solid, liquid, and gas phases, respectively.
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Taking water as an example, substitute the value of γlv and γd
lv [34] for water at 20 ◦C

and θY = 119◦ [37] into Equation (4) to obtain γsvFS = γsvSS = 64.44 mJ/m2. Superhydropho-
bic surfaces with different microstructures have the same chemical composition and surface
energy [27].

The contact angle measurement results of the SS are shown in Figure S2. The contact
angles of the F-SS and the S-SS after ammonia immersion were close to 0◦. After soaking
in ammonia, an intrinsic hydrophilic copper oxide with a rough structure was formed
on the surface of the sample, resulting in surface superhydrophilicity. After chemical
vapor deposition, the wettability of the surface was changed due to the combination of
the surface roughness increasing and the surface energy decreasing [2,20]. The F-SS and
the S-SS displayed superhydrophobicity, with respective contact angles of 156 ± 2◦ and
160 ± 2◦. According to the Cassie–Baxter equation [38], the solid-liquid area ratio (f 1) and
the vapor-liquid area ratio (f 2) can be obtained from the equation:

cosθc= f 1cosθ − f2 (5)

where θ and θc are the intrinsic contact angle and apparent contact angle, respectively, and
f 1 + f 2 = 1.

The intrinsic contact angle for solid surfaces with a -CF3 bond is usually 119◦ [37], and
the f 2 of the F-SS and the S-SS was 0.8322 and 0.8830, respectively. It could be seen that
a certain air layer could be captured in the gaps between the nanosheets on the SS, and
the existence of the air film was an important reason for the superhydrophobicity of the
surface [27,39]. The f 1 of the F-SS and the S-SS was 0.1678 and 0.1170, respectively, with the
former exhibiting a higher f 1.

3.2. Coalescence-Induced Droplet Jumping Behavior

We observed the surface morphology of the samples after the simulated condensation
experiments, and the FE-SEM images are shown in Figure S3. Compared with FE-SEM
images before condensation, no significant changes were found. The F-SS, the S-SS, and the
bare substrate (BS) had different droplet jumping behaviors in the simulated condensation
experiment, as shown in Figure 5. It could be seen that the two droplets on the S-SS jumped
at the instant of merging, indicating the realization of CIDJB. In contrast, droplets on the
F-SS and the bare substrate did not disappear after merging but formed larger-diameter
droplets or larger areas of the water film. A video related to these two different droplet
behaviors was recorded and is available in Supporting Information S4. As shown in Figure
S3, the surface morphology of the sample did not change significantly after the simulated
condensation experiment. The change of wetting coverage (the sum of all observed droplet
areas/the microscope observed field of view) and the condensation suppression efficiency
(the ratio of the number of drops that jump after merging to the total number of droplets
that merge) are shown in Figure 6. The wetting coverage in the BS continued to increase,
and the condensation suppression efficiency was zero. The two samples had similar droplet
surface coverage at the initial stage of condensation. For the F-SS, the wetting coverage of
droplets increased with time, and the condensation suppression efficiency was always zero.
However, for the S-SS, the wetting coverage of droplets was maintained at about 10–20%,
and condensation suppression efficiency was always greater than 80%. Concerning the
S-SS, the droplets that grew were able to jump from the surface after merging, which led to
the wetting coverage being controlled at a relatively stable low level. However, for the F-SS,
the droplets continued to grow into a larger-diameter droplet after merging and finally
formed a large area of water film similar to the bare substrate. The above results showed
that the CIDJB of the S-SS could significantly prevent droplets from forming water films.
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In general, the jumping energy equation of droplet coalescence is determined by the
kinetic energy (Ek), satisfying the equation [6,40,41]:

Ek= ∆Es − Ew − Evis − Eh (6)
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The surface energy (∆Es) released by the droplet merger can be calculated as [42]:

∆Es= 2πγlvR2
(

2− 2cosθ − C( f )sin2 θ
)
− 4πγlv

(
2R3

) 2
3 (7)

The viscous dissipated energy (Evis) per droplet can be calculated as [43]:

Evis= 36πµ
(

γlvR3ρ−1
) 1

2 (8)

The gravitational potential energy (Eh) of the droplet can be calculated as [44]:

Eh= mg

[(
3V
4π

) 1
3
− r(3 + cosθ)(1− cosθ)

4(2 + cosθ)

]
(9)

For the droplet with a diameter larger than 500 nm, the Evis becomes relatively small
compared to the Ek and can be ignored [45]. Similarly, for the droplet with a diameter
smaller than the capillary length (2.7 mm), the Eh can be ignored [46]. Therefore, the key
factor to whether a droplet can jump depends on whether the ∆Es can overcome interfacial
adhesion energy (Ew) and convert it into Ek.

The Ew of the droplet can be calculated as [33,47]:

Ew= γlv(1 + cosθY)Asl (10)

The Asl represents the influence of the solid–liquid contact area on interfacial adhesion
before droplet merging [27,33]. Both samples had the same chemical composition, and the
interfacial adhesion was directly affected by the solid–liquid contact area. The F-SS had a
layer of 1–3.5 µm “flowers” made of stacked nanosheets. The gaps between the random and
tightly packed nanosheets could be regarded as nanoscale channels and vacancies [2,48],
which provided a high capillary effect for small droplets. The capillary effect increased the
contact area, which led to greater interfacial adhesion. Without the restriction of a larger
top layer, the S-SS had a smaller solid–liquid contact area and Ew compared with the F-SS,
which was beneficial to the realization of CIDJB.

3.3. Marine Atmospheric Corrosion Protection Performance

First of all, since our main application is a marine atmospheric corrosion environment,
a 3.5% NaCl solution could be used to simulate the marine environment. Secondly, since
it is difficult to conduct electrochemical experiments directly in an open atmosphere, the
atmospheric corrosion resistance of the SS was generally detected in a 3.5% NaCl solution.
The electrochemical experiments of superhydrophobic surfaces tested in solution truly
reflect their barrier effect in an open atmosphere because water droplets in solution and
atmospheric environments have the same contact mode on SS. The choice of EIS test
frequency was based on the conditions of the instrument, and other researchers also used
this frequency for testing [49–51]. The EIS measurements of the F-SS, the S-SS, the bare
substrate (BS), and the DS (degassed SS through ethanol immersion) are shown in Figure 7.
In general, the impedance magnitude (|Z|) can be used as an evaluation of SS atmospheric
corrosion protective performance of half quantitative indicators, and a larger |Z| value
at a frequency of 0.01 Hz represents excellent corrosion resistance [52,53]. Before the
condensation, the |Z| values of the F-SS and the S-SS were about one thousand times
larger than that of the BS, confirming that the two kinds of structure of SS had outstanding
corrosion protection performance. At the end of condensation, the |Z| values of the F-SS
and S-SS showed disparate degrees of decline. Among them, the |Z| value of the F-SS fell
sharply to 104 Ω cm2. The |Z| value of the S-SS could remain at 107 Ωcm2. The above
results showed that the S-SS had a more stable corrosion resistance than the F-SS after the
condensation. The |Z| values of DS were significantly less than that of the SS, indicating
that the air layer on the SS played a vital role in the isolation of corrosive media.
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We used different equivalent circuit diagrams to fit the EIS results, as shown in
Figure S4. The data obtained by fitting are shown in Table 2. The film capacitance (Cf) in
the table could be calculated as [39,48]:

C f= R
1−n

n
s Y

1
n
f (11)

After simulated condensation experiments, the Cf of the F-SS and the S-SS increased,
while the Rf decreased. It indicates that droplets could penetrate the microstructure of the
surface during the simulated condensation experiments.

The double-layer capacity (Cdl) and the Rct are indexes to evaluate the corrosion
resistance of metals. In general, a low value of Cdl indicates a smaller number of available
sites for electrochemical reactions, thus reducing the corrosion rate, while a high value
of Rct indicates good electrocatalytic activity and low electron transfer rates, which help
protect metal surfaces from corrosion. The Cdl and corrosion inhibition efficiency (η) are
calculated as [54,55]:

Cdl = (Ydl)
1
n

(
1

Rs
+

1
Rct

) n−1
n

(12)

η(%) =
Rct − R0

ct
Rct

×100 (13)
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Table 2. The fitted electrochemical parameters of the EIS results.

Samples Rs
(Ω cm2)

Qf Rf
(Ω cm2)

Qdl Rct
(Ω cm2)

W
(Ω−1 s0.5 cm−2)

Cf
(µF cm−2)

Cdl
(µF cm−2)

η
(%)Yf (F cm−2) nf Ydl (F cm−2) ndl

F-SS before con 13.75 ± 0.890 (1.98 ± 0.871)
× 10−9 0.8740 ± 0.014 (9.586 ± 0.178)

× 105
(6.393 ± 0.156)
× 10−8 0.5979 ± 0.007 (9.709 ± 0.134)

× 107 - 1.609 × 10−4 5.407 × 10−6 99.99

F-SS after con 13.30 ± 0.781 (2.388 ± 0.776)
× 10−4 0.5910 ± 0.009 307.6 ± 12.60 (1.978 ± 0.009)

× 10−4 0.7321 ± 0.013 (2.262 ± 0.113)
× 104 - 4.459 22.49 83.36

S-SS before con 9.952 ± 0.786 (1.664 ± 0.897)
× 10−10 0.9812 ± 0.011 (2.993 ± 0.134)

× 105
(1.365 ± 0.131)
× 10−7 0.6395 ± 0.009 (2.523 ± 0.147)

× 107 - 1.130 × 10−4 6.727 × 10−5 99.98

S-SS after con 11.17 ± 0.889 (2.820 ± 0.832)
× 10−10 0.9868 ± 0.013 (2.240 ± 0.119)

× 105
(1.808 ± 0.123)
× 10−7 0.6284 ± 0.011 (2.456 ± 0.151)

× 107 - 2.170 × 10−4 7.756 × 10−5 99.98

F-DS 8.952 ± 0.789 (6.452 ± 0.690)
× 10−5 0.8699 ± 0.016 151.6 ± 9.36 (6.275 ± 0.007)

× 10−4 0.5643 ± 0.009 4757 ± 11.78 - 21.15 11.47 -

S-DS 7.699 ± 0.897 (2.842 ± 0.756)
× 10−4 0.7579 ± 0.015 200.8 ± 15.3 (1.323 ± 0.006)

× 10−3 0.5669 ± 0.008 4550 ± 16.31 - 40.17 39.73 -

BS before con 10.26 ± 0.981 (1.432 ± 0.981)
× 10−5 0.9089 ± 0.011 3615 ± 22.1 (2.657 ± 0.011)

× 10−4 0.6579 ± 0.011 5352 ± 18.11 (2.274 ± 0.112) ×
10−4 5.912 12.32 -

BS after con 8.871 ± 0.887 (9.440 ± 0.753)
× 10−5 0.7687 ± 0.010 2273 ± 21.9 (1.775 ± 0.013)

× 10−2 0.5824 ± 0.007 3764 ± 10.09 (1.880 ± 0.009) ×
10−3 11.20 4708 -
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In Equation (13), R0
ct and Rct corresponds to the charge-transfer resistance of the BS

and SS, respectively. It is worth noting that the F-SS and the S-SS had outstanding corrosion
resistance before condensation. Their Cdl was 5.407 × 10−6 and 6.727 × 10−5 µF cm−2,
respectively, with a corresponding η of 99.99% and 99.98%, respectively. After the simulated
condensation experiments, the Cdl of the S-SS increased slightly from 6.727 × 10−5 to
7.756 × 10−5 µF cm−2, while the Rct and η remained roughly the same. The Cdl of the F-SS
rose substantially from 5.407 × 10−6 to 22.49 µF cm−2, the Rct dropped dramatically from
9.709 × 107 to 2.262 × 104 Ω cm2, and the η also decreased from 99.99% to 83.36%. The Rf
of the F-SS decreased significantly after condensation, while the Rf of the S-SS remained
unchanged. The Cdl of the DS was higher than that of the BS, indicating that the rougher
surface was more conducive to the generation of active sites. Meanwhile, the Rct of the
DS was lower than that of the BS, which was attributed to the fact that the penetration of
water promotes the migration of corrosive substances such as Cl−, thus further increasing
the electrochemical reaction rate. These results are consistent with those of the |Z| value
semi-quantitative analysis. To sum up, it was confirmed that the S-SS had a superior
corrosion resistance than the F-SS after condensation.

3.4. Atmospheric Corrosion Resistance Mechanisms

It has been demonstrated that a complete air film on the SS is a crucial prerequisite for
achieving atmospheric corrosion protection [27]. The known principle of total reflection of
light is one of the effective methods to evaluate the superhydrophobic surface in underwater
air film [56,57]. When incident light strikes the SS, a clear reflection indicates the air layer is
intact, while a blurry or absent reflection indicates a damaged or defective air layer. Since
droplets contact the SS similarly in both solution and atmospheric environments [48], the
samples were quickly put into solution after condensation to observe the total reflection of
light and to analyze the influence of the condensation process on the superhydrophobic
surface air layer, as shown in Figure 8. Before condensation, it could be seen that the
air layer on the surface of both samples was intact and reflected all light. At the end
of condensation, the S-SS remained bright, while the F-SS changed from bright to dull,
indicating that the air layer on the F-SS was impaired during the condensation process.
Therefore, we believe that the droplet jumping behavior was beneficial for the SS to keep
the air film intact.
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At the beginning of condensation, the formed droplets contacted the surface in the
Wenzel state or partially wet state, resulting in the gradual occupation of the air film. For the
F-SS, droplets merged into larger droplets after contact, and the merged and grown droplets
always existed in a Wenzel or partially wet state, as shown in Figure 9a. With the nucleation
and growth of the droplets, the wetting coverage increased, leading to the disappearance
of the air layer, which led to the occurrence of a corrosion reaction. For the S-SS, droplets
jumped after the merger, and the jumping droplets could take away the trapped droplets
in the nanosheet gap, thus facilitating the transition of the condensate droplets from the
Wenzel or partially wetted state to the Cassie state [6], which facilitated the restoration of
the air film, as shown in Figure 9b. The restoration of the air film insulates the corrosive
medium and improves the atmospheric corrosion of the superhydrophobic surface.
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4. Conclusions

In this study, a flower-like micro–nanocomposite structure SS (F-SS) and a sheet-like
nanostructure SS (S-SS) were constructed on copper substrates by ammonia immersion
and chemical vapor deposition. The morphology, composition, and wettability of the
samples were characterized. The differences in droplet jumping behavior of the two
surfaces were investigated from the perspective of microstructure and energy. Meanwhile,
the atmospheric corrosion resistance of samples was analyzed, and a protection mechanism
of SS through CIDJB was proposed. The main conclusions are as follows:

(1) The contact angles of the two superhydrophobic surfaces were 156◦ and 160◦, respec-
tively;

(2) It was found that the S-SS could realize the CIDJB, the wetting coverage was main-
tained at about 10–20%, and the condensation suppression efficiency was greater than
80% in the simulated condensation experiments;

(3) The results of the EIS measurements showed that the corrosion inhibition efficiency
(η) of the S-SS remained at 99.98% before and after condensation, while the η of the
F-SS decreased from 99.99% to 83.36%. These differences resulted from the different
microstructures of the two superhydrophobic surfaces. Compared to the S-SS, the
F-SS had a layer of 1–3.5 µm “flowers” composed of stacked nanosheets, and the
larger solid–liquid contact area resulted in higher interfacial adhesion (Ew). The lower
Ew was required to be overcome; thus, it was beneficial for the S-SS to realize the
droplet jumping behavior;
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(4) The S-SS exhibited excellent corrosion resistance due to the wettability transition of
droplet jumping behavior induced by coalescence, which facilitated the restoration of
the air film.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/met13081413/s1, Figure S1: FE-SEM images of samples soaked in
ammonia at 50◦C for (a) 24 h, (b) 48 h, (c) 60 h, and (d) 72 h; Figure S2: The CA of the (a-b) F-SS, and
(c-d) S-SS after the ammonia immersion and chemical vapor deposition; Figure S3: FE-SEM images of
the (a) F-SS and (b) S-SS after the simulated condensation experiments; Figure S4: Equivalent circuits
for the EIS results of the (a) SS and DS, (b) BS; Video S1: The coalescence-induced droplet jumping
behavior of the F-SS and the S-SS. References [58–60] are cited in Supplementary Materials.
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