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Abstract: Hydrogen removal of H-supersaturated liquid steel produced in a hydrogen-rich envi-
ronment in an industrial vacuum degasser (VD) is simulated here using a two-phase (argon–steel)
Eulerian model. The dehydrogenation efficiency is evaluated for a series of ladle plug layouts and
argon-purging modes. Increasing the plug number from the prototype double-plug of the ladle to
four or slightly prolonging the degassing time of a triple-plug ladle enables to obtain the specified
dehydrogenation efficiency and the end-point hydrogen level. Varying the plug position of the
triple-plug ladle makes no significant difference in the dehydrogenation efficiency, which, however,
is improved by adjusting the plug angle. For the triple-plug ladle, the non-uniform argon-purging
mode improves the melt hydrodynamic conditions, but the optimal dehydrogenation performance is
achieved in the uniform mode. The plug number has the greatest impact on the dehydrogenation
efficiency compared to the other ladle designs considered. The high-efficiency dehydrogenation of
H-supersaturated liquid steel in the VD can be achieved through using the quadruple plugs, or by
using the triple plugs positioned at 0.57R, 0.57R, and 0.41R and the angles of 108.6◦ and 71.4◦, with
the uniform argon-purging flow rate.

Keywords: dehydrogenation; H-supersaturated liquid steel; ladle designs; VD

1. Introduction

Producing liquid iron/steel in an H-rich environment, such as hydrogen gas or hy-
drogen plasma, is known as one of the promising alternatives to conventional iron–steel-
making processes to reduce CO2 emissions in the steel industry and has received worldwide
attention [1–5]. In this process, the molten iron oxide is reduced to liquid iron/steel by
hydrogen, with the superiority of CO2-free emissions and an almost pure metal product
available. However, in this process, simultaneously, the hydrogen easily dissolves in the
produced liquid iron/steel due to the H-rich environment and the elevated temperature,
and as a result, an overly high hydrogen content in the liquid iron/steel can be generated.
As is well-known, hydrogen can deteriorate the mechanical properties of steel due to the
formation of flakes, the occurrence of breakouts, and hydrogen embrittlement [6,7].

Therefore, it is essential to first estimate the possible hydrogen content in the liquid
iron/steel produced in the H-rich environment based on the thermodynamics. In a hy-
drogen gas environment, the dissolution of the hydrogen gas into liquid iron/steel is as
follows:

1
2
{H2} = [H], (1)
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and according to the Sievert’s law, the solubility of atomized hydrogen in liquid iron/steel
is as follows [8]:

[%H]e =
KH2

fH

√
PH2 , and lgKH2 = −1670

T
− 1.68 (2)

where KH2, f H, and
√

PH2 are the equilibrium constant, the activity coefficient of hydrogen
in liquid iron/steel, and the H2 partial pressure, respectively. For simplification, it is
assumed possible to ignore the effect of other elements in the liquid iron/steel on the
hydrogen activity coefficient, i.e., f H = 1.0, and then the dissolved hydrogen in the liquid
iron/steel as a function of the H2 partial pressure at a temperature such as 1600 ◦C can
be plotted, as in Figure 1. It can clearly be seen that, as an example, the hydrogen content
in liquid iron/steel reached up to 18.5 ppm and 26.8 ppm when the fraction of the H2
partial pressure was 50% and 100%, respectively, which is much higher than that in the
liquid iron/steel produced in the conventional iron–steel-making processes, such as the
Basic Oxygen Furnace (BOF) and the Electric Arc Furnace (EAF). Notably, Equation (2) is
only true when hydrogen exists only in a molecular state, i.e., H2, whereas the solubility of
hydrogen in liquid iron/steel in the hydrogen plasma state is as follows [9]:

[%H]e =
KH2

√
PH2 + KHPH + KH+(PH+ + Pe)

fH
(3)

where PH, PH+, and Pe are the partial pressures of atomized hydrogen, ionized hydrogen,
and electrons, respectively. KH and KH+ are the equilibrium constants for the dissolution of
atomized and ionized hydrogen particles, respectively. Previous studies [4,10] confirmed
that the solubility in metals of gases in their plasma state exceeded the equilibrium solubility
levels attainable when gases were dissolved from their molecular states due to the lower
activation energy for the dissolution of ionized and atomized particles, indicating that the
liquid iron/steel produced in the hydrogen plasma environment has a higher hydrogen
content than that produced in the H2 environment. Therefore, achieving H-supersaturated
liquid iron/steel is quite possible in an H-rich environment.
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Figure 1. Equilibrium hydrogen content in liquid iron/steel as a function of the H2 partial pressure
at 1600 ◦C.

It is of great concern how the hydrogen can be efficiently removed from the H-
supersaturated liquid steel produced in an H-rich environment. In the steel industry, the
hydrogen degassing from liquid steel is usually achieved in an exclusive vacuum-degassing
apparatus, such as VD or Ruhrstahl-Heraeus (RH), in which liquid steel is subjected to
a combination of low pressure and argon-purging, and as a result, the dissolved hydro-
gen can be considerably reduced. In this direction, a great number of studies [11–26]
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have been performed to reveal the dehydrogenation behavior of liquid steel based on the
thermodynamics and kinetics related to hydrogen removal in an industrial RH or VD by
employing an industrial test or Computational Fluid Dynamics techniques. Steneholm
et al. [11] calculated the removal rates of sulfur, hydrogen, and nitrogen by collecting slag
and steel samples before and after the vacuum treatment. Zhang et al. [12] developed a
mathematical model of an industrial single-snorkel refining furnace to reveal the dehydro-
genation behavior in the vacuum refining process, by considering three dehydrogenation
reaction sites, including the Ar bubble surface, the bath surface, and the bulk steel. The
effect of the argon flow rate on the dehydrogenation rate was studied, and a reasonable
range of the argon flow rate for the SSRF treatment was recommended by the authors. Yu
et al. [13,14] simulated hydrogen and nitrogen degassing in the vacuum tank degasser
by combining a Eulerian–Eulerian, argon–steel, two-fluid model with thermodynamics.
Recently, Karouni et al. [15,16] developed a mathematical model accounting for hydrogen
degassing in a vacuum arc degasser using a three-phase Eulerian method and a discrete
population balance model, and they investigated the effect of plug positions and the ladle
aspect ratio on hydrogen removal. More recently, Chen et al. [18,19] numerically studied
the tracers’ transport process in a water model of a vacuum refining unit corresponding to
a single-snorkel refining furnace, focusing on the fluid dynamics for degassing. Further-
more, some other investigations [20–26] focused on the hydrodynamics in the ladle and on
expounding the effect of purge arrangements. However, the current investigation is more
focused on the dehydrogenation of the liquid steel with conventional low hydrogen levels
(generally lower than 8 ppm), and it is still not yet clear whether the final hydrogen level
in H-supersaturated liquid steel produced in an H-rich environment can be efficiently re-
duced to a desired level through the routine operation conditions of the vacuum-degassing
apparatus. A recent study by Li et al. [27] indicated that efficient removal of hydrogen from
H-supersaturated liquid steel was not possible by using the routine operation conditions
in the VD unit, unless the argon-purging rate was excessively increased; however, this
would cause operation problems such as serious splashing, and thus further steps must be
taken to efficiently remove hydrogen from H-supersaturated liquid steel produced in an
H-rich environment. Therefore, optimizing the ladle design and process conditions is of
prime necessity in ensuring that the hydrogen degassing of H-supersaturated liquid steel
is cost-effective.

To this end, a set of ladle designs in terms of the plug number, the radial position of
each plug, and the angle between neighboring plugs, and of the argon-purging modes for
multi-plug ladles, are numerically evaluated in this study to investigate the effect of the
plug layout and the argon-purging mode on hydrogen removal in the VD unit. The aim is
to identify the optimal design conditions for achieving the efficient removal of hydrogen
from H-supersaturated liquid steel. The velocity field of the liquid steel, the hydrogen-
degassing efficiency, and the final hydrogen content in liquid steel are thus compared and
contrasted for various case studies. The rest of the paper is composed as follows. First,
the mathematical formulation for calculating the coupled multiphase flows and transient
dehydrogenation, as well as the solution strategies used for this study, are presented in
Section 2. Section 3 presents the simulation results of the influence of the plug layout and
the argon-purging mode on the dehydrogenation efficiency. Section 4 summarizes the
conclusions of this study.

2. Numerical Model

An integrated mathematical model representing dynamic coupling of Computational
Fluid Dynamics and thermodynamics for dehydrogenation in an industrial VD was es-
tablished to predict the rate of hydrogen removal from H-supersaturated liquid steel. In
this model, the slag was neglected, and thus the liquid steel and argon were included.
The flow equations for steel and argon were solved using a two-phase Eulerian model by
assuming the steel and argon to be incompressible fluids. The density of steel and argon
was 7100 kg/m3 and 0.48 kg/m3 at 1600 ◦C, respectively, and their viscosity was 0.005 Pa s



Metals 2023, 13, 1229 4 of 14

and 8.4× 10−5 Pa s, respectively [13]. Liquid steel surface tension was specified as 1.2 N/m.
The governing equations for multiphase flow and the turbulence kinetic energy, k, and
dissipation energy, ε, expressed by a modified k-ε model [28], are summarized in Table 1.

Table 1. Governing equations for multiphase flow and dehydrogenation models in the VD.

Continuity equation ∇ ·
(
αqρquq

)
= 0

αq—volume fraction of phase q
ρq—density of phase q
uq—velocity of phase q

p—pressure
g—acceleration of gravity

µeff—effective viscosity, µeff = ul + µt

µt—turbulent viscosity, µt = Cµρl
k2
l

εl
µl—molecular viscosity
Fpq—interfacial force

Fdrag, Flift, FTD—drag, lift, and turbulent dispersion forces,
respectively

CL—lift coefficient, CL = 0.1
CD—drag coefficient
db—bubble diameter

Re—Reynolds number
λRT—Rayleigh–Taylor instability wavelength

Momentum equation

∇ ·
(
αqρququq

)
= −αq∇p +∇ ·

(
αqµeff,q∇uq

)
+ αqρqg + FpqFdrag =

3CDαgαlρl
4db

∣∣ug − ul
∣∣(ug − ul

)
Flift = −CLαgρl

(
ug − ul

)
× (∇× ul)

FTD = − 3
4 CD

αg
db

∣∣ug − ul
∣∣0.5αg

(µt,l/ρl)
0.9

( ∇αg
αg
− ∇αl

αl

)
CD =

Cvis =
24
Re

(
1 + 0.1Re0.75) CD < Cvis

Cdis =
2
3

db
λRT

(
1+17.67 f 6/7

18.67 f

)
; f =

(
1− αg

)1.5 Cdis < Cdis < Ccap

Ccap = 8
3

(
1− αg

)2 Cdis > Ccap

Turbulence model

∇ · (ρmixkumix) = ∇ ·
(

µt,mix
σk
∇k
)
+ Gk − ρmixε + Sk∇ · (ρmixεumix) =

∇ ·
(

µt,mix
σε
∇ε
)
+ ε

k (C1ε − C2ερmixε) + Sε

Sk = Ck1αg
(
1− αg

)
Gk + Ck2C f αgρlk

Sε = Cε1αg
(
1− αg

)
Gk

ε
k + Cε2C f αgρlε

Gk—production of turbulence kinetic energy
Sk, Sε—source terms
C1ε = 1.44, C2ε = 1.92

σk = 1.0, σε = 1.3
Ck1 = 6.0, Ck2 = 0.75
Cε1 = 4.0, Cε2 = 0.6

Hydrogen transport
equation

∂
∂t

(
αqρqYi,q

)
+∇ ·

(
αqρqYi,quq

)
= ∇ ·

(
αqJH,q

)
+ SH,q

Yi,q—mass fraction of hydrogen
JH,q—diffusive flux
SH,q—source term

Dehydrogenation rate at
bubble surface

(
− d[%H]

dt

)
b
=

N
∑

ρl AAr
W ·kH ·

(
[%H]− [%H]

eq
b

) A—argon bubble surface area
kH—mass transfer coefficient

W—weight of liquid steel
N—number of argon bubbles

[%H]—hydrogen content in steel
[%H]eq—equilibrium hydrogen content
hcri—critical bath depth for nucleation

Dehydrogenation rate at
steel surface

(
− d[%H]

dt

)
s
=

ρl Aopen−eye
W · kH ·

(
[%H]− [%H]eq

s

)
Dehydrogenation rate in

bulk steel
(
− d[%H]

dt

)
in
=

ρl A
W · kin ·

∫ hcri
0

(
[%H]− [%H]

eq
in

)
dh

Industrial-scale hydrogen degassing was undertaken in a 105-ton VD unit, which
is schematically shown in Figure 2. The ladle dimensions are shown in Figure 2a. For
the typical and routine degassing process, the liquid steel in the ladle was subjected to a
reduced pressure of 66 Pa and was simultaneously stirred by a total argon-purging flow rate
of 260 NL/min, injected from two purges positioned at the ladle bottom, with a diameter
of 0.11 m for each purge. The process was held for 18 min for efficient hydrogen removal.
In this mathematical model, hydrogen was removed through three routes, i.e., by the rising
argon bubbles, the steel-free surface where the open-eye is located, and the bulk steel by
nucleation near the bath surface, as shown in Figure 2a. A detailed model description for
the dehydrogenation models via the three routes can be found in our recent study [27]. The
solubility of atomized hydrogen in liquid steel was given by Sievert’s law [29], as:

[%H]eq =
K
fH

√
PH2

PΘ , and lgK = −1670
T
− 1.68 (4)

where the hydrogen activity coefficient, f H, in liquid steel was calculated as follows:

log fH = ∑ ε
j
H[%j] (5)

where ε
j
H is the interaction coefficient, which was obtained elsewhere [13].
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in the VD.

The system of equations was solved by combining the authors’ user-defined subrou-
tines for dehydrogenation with a commercial CFD software (Fluent version 14.5). The
flow chart of the mathematical models is presented in Figure 3. Velocity inlet and de-
gassing outlet boundary conditions were specified according to the argon-purging rate.
The predictive capability of the present dehydrogenation model in the VD was validated
against the measured velocity field and hydrogen content in the VD. Specifically, first, the
simulated flow velocity of the gas and liquid by the present two-phase Eulerian model
in a scaled-down ladle water model was compared with the measurements. Then, the
dehydrogenation models in the VD were verified by comparing the predicted hydrogen
content with the data under various operating conditions of the VD. In general, the results
predicted by the current model showed reasonable agreement with the experimental data,
as detailed in the recent study by the current authors [27].
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3. Results

As a potential case study, the initial hydrogen content, [H]initial, in the H-supersaturated
liquid steel was assumed to be 27 ppm for all simulations. The routine operation parame-
ters of the total argon-purging rate of 260 NL/min and the reduced pressure of 66 Pa were
maintained for all case studies.

3.1. Number of Plugs

Double-, triple-, and quadruple-plug layouts were considered to investigate the effect
of the number of plugs on the hydrogen-degassing performance in the VD. Figure 4 shows
the plug number layouts, where case 1 represents the prototype double-plug layout in the
VD, while the others (cases 2–4) show the new ladle designs. A prominent feature is that the
shape of the argon plumes, and as a result the velocity field of the melt, were changed when
increasing the plug number, as shown in Figure 4a. For the double-plug layout (prototype
ladle design), the argon plumes tended to bend towards the ladle wall close to the plugs
while rising through the melt, and a large circulation developed in the melt region away
from the plumes. When increasing the plug number to triple, such a bending tendency
of the plumes declined, and the circulation lessened. For the quadruple-plug layout, the
plumes attracted each other and bent towards the ladle center due to the symmetrical
layout of the plugs, and small circulations developed, surrounding the plumes. As can be
seen, the plume width decreased when increasing the plug number due to the reduced
argon flow rate injected from each plug. Moreover, a higher argon-purging flow rate from
the plug resulted in a higher melt velocity in the argon-melt-mixing region and a steeper
melt velocity gradient in the ladle, as shown in Figure 4b,c. Consequently, the different
plug number layouts contributed to a diverse mixing efficiency in the ladle, as shown in
Figure 4d, where the mixing time calculated by averaging the mixing times monitored at
the three sensors is compared between the various plug number layouts. For the prototype
double-plug layout, the mixing time was the longest (188 s). Increasing the plug number
to triple or quadruple remarkably shortened the mixing time, but the mixing time for the
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triple- and quadruple-plug layouts was not significantly different. The shortest mixing
time (127 s) was obtained with the triple-plug layout of case 2.
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Figure 5 plots the effect of the plug number on the dehydrogenation rate of H-
supersaturated liquid steel in the VD. A general feature of all the simulated cases was that
the dehydrogenation rate in the early stage (before 10 min of degassing) was high, and
then gradually declined. This is a consequence of the high hydrogen level in the early
stage, causing a large concentration gradient for mass transfer, while the concentration
gradient was small due to the low hydrogen level in the later degassing stage. As can
be seen, increasing the plug number improved the dehydrogenation rate and enabled to
reduce the dissolved hydrogen level. This could be explained as follows: increasing the
plug number increased the number of argon bubbles, which is the primary degassing route
in VD, and thus enlarged the bubbles–steel interface area for mass transfer.
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Figure 5. Effect of plug number on dehydrogenation.

Figure 6 compares the final hydrogen content in liquid steel at the end of degassing
between the various plug number layouts. Generally, increasing the plug number enabled
to reduce the final hydrogen content and improve the dehydrogenation ratio (DeH ratio) at
the end of the degassing. Specifically, at the routine degassing time, i.e., t = 18 min, the final
hydrogen content for the prototype double-plug layout was 4.62 ppm, while it was reduced
to 0.49 ppm for the quadruple-plug layout, and the corresponding DeH ratio increased
from 82.9% to 98.2%. It is clear that at the routine degassing time for the H-supersaturated
liquid steel, it was not possible to reduce the final hydrogen content to a desired low level
(<2 ppm) by employing the double- and triple-plug layouts, whereas it could be achieved
for the quadruple-plug layout, or for the triple-plug layout, under which, however, the
degassing time had to be slightly prolonged to 20 min.
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3.2. Plug Position

In view of the ability of attaining a prospective dehydrogenation efficiency for the
triple-plug layout of case 2, it was necessary to further investigate the various plug ar-
rangements in terms of the plug position and plug angle of the triple-plug layout to
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identify the optimal design conditions for achieving more efficient hydrogen degassing of
H-supersaturated liquid steel in the VD.

The radial position of the triple-plug layout of case 2 was varied, and the resulting
changes in the mixing time are shown in Figure 7. The results indicated that there was no
significant difference in the mixing time between all cases, and the shortest mixing time
(113 s) was obtained at the plugs’ radial positions of 0.57R, 0.57R, and 0.41R (case 6). The
results showed that varying the plug position of the triple-plug layout did not dramati-
cally affect the flow field in the ladle. Figure 8 compares the dehydrogenation efficiency
between the various plug positions. As can be seen, the dehydrogenation rate and the
final hydrogen level were little affected by the plug position. At 20 min of degassing, the
final hydrogen levels for cases 2–7 were 1.86 ppm, 1.73 ppm, 1.73 ppm, and 2.03 ppm.
Therefore, the optimal design condition for achieving a more efficient hydrogen degassing
of H-supersaturated liquid steel was case 6 for the triple-plug layout with the plug radial
positions of 0.57R, 0.57R, and 0.41R, in view of the hydrodynamic conditions in the ladle
and the high hydrogen removal efficiency.
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3.3. Plug Angle

The effect of varying the angle between subsequent plugs in the triple-plug system of
case 6 is shown in Figure 9. The plug angle made a big difference to the mixing time. A
general feature was that the mixing time was longer when the plug angle between the two
plugs closer to the wall was greater. Case 6 showed the shortest mixing time, demonstrating
the optimal hydrodynamic conditions in the ladle. Figure 10 shows the effect of the plug
angle on the dehydrogenation efficiency. Although there were great differences in the
mixing time and the hydrodynamic conditions for cases 6, 8, and 9, almost the same
dehydrogenation efficiency was displayed. This is likely because the difference in the plug
angles diversified the plume–plume interaction, consequently resulting in a difference in
the argon bubbles’ distribution and the bubbles–melt interface area for hydrogen mass
transfer. The results showed that the highest dehydrogenation efficiency for all considered
plug angle arrangements was achieved by case 6.
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3.4. Argon-Purging Modes for Multi-Plugs

It has been acknowledged that the bottom gas-purging mode for multi-plug systems
in the ladle influences the refining efficiency [30]. Therefore, the dehydrogenation efficiency
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under various argon-purging modes, including the uniform and non-uniform flow rates of
argon-purging from the plugs, for the triple-plug layout of case 6 was further evaluated.
Figure 11 shows the effect of the argon-purging mode on the melt flow and mixing in the
ladle. It can be seen that for the non-uniform purging modes, such as for 2:1:1, 3:2:1, and
2:2:1 modes, the higher argon-purging flow rate of the plugs closer to the wall than that of
those far from the wall caused a significantly non-uniform melt velocity field. However,
the non-uniform velocity field improved as the argon flow rate of the plug far from the wall
was increased. The shortest melt-mixing time (102 s) was obtained under the non-uniform
argon-purging mode of 3:2:1 (Figure 11c). Nevertheless, the potential for improving the
degassing performance of the non-uniform argon-purging mode is limited despite the
better hydrodynamic conditions available. The hydrogen removal efficiency of the uniform
argon-purging mode outperformed that of all the non-uniform ones simulated, as plotted
in Figure 12.
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4. Conclusions

(1) Increasing the number of plugs improved the dehydrogenation efficiency. For H-
supersaturated liquid steel, the double- and triple-plug ladles were incapable of
obtaining a desired dehydrogenation efficiency under the routine degassing operation
conditions, whereas it was achieved using the quadruple-plug ladle or using some
triple-plug ladles under the condition of slightly prolonging the routine degassing
time.

(2) For the triple-plug ladle, varying the plug position made no significant difference to
the melt hydrodynamic conditions and the dehydrogenation efficiency, both of which,
however, were greatly affected by the plug angle. The melt-mixing time lengthened,
and the dehydrogenation efficiency decreased when the plug angle between the two
plugs closer to the wall increased.

(3) For the triple-plug ladle, the non-uniform argon-purging mode, increasing the argon
flow rate of the plugs closer to the wall and decreasing that of those far from the wall,
improved the melt hydrodynamic conditions. However, the optimal dehydrogenation
performance was achieved with the uniform argon-purging mode.

(4) Of all the ladle designs considered, the plug number had the greatest impact on the
dehydrogenation efficiency. For highly efficient dehydrogenation of H-supersaturated
liquid steel in the VD, the quadruple-plug ladle produced the highest efficiency,
followed by the triple-plug ladle with the plug positions of 0.57R, 0.57R, and 0.41R,
and the plug angles of 108.6◦ and 71.4◦, using the uniform argon-purging flow rate.
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