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Abstract: The connection method of lengthening the steel tube of hollow concrete-filled sandwich
circular steel tubes and threaded connections is proposed. The length, depth and position are the
basic parameters. Twelve hollow concrete sandwich circular steel pipes with threaded connections
were designed and subjected to axial compression tests. The axial compressive loading–longitudinal
compressive displacement curves, axial compressive loading strain of steel tube curves and failure
mode of the specimens are analyzed, and the effects of different parameters on the axial compressive-
bearing capacity and stiffness of the specimens are studied. The results showed that within the range
of parameters studied, the axial compression load–longitudinal compression displacement curves
of the specimens were the linear elastic stage and the elastic–plastic stage, which can be divided
into a yield-strengthening stage and a decreasing stage. The bearing capacity and strength of the
lined threaded connection specimen are not inferior to those of the ordinary specimen or the welded
specimen. The bearing capacity and strength of the specimen increase with the increase of the thread
length. The bearing capacity and strength of the specimens connected with inner liner screws at the
ends are higher than those connected with inner liner bolts at the middle.

Keywords: hollow concrete-filled sandwich circular steel tube; axial compressive performance;
thread connection; inner lining tube; load-bearing capacity

1. Introduction

Hollow concrete-filled sandwich steel tube structures have the characteristics of light
weight, high fire resistance and good economic effect [1], and their internal space can be
used to lay water tubes and electricity pipelines. Compared with solid concrete-filled steel
tubular structures, they have good functional expansibility [2], and in recent years have
been more applied and studied in the field of engineering [3].

Steel pipe lengthening often occurs in engineering [4]. Weld, grouting sleeve connec-
tions and flange connections have always been used [5], as shown in Figure 1.
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Figure 1. Common lengthening methods of steel tube of concrete-filled steel tube: (a) welding, (b) 
grouting sleeve connection, (c) flange connection. 
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L = 399 mm, the diameter of the outer steel tube Dos = 133 mm, the diameter of inner steel 
tube Dis = 76 mm, the wall thickness of the outer steel tube tos and wall thickness of the 
inner steel tube tis are 6 mm, and the wall thickness of the outer tube of inner lining tube 
tois and the wall thickness of the inner tube of inner lining tube tiis are 8 mm. The thread 
length l is taken as Dos/2, Dos/4 and Dos/8. The thread depth h is taken as 0.1tos and 0.15tos, 
respectively. The thread error is less than 2.6% for a thread depth of 0.6 mm and less than 
2.1% for a thread depth of 0.9 mm. All parameters of CFST specimens are shown in Table 
1. 

The hollow ratio χ [17] is 0.628, and the confinement effect coefficient ξ [18] of the 
specimens is 2.33. The calculation of these parameters is as follows: 

χ = Dis/(Dos − 2tos) (1)

ξ = (Asfy)/(Acfck) (2)

fck = 0.67fcu (3)

where As is the cross-sectional area of steel tube, fy is the yield strength of steel tube, Ac is 
the cross-sectional area of concrete, fck is the characteristic axial compressive strength of 
concrete, and fcu is the cubic compressive strength of concrete. 

Table 1. Parameters of specimens. 

No. Weld/Thread position h/mm l/mm 
C – – – 

MW Middle section – – 
EW End section – – 

M6A Middle section 0.6 16.5 
M6B Middle section 0.6 33 
M6C Middle section 0.6 66 
M9A Middle section 0.9 16.5 
M9B Middle section 0.9 33 
M9C Middle section 0.9 66 
E6A End section 0.6 16.5 
E6B End section 0.6 33 
E6C End section 0.6 66 
E9A End section 0.9 16.5 

Figure 1. Common lengthening methods of steel tube of concrete-filled steel tube: (a) welding,
(b) grouting sleeve connection, (c) flange connection.
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Welding is currently an important method of connecting steel structures, but there are
still some quality issues due to manual welding [6,7]. Hao [8] summarized the research
results of the failure modes of grouted casing under different environments. The results
show that a grouted casing connection has high bearing capacity and good ductility under
static loads. The hysteretic ring is full and has good energy dissipation capacity under low
cycle reciprocating loads. It can still maintain good ductility under fire. Sun [9] studied
the factors affecting the bearing capacity of a new type of grouting sleeve connection
device, and designed and made 27 test members for tensile tests. The test results show that
the axial force of the device is mainly transmitted by the high-strength grouting material
poured in the space between the steel pipes. The ultimate bearing capacity of the grouting
sleeve increases with the increase of the strength of the grouting material. The ultimate
bearing capacity of the grouting sleeve increases with the increase of the anchorage length.
Wang [10] studied the bending performance of hollow sandwich concrete-filled circular steel
tubular internal and external flange connections through finite element simulation analysis.
The results show that the bending capacity of the joints is mainly borne by the tension of
the internal and external bolts, which is specifically manifested by the necking and tensile
failure of the bolts in the tension zone, and the tension provided by the concrete is relatively
small. Yi [11] studied the mechanical properties of the internal and external flange joints
of conical members under bending and axial tension through finite-element analysis. The
results show that the bending and tensile capacity of the joints are mainly borne by the
internal and external bolts, and the bending members are specifically represented by the
necking and tensile failure of the bolts in the tension zone. The practical calculation method
of the bolt tension of the member node is preliminarily determined. In addition, there are
many newer connection methods. Deng et al. [12]. designed a new type of stiffening flange
connection for large circular hollow section (CHS)—internal and external double layer
(IODL) flange connection. This connection method fully utilizes the internal space of the
circular pipe, and uses smaller bolts and thinner flanges. Through tensile and compressive
tests, it is proved that the structure has good ductility and can meet the safety requirements
of engineering practice. Grundy P et al. [13] conducted chemical prestressing tests using
expansive agents in grouted pile sleeve connections, indicating that the enhanced bond of
this structure is more predictable than that of conventional grouted pile sleeve connections
and can significantly improve the shear bond strength. This allows for shorter design
lengths and improves efficiency under static and cyclic loading. Zhai [14] proposed two
construction methods for splicing concrete-filled steel tubular columns connected with
inner sleeves, through flange connections and bolt connections. Eight specimens were
designed and fabricated to conduct axial compression performance tests. The tests show
that the two types of concrete-filled steel tubular column-splicing structures can meet
the requirements of concrete-filled steel tubular column- to-column connection joints.
Yang [15] proposed a method for assembling concrete-filled steel tubular column steel
beam connections based on flange connections and external stiffening rings, characterized
by the use of high-strength bolts, rigid flanges, and external stiffening ring plates at the
same location to achieve concrete-filled steel tubular column-to-column connections, and
concrete-filled steel tubular column to steel beam connections. The research results show
that the flange-connected concrete-filled steel tubular column steel beam reinforced ring
joints have good seismic performance. The width of the stiffening ring plate is an important
factor affecting its mechanical performance. The improved design method of the outer
stiffening ring plate can reasonably consider the contribution of the flange and the impact
of the discontinuity of the column steel tube at the joint. Wang [16] conducted axial tensile
tests on nine concrete-filled circular steel tubular members with internal lattice angle
steel, and studied the impact of the connection methods of the outer steel pipe and the
inner angle steel on the axial tensile properties of the members. The results show that the
connection mode of an outer steel pipe and inner angle steel has no effect on the axial tensile
performance and bearing capacity of the component, but does impact the initial stiffness of
the component. Welding stiffening ribs at the end of the outer steel pipe can significantly
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improve the bearing capacity of the internal angle steel skeleton of the component. In order
to avoid the disadvantages of the above steel structure connection method, a threaded
connection method of the inner liner pipe is proposed.

2. Specimen Design and Raw Material Performance
2.1. Specimen Design

Fifteen concrete-filled steel tube specimens were designed, including hollow sand-
wich concrete-filled steel tube specimens, welded joints between concrete-filled steel tube
specimens and ordinary concrete-filled steel tube specimens. The length of the specimen
L = 399 mm, the diameter of the outer steel tube Dos = 133 mm, the diameter of inner steel
tube Dis = 76 mm, the wall thickness of the outer steel tube tos and wall thickness of the
inner steel tube tis are 6 mm, and the wall thickness of the outer tube of inner lining tube
tois and the wall thickness of the inner tube of inner lining tube tiis are 8 mm. The thread
length l is taken as Dos/2, Dos/4 and Dos/8. The thread depth h is taken as 0.1tos and
0.15tos, respectively. The thread error is less than 2.6% for a thread depth of 0.6 mm and
less than 2.1% for a thread depth of 0.9 mm. All parameters of CFST specimens are shown
in Table 1.

Table 1. Parameters of specimens.

No. Weld/Thread Position h/mm l/mm

C – – –
MW Middle section – –
EW End section – –

M6A Middle section 0.6 16.5
M6B Middle section 0.6 33
M6C Middle section 0.6 66
M9A Middle section 0.9 16.5
M9B Middle section 0.9 33
M9C Middle section 0.9 66
E6A End section 0.6 16.5
E6B End section 0.6 33
E6C End section 0.6 66
E9A End section 0.9 16.5
E9B End section 0.9 33
E9C End section 0.9 66

The hollow ratio χ [17] is 0.628, and the confinement effect coefficient ξ [18] of the
specimens is 2.33. The calculation of these parameters is as follows:

χ = Dis/(Dos − 2tos) (1)

ξ = (Asfy)/(Acf ck) (2)

f ck = 0.67f cu (3)

where As is the cross-sectional area of steel tube, fy is the yield strength of steel tube, Ac is
the cross-sectional area of concrete, f ck is the characteristic axial compressive strength of
concrete, and f cu is the cubic compressive strength of concrete.

2.2. Material Properties

The performance indices of steel are shown in Table 2.
In addition, the compressive strength of concrete is f cu = 56 MPa, and the elastic

modulus of concrete is Ec = 35.512 GPa.
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Table 2. Performance indices of steel.

Type fy/MPa f u/MPa Es/GPa vs δ

Outer steel tube 420 570 215 0.28 20.7
Outer inner
lining tube 419 569 210 0.27 25.9

Inner steel tube 509 624 211 0.23 21.3
Inner inner
lining tube 396 517 207 0.27 21.0

2.3. Preparation of Specimens

The detailed drawings of some specimens are shown in Figure 2, in which the unit of
dimensions is mm.
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some specimen components of the threaded connection specimen of the inner liner and 

Figure 2. Schematic diagram of steel components of some specimens: (a) specimen EW; (b) specimen
M6C/M9C; (c) specimen E6B/E9B; (d) Cross-section; (e) Steel tube lengthened by thread through
inner lining tube.

In order to more clearly display the assembly figure of the hollow concrete-filled
sandwich circular steel tube connected by thread, Figure 3 shows the partial diagram of
some specimen components of the threaded connection specimen of the inner liner and the
partial specimen assembly diagram. All specimens after preparation are shown in Figure 4.

2.4. Loading and Measurement

The test equipment is shown in Figure 5. Four displacement meters were arranged
around the sample at 90◦ intervals, and a transverse strain gauge and a longitudinal strain
gauge were pasted to the outer wall of the steel pipe at 90◦ intervals.
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The sample was preloaded first [19–22]. The entire loading process adopted the
method of load controlled. Within the elastic range, the loading of each stage was 1/10
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of the estimated bearing capacity, the instrument data were recorded after each stage of
loading, and the next stage of loading was carried out after holding the load for 2 min until
it reached 60% of the estimated bearing capacity. Then, loading took place at the rate of
2 kN/s, and the loading stage was stopped when the compressive displacement reached
30 mm (about 75,000 µε).

3. Specimen Failure Model
3.1. Outer Steel Tube

The failure of the outer steel tube mainly shows three modes. The first mode (Outer I)
corresponds to C, MW and EW specimens and shows the outward buckling deformation of
the outer steel pipe bounded by the end plate and the weld in Figure 6. This is due to the
high strength of the weld lines and the end effect [18].
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Figure 6. Failure modes of outer steel tube of common specimen and welded specimen. (a) Specimen
C; (b) Specimen MW; (c) Specimen EW.

The second mode (Outer II) corresponds to the specimens with short inner lining tubes
(specimen M6A, M9A, E6A and E9A), which shows that in addition to the outward buckling
caused by the end effect, outward buckling also occurs at one of the weak positions of the
specimen, i.e., the butt joint of the tube (Figure 2), as shown in Figure 7.

The third mode (Outer III) corresponds to the specimens with long inner lining tubes
(specimen M6B, M9B, E6C and E9C, etc.), which shows that, in addition to the outward
buckling caused by the end effect, outward buckling occurs at one of the weak positions of
the specimen, as shown in Figure 8.
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Figure 7. Second type of failure mode of outer steel tube. (a) Specimen M6A; (b) Specimen M9A;
(c) Specimen E6A; (d) Specimen E9A.

3.2. Inner Steel Tube

The failure modes of the inner steel tube are also divided into three types. The first
(Inner I) failure mode corresponds to the Outer I failure mode, such as specimens C and
WM, in which the position of outward buckling of the inner steel tube corresponds to the
position of outward buckling at the end of the outer steel tube, and the inward concavity of
inner steel tube corresponds to the outward buckling of the outer steel tube at the other
position, as shown in Figure 9.

The second mode (Inner II) corresponds to the Outer II failure mode. The outward
buckling of the inner steel pipe corresponds to the outward buckling of the end of the outer
steel pipe, as shown in Figure 10a. Corresponding to the outward buckling at the other
position of the outer steel tube, the inner steel tube has no obvious deformation, although
the edge of the inner lining tube has outward buckling (Figure 10b).

The third mode (Inner III) corresponds to the Outer III failure mode. The outward
buckling of the inner steel pipe corresponds to the outward buckling of the end of the outer
steel pipe, as shown in Figure 11a. Corresponding to the outward buckling at the edge of
the inner lining tube of the outer steel tube, the inner steel tube of the same section has
no obvious deformation, although outward buckling occurs at the nearby inner steel tube
(Figure 11).
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3.3. Concrete

The failure mode of concrete is shown in Figure 12. It can be seen that the crushed or
buckling of concrete corresponds to the steel tube buckling.
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4. Curve Analysis
4.1. N-∆ Curve

As can be seen from Figure 13, the bearing capacity and stiffness of welded specimens
are basically the same as those of ordinary specimens, and the welding position has little
impact on the bearing capacity and hardness. This indicates that the welding effect is good
and can basically meet the use requirements of ordinary specimens.
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As can be seen from Figure 14, the bearing capacity and stiffness of threaded connec-
tion specimens are basically consistent with those of welded specimens. This indicates that
this connection method has a good effect, and the steel pipe still has a good constraint effect
on the concrete. It can also be seen that the curve has a downward section. The curve trend
of the sample is consistent with the results of the references [19,20].
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4.2. N-Steel Tube Strain (εs) Curve

Figure 15 shows the N-εs curve of all specimens. It can be seen that the trend of
all curves is similar, with steel pipes being compressed in the longitudinal direction and
stretched in the transverse direction. Due to the small longitudinal strain, the Poisson’s
ratio of the steel tube is usually constant, indicating that there is no interaction between
the steel tube and the concrete at this time. With the increase of longitudinal strain, the
Poisson’s ratio of concrete increases, indicating that the concrete gradually contacts the
steel pipe. When the curve reaches the descending section, the lateral strain of the steel
pipe increases significantly due to the increased restraint of the steel pipe on the concrete.
Therefore, the pipe specimen connected through the inner thread still has good mechanical
properties [21–23].
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Figure 15. N-εs curves of all specimens. (a) unconnected specimens; (b) middle-section specimens,
h = 0.6 mm; (c) middle-section specimens, h = 0.9 mm; (d) end-section specimens, h = 0.6 mm;
(e) end-section specimens, h = 0.9 mm.

5. Analysis of Influencing Factors
5.1. Thread Length

Figure 16 shows the effect of thread length on the N-∆ curves. The length of the thread
is proportional to the bearing capacity. This is because the longer the thread, the longer the
length of the inner liner and the greater the constraint effect of the thread section on the
concrete, which has a certain strengthening effect on the stiffness and bearing capacity of
the test piece. This indicates that such connections do not weaken the strength of axially
compressed stub columns.
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Figure 16. Effect of thread length on N-∆ curves of connected specimens. (a) middle-section speci-
mens, h = 0.6 mm; (b) middle-section specimens, h = 0.9 mm; (c) end-section specimens, h = 0.6 mm;
(d) end-section specimens, h = 0.9 mm.
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5.2. Thread Position

Figure 17 shows the influence of thread position on the N-∆ curve of the specimen.
Compared to the mid-section connection specimen, the end-section connection specimen
has a better constraint effect on concrete, therefore the macroscopic performance is as
follows: the end connections have a greater impact on the bearing capacity of the speci-
men [24,25].
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Figure 17. Effect of thread position on N-∆ curves of connected specimens. (a) Specimens h = 0.6 mm,
l = 16.5 mm; (b) Specimens h = 0.9 mm, l = 33 mm; (c) Specimens h = 0.6 mm, l = 66 mm; (d) Specimens
h = 0.9 mm, l = 16.5 mm; (e) Specimens h = 0.6 mm, l = 33 mm; (f) Specimens h = 0.9 m, l = 66 mm.
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5.3. Thread Depth

Figure 18 shows the influence of thread depth on the N-∆ curve of the specimen. The
thread depth parameters of the specimen this time are 0.6 mm and 0.9 mm, respectively.
The difference between the two thread depths is small, so the impact on the increase in
bearing capacity is not significant.
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Figure 18. Effect of thread depth on N-Δ curves of connected specimens. (a) middle-section speci-
mens, l = 16.5 mm; (b) end-section specimens, l = 16.5 mm; (c) middle-section specimens, l = 33 mm; 
(d) end-section specimens, l = 33 mm; (e) middle-section specimens, l = 66 mm; (f) end-section spec-
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Figure 18. Effect of thread depth on N-∆ curves of connected specimens. (a) middle-section specimens,
l = 16.5 mm; (b) end-section specimens, l = 16.5 mm; (c) middle-section specimens, l = 33 mm; (d) end-
section specimens, l = 33 mm; (e) middle-section specimens, l = 66 mm; (f) end-section specimens,
l = 66 mm.
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6. Calculation of Load Bearing Capacity

In order to reasonably determine the axial compressive strength-bearing capacity of
hollow concrete-filled sandwich circular steel tube specimens, the relationship between
N-εs and N-∆ curves are studied, and the loading value is defined as Nue when the strain of
the specimen reaches 6500 µε. The basis is as follows: first, when the strain is 6500 µε, the
elasto-plastic stage of the specimen basically ends, but it does not reach the plastic stage.
Second, the steel tube and concrete basically reach the limit state, and the concrete reaches
the limit stress at 6500 µε. Finally, the strain increases slowly, while the loading increases
rapidly before 6500 µε; and after 6500 µε, the loading increases relatively slowly with the
rapid increase of strain [26,27].

According to academic, European, American, and Chinese standards, the results ob-
tained from the calculation expressions for the bearing capacity of circular hollow sandwich
steel tube concrete short columns under axial compression are compared with the experi-
mental results in this paper. The calculation formulas are shown in Equations (4)–(11). The
recommended formula for calculating the axial compressive bearing capacity of circular
sleeve circular hollow sandwich steel tube concrete columns in the Society’s standard
T/CCES 7-2020 “Technical Specification for Hollow Sandwich Steel Tube Concrete Struc-
tures” is [17]:

N = Nosc,u + Ni,u = fscy Asco + fsi Asi (4)

Asco = Aso + Ac (5)

where Nosc,u is the cross-sectional compressive bearing capacity of the outer steel pipe and
the sandwich concrete; Ni,u is the cross-sectional compressive-bearing capacity of the inner
steel pipe; Aso, Ac is the cross-sectional area of outer steel pipe and sandwich concrete and
f scy is the strength index of hollow sandwich steel pipe concrete.

The formula recommended by the European Committee for Standardization EN 1994-
1-1 (2004) for calculating the axial compressive-bearing capacity of circular hollow sandwich
steel tube concrete columns with circular sleeves is as follows [28]:

N = ηa0 fyo Aso + fc Ac
[
1 + ηc0 · (t/d) ·

(
fy/ fck

)]
+ fyi Asi (6)

ηa0 = 0.25(3 + 2λ) < 1.0 (7)

ηc0 = 4.9 − 18.5λ + 17λ2 ≥ 0 (8)

where f yo, f yi is the yield strength of outer and inner steel pipes, respectively; Aso, Ac is the
cross-sectional area of outer and inner steel pipes, respectively; f c is the design value of
concrete compressive strength; and Ac is the cross-sectional area of sandwich concrete.

The formula for calculating the axial compressive bearing capacity of circular hollow
sandwich steel tube concrete columns recommended by the American Steel Structure Code
ANSI/AISC 360-16 is as follows [29]:

λ ≤ λp:
N = fyo Aso + 0.95 fc Ac + fyi Asi (9)

λp < λ ≤ λr:

N = fyo Aso + 0.95 fc Ac − 0.25
(

λ − λp

λr − λp

)2

· fc Ac + fyi Asi (10)

where f yo, f yi is the yield strength of outer and inner steel pipes, respectively; Aso, Ac is the
cross-sectional area of outer and inner steel pipes, respectively; f c is the design value of
concrete compressive strength; and Ac is the cross-sectional area of sandwich concrete.
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The formula recommended by the Chinese standard GB 50936-2014 “Technical Specifi-
cation for Concrete Filled Steel Tubular Structures” for calculating the axial compressive-
bearing capacity of circular sleeve hollow sandwich steel tube concrete columns is [30]:

N = fsc Asc + fsi Asi (11)

where f sc is the design value of compressive strength of hollow sandwich steel pipe concrete;
Asc is the sum of the cross-sectional areas of the outer steel pipe and concrete; and Asi, As is
the cross-sectional area of the inner and outer steel pipes, respectively.

The calculated results based on the calculation expression of the axial compressive-
bearing capacity of hollow concrete-filled sandwich circular steel tubular specimens in
different references are compared with the test results. The comparison results are shown
in Table 3, where Nue is the test value and Nuc is the calculated value. It can be seen that
the calculated results based on the calculation equations proposed in [17,28,29] agree well
with the test values.

Table 3. Comparison of calculation and test values of bearing capacity.

No.
Test Values

Nue/kN
Nuc/Nue

Reference [17] Reference [28] Reference [29] Reference [30]

M6A 2040 0.93 0.91 0.91 0.77
M6B 2090 0.90 0.89 0.89 0.75
M6C 2091 0.90 0.89 0.89 0.75
M9A 2017 0.94 0.92 0.92 0.78
M9B 2053 0.92 0.91 0.90 0.77
M9C 2105 0.90 0.89 0.88 0.75
E6A 2088 0.90 0.89 0.89 0.76
E6B 2146 0.88 0.87 0.86 0.73
E6C 2337 0.81 0.80 0.79 0.67
E9A 2147 0.88 0.87 0.86 0.73
E9B 2150 0.88 0.87 0.86 0.73
E9C 2245 0.84 0.83 0.83 0.70

Average value 0.89 0.88 0.87 0.74

Standard deviation 0.036 0.034 0.036 0.031

7. Conclusions

(1) The initial stage of the axial compressive loading–longitudinal compressive displace-
ment curves of the hollow concrete-filled sandwich circular steel tubular specimens
is the elastic stage, and the relationship between loading and displacement is linear.
After that, the curves enter the elasto-plastic stage. With the gradual increase of
displacement, the curves enter the yield-strengthening stage. After reaching the peak
load, the load begins to drop, and curves enter the descending stage.

(2) The bearing capacity and stiffness of the specimens connected by thread through the
inner lining tube are not inferior to the welded specimen or the ordinary specimen.

(3) The bearing capacity and stiffness of the specimens connected by thread through the
inner lining tube increase with the increase of the thread length.

(4) By comparing the corresponding references, the calculations of the axial compressive
bearing capacity are suggested.
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