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Abstract: During the past two decades, researchers have shown interest in large-scale simulations to
analyze alloy solidification. Advances in in situ X-ray observations of the microstructural evolution of
dendrites have shown defects that can be very costly for manufacturers. These simulations provide the
basis for understanding applied meso-/macro-scale phenomena with microscale details using various
numerical schemes to simulate the morphology and solve for transport phenomena. Methods for
simulating methodologies include cellular automaton, phase field, direct interface tracking, level set,
dendritic needle networks, and Monte Carlo while finite element, finite difference, finite volume, and
lattice Boltzmann methods are commonly used to solve for transport phenomena. In this paper, these
methodologies are explored in detail with respect to simulating the dendritic microstructure evolution
and other solidification-related features. The current research, from innovations in algorithms for
scaling to parallel processing details, is presented with a focus on understanding complex real-world
phenomena. Topics include large-scale simulations of features with and without convection, columnar
to equiaxed transition, dendrite interactions, competitive growth, microsegregation, permeability, and
applications such as additive manufacturing. This review provides the framework and methodologies
for achieving scalability while highlighting the areas of focus that need more attention.

Keywords: solidification; microstructure; numerical modeling; large-scale simulation; dendrite growth

1. Introduction

The research in the simulation of dendritic growth during alloy solidification used
to be limited to small-scale, single dendrites that did not fully capture all of the physics
behind solidification. The computation power and cost required for superior analysis have
been the main hindrance for performing more complex, large-scale simulations. This article
outlines the advances in both mathematical models and computational hardware/software
that enable large-scale simulations of solidification microstructure.

While there is a significant amount of work on modeling solidification microstructure
and dendrite growth including a few review papers from distinguished researchers [1,2],
there has not been a review work on the large-scale modeling of solidification microstructure
covering the various numerical techniques, computational methods, and examples of what
has been accomplished thus far.

The goal of this review is to provide a comprehensive compilation of the most current
research that has been conducted on large-scale simulations of solidification microstructure
using advanced computing methods. Large-scale simulations of dendritic growth can
greatly benefit manufacturing and materials engineers and scientists, offering a detailed
understanding of microstructural evolution during solidification processes. Reducing
the trial and error of the manufacturing process, the simulations save time, providing a
greater understanding of the microstructure and defect formation. Many advances in in
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situ X-ray observations of solidification have identified areas that can benefit from the
large-scale realistic modeling of dendrites [3–10]. Lee and Hunt [11] first examined slabs
of Al–Cu alloys for hydrogen pores in situ during directional solidification (DS). They
discovered that as the growth speed of the dendrites increased, along with hydrogen
content, the shape of the pores evolved into a “worm-hole-like” shape. Defects that form
can be caused by numerous conditions such as gas bubbles, segregation, and tears as
well as other factors that can be difficult to predict due to the rheological behavior of the
mushy zone [12,13]. This cycle of casting and taking x-rays of the samples are both costly
and time consuming. Therefore, a lot of research has been conducted to understand the
physics behind these defects [14–21] and reproducing them using computer simulations.
The initial simulations produced two-dimensional (2D) axisymmetric, branchless dendrite
features that lacked the details needed to understand the issues that develop during the
manufacturing processes. Therefore, there are three-dimensional (3D) aspects that are not
captured by 2D simulations, which will be discussed in detail in later sections. However, 3D
simulations require extensive computing power and algorithms to scale. Recent advances
in the large-scale simulation of the solidification microstructure have produced some
astonishing new discoveries [22]. This has been made possible thanks to developments in
parallelization and supercomputing. State-of-the-art hardware and algorithm techniques
have enabled researchers to produce computations that used to be seen as impossible. The
ability to see high resolution in the formation of microstructures has never been more
accessible. The size, spacing, and morphology of dendritic arms show a significant effect
on the properties of the solidified materials [1].

Solidification modeling is a complex multiphysics problem including fluid flow, heat,
and solute diffusion aspects. There is also a need to solve equations for phase change or
track the interface to simulate the morphology. The morphology of the dendrites can be
captured using cellular automaton (CA), phase field (PF), direct interface tracking (DIT),
level set (LS), or dendritic needle networks (DNN) methods [21]. In terms of reproducing
the physics, PF is one of the best methods to simulate dendrite growth accurately when
compared to the front-tracking, boundary integral methods, and CA. However, depending
on the aspect under consideration, each method has its own strengths and shortcomings.
The majority of large-scale simulations of dendrite growth have used PF and CA methods.
The transport phenomena, which consists of either heat transfer, diffusion, and fluid flow,
can be solved using finite element (FE), finite difference (FD), finite volume (FV), or lattice
Boltzmann (LB) methods. Scalability is accomplished using computational approaches that
can take advantage of increasing the number of processing units. The selected numerical
methods need to be scalable, making it easier to implement different parallelization tech-
niques by using threads, message passing interface (MPI) [23–28], and compute unified
device architecture (CUDA) [29–32], among other methods. Reducing the computational
time is still a challenge for large-scale simulation. Therefore, many strategies have been de-
veloped over the years to address the computational time. Some researchers have focused
on utilizing parallel computing algorithms to speed up the simulation while others have
tried to optimize the meshing method and reduce the overall computational time by using
the adaptive mesh refinement (AMR) strategy [33] or by applying different grid size and
time step methods [34,35].

From a computational power point of view, technology is increasing toward Moore’s
law and the exascale era is already upon us [36–38]. Supercomputing has provided a
small deviation from expectations, now known as the post-Moore era [39,40]. Now, the
strategy to increase the ability to model dendritic solidification is finding limitations in
mathematical models and algorithms. This limitation is partly associated with interpolation
of the quantities around the interface of the dendrite where sharp gradients are present. By
implementing an adaptive grid refinement model, the code’s capability will be extended
to a more accurate prediction of the interfacial region. In the AMR algorithm, finer grids
are used for sharp gradient regions such as the solid–liquid interface, while the mesh
coarsens in the rest of the computational domain. As a result, most computation time is
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spent solving the region occupied by the mushy zone. This method has been used by many
researchers separately or in combination with other parallelization methods to reduce the
computational time [41–43]. Recently, parallel-GPU AMR has shown great promise in
combining the effectiveness of the AMR scheme with the power of GPU computing [44–46].
This allows for high-speed simulations of purely diffusive dendrite growth.

These outstanding large-scale simulations have inspired many researchers to perform
analysis on realistic grain growth. As an example, Miyoshi et al. [47] conducted a PF
simulation study of ideal grain growth in an ultra-large-scale domain. Using a supercom-
puter, TSUBAME 2.5 at the Tokyo Institute of Technology, which consists of 1408 nodes, the
team was able to investigate the number of sample grains that are necessary for repeatable
results for grain size distributions. The largest domain consisted of 25603 grid points, which
consisted of 3,125,00 initial grains. At this time and scale, it was the largest simulation
performed by a factor of 10. This was an effective performance for observing and quan-
tifying the steady-state growth behaviors. Another impressive simulation of large-scale
was performed by Sakane et al. [48], who used a quantitative PF model to simulate a
dilute binary alloy’s (Al-3 wt.% Cu) grain growth under the influence of forced convec-
tion. A directional solidification condition was produced in a system with dimensions of
3.072 × 3.078 × 3.072 mm3. The computation of 10243 mesh points, during 60,000 steps,
was completed using 128 GPUs within four hours. Their PF model could provide consistent
results independent of the interface thickness. An LB model was coupled to simulate the
melt flow.

The focus of this paper is to highlight important research on the large-scale simulation
of dendritic growth and other microscale solidification features. We will discuss numerical
methods as well as computational approaches used to produce large-scale simulations of
the solidification microstructure. The actual domain size of these simulations depends
on the physics considered and the features that are being simulated. The structure of this
review will focus on the increasing complexity of features. Many case studies will be
discussed in the following order: dendritic interactions and competitive growth; columnar
to equiaxed transition (CET); solute transport and segregation; natural and forced con-
vection; permeability. The details for each subject are outlined with respect to both the
mathematical/computational models as well as the physical nature of the simulations.

2. Methods for Simulating the Morphology

The process of capturing the interface morphology in simulations can be accomplished
with the CA, PF, DIT, or LS methods. Each method has its unique advantages and defi-
ciencies. CA, which is relatively simple, stands alone from the others because of its local
structure and will be discussed first. PF is probably the most powerful and will be analyzed
with respect to some of the most notable case studies. Third, DIT will be discussed to
feature the differences using a couple of research examples. Finally, the LS method will be
reviewed, which is similar to DIT but requires knowledge about the temperature gradients
at the interface. Dendrite needle network (DNN) and Monte Carlo (MC) methods will also
be discussed. By simulating the morphology of dendrites, the complexity in geometry can
be incorporated for the large-scale domain for manufacturing purposes.

2.1. Cellular Automation

CA is ideal for large-scale modeling simulations as its structure is considered local
with respect to the objective domain. The ability to approach the morphology naturally,
in a localized manner, allows for easy scalability on many processors. In the 1940s, the
CA method was developed by John von Neumann using simple microscopic laws to
model complex, macroscopic phenomena physically [49]. With a successful application
in metallurgy, the CA method can accurately simulate processes such as grain growth,
cracking, diffusion, or mechanical deformation. By superimposing a grid of cells on the area
of interest, the evolution of these physical processes can be reproduced. State indices and
variables are attributed to cells that evolve based on transition rules [50], outperforming
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the standard GPU implementations, making this effective for scalability as the interactions
of cells can be defined in three dimensions. Advantages over PF include being able to
develop a spatial resolution by the order of magnitude of the smallest microstructure
feature size [51]. CA is highly parallelizable, making it two orders of magnitude faster than
alternative PF methods [52].

One of the largest strictly CA methodologies was recently performed by Zhang et al.
(shown below in Figure 1) [53]. The study focused on the simulation of an Fe–C alloy
during isothermal and directional solidification while using the CA model to simulate
the CET. Using the CA model in combination with GPUs and MPI, the maximal speed-
up ratio was measured to be 153.19. They were able to study the effects of increasing
the cooling rate among other conditions, which promotes the occurrence of equiaxed
dendrites ahead of the solidification front. The CA code was able to process 7683 grids
within 27.42 min for 8000 time steps. They were able to solve the problem of data race
in the CA model by introducing an additional field variable with a modification to the
capture rule. CA is regularly coupled with methods to solve for solute transport given its
functional, elemental nature that allows it to be scaled [54–56]. The CA algorithm accounts
for heterogeneous nucleation, the preferential growth directions, and growth kinetics of
the dendrites [57]. Rafii-Tabar and Chirazi provide a comprehensive analysis of modeling
solidification techniques in their review on multiscale modeling using CA and coupling
techniques [58]. CA is often coupled with other methods such as FE and FD, which are
described in later sections of this review in context to AM applications.

Metals 2023, 13, x FOR PEER REVIEW 4 of 43 
 

 

complex, macroscopic phenomena physically [49]. With a successful application in metal-
lurgy, the CA method can accurately simulate processes such as grain growth, cracking, 
diffusion, or mechanical deformation. By superimposing a grid of cells on the area of in-
terest, the evolution of these physical processes can be reproduced. State indices and var-
iables are attributed to cells that evolve based on transition rules [50], outperforming the 
standard GPU implementations, making this effective for scalability as the interactions of 
cells can be defined in three dimensions. Advantages over PF include being able to de-
velop a spatial resolution by the order of magnitude of the smallest microstructure feature 
size [51]. CA is highly parallelizable, making it two orders of magnitude faster than alter-
native PF methods [52]. 

One of the largest strictly CA methodologies was recently performed by Zhang et al. 
(shown below in Figure 1) [53]. The study focused on the simulation of an Fe–C alloy 
during isothermal and directional solidification while using the CA model to simulate the 
CET. Using the CA model in combination with GPUs and MPI, the maximal speed-up 
ratio was measured to be 153.19. They were able to study the effects of increasing the cool-
ing rate among other conditions, which promotes the occurrence of equiaxed dendrites 
ahead of the solidification front. The CA code was able to process 7683 grids within 27.42 
min for 8000 time steps. They were able to solve the problem of data race in the CA model 
by introducing an additional field variable with a modification to the capture rule. CA is 
regularly coupled with methods to solve for solute transport given its functional, ele-
mental nature that allows it to be scaled [54–56]. The CA algorithm accounts for heteroge-
neous nucleation, the preferential growth directions, and growth kinetics of the dendrites 
[57]. Rafii-Tabar and Chirazi provide a comprehensive analysis of modeling solidification 
techniques in their review on multiscale modeling using CA and coupling techniques [58]. 
CA is often coupled with other methods such as FE and FD, which are described in later 
sections of this review in context to AM applications. 

 
Figure 1. Directional solidification of the Fe-0.6 wt.% C alloy in a domain consisting of 400 × 100 × 
1000 cells and a grid size of 5 µm, represented in (a) as a configuration of the computational domain 
at various nucleation angles and cooling rates: (b) 1 K/s, (c) 5 K/s, and (d) 10 K/s [53]. 

2.2. Phase Field 
The PF method is a powerful and versatile tool to model microstructural dynamics 

[59,60]. Many phenomena can be represented using a simple set of differential equations 
[61]. Using continuous fields to describe the interfaces, the discontinuities of properties 
and boundary conditions are represented by a variation of one or more auxiliary field. 
These phase fields across a diffused interface are solved by integrating partial differential 
equations for the whole domain. Free-boundary problems with arbitrary complex inter-
faces are notoriously challenging [62]. 

Figure 1. Directional solidification of the Fe-0.6 wt.% C alloy in a domain consisting of
400 × 100 × 1000 cells and a grid size of 5 µm, represented in (a) as a configuration of the computa-
tional domain at various nucleation angles and cooling rates: (b) 1 K/s, (c) 5 K/s, and (d) 10 K/s [53].

2.2. Phase Field

The PF method is a powerful and versatile tool to model microstructural dynam-
ics [59,60]. Many phenomena can be represented using a simple set of differential equa-
tions [61]. Using continuous fields to describe the interfaces, the discontinuities of proper-
ties and boundary conditions are represented by a variation of one or more auxiliary field.
These phase fields across a diffused interface are solved by integrating partial differential
equations for the whole domain. Free-boundary problems with arbitrary complex interfaces
are notoriously challenging [62].

Kobayashi [63] first brought the PF modeling of dendritic growth to the public’s
attention in 1993, showing a simple simulation for one component melt growth and showed
its ability to solve the free-boundary problem. PF solves the time evolution equation of
the PF variable, Ø. This was introduced to express the phase state (solid or liquid) of
the material, in which the sharp interface is replaced by a diffuse interface. With a finite
thickness, the PF variable has a smooth, but steep change. The versatility of the PF method
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allows for the simulation of the interface migration without tracking of the interface [64].
By simply solving an equation, PF can solve for the solid concentration, curvature of the
interface energy, and capture the interface based on computational tracking. Kobayashi
actually produced movies of grain growth simulation in 3D prior to 1990 [65], which
inspired researchers to reproduce this method for larger scale domains.

PF is very computationally taxing, where the meshes for the interface require high
density. AMR has been implemented on a large scale under certain conditions [66] such
as 3D modeling [67–69] (but mostly 2D conditions due to limitations) as computational
efficiency decreases as the volume fraction of the interface increases [70]. Therefore, parallel
computational schemes are necessary for very large-scale simulations using a quantitative
PF model. Shibuta et al. [71] utilized a supercomputer and PF to simulate the competitive
growth of dendrite assemblages. They discussed convergence behavior that enabled the
use of a large interface thickness. At the time (2011), it was the largest reported simulation
of dendrite growth for a domain of 3.072 mm3 for a total time of 100 s, using 768 GPUs
on the supercomputer TSUBAME 2.0 (TSUBAME 2.5’s predecessor). It is computationally
oppositional to obtain a realistic looking microstructure and an extremely thin interface [72].
PF parameters are derived at a thin interface limit [73], which is competitively being
pushed further.

Two years later, Takaki et al. [74] used the TSUBAME 2.0 for a very-large-scale 3D PF
simulation of directional solidification of 3.072 × 3.078 × 3.072 mm3, which was equivalent
to 4096 × 4104 × 4096 meshes. This research produced interesting results (Figure 2), where
unfavorably oriented dendrites and highly complicated interactions could be observed.
As a result, controlling microstructures in terms of crystallographic structures has been
considered for more complex structures. This is important as it expanded on both the
domain size and complexity that was previously discussed by Shibuta et al. [71].
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Figure 2. Simulation of competitive columnar dendrite growth by large-scale PF simulations where
the inclination angle is indicated by color [74].

In order to simulate large-scale microstructures using PF models, the PF interface is
required to be scaled up much larger than the physical interface to remove several artifacts
that step from the thickness of the interface [75]. Using interpolation functions for average
diffusivities and grand potentials of the bulk phases, the interface stretching is eliminated.
The interface also faces (unrealistic) movement from the relaxation that can be countered
by asymptotic analysis. Finally, artificial solute trapping can be mitigated by anti-trapping
formulations [76]. These conditions need to be met to scale to higher resolutions while
maintaining accuracy using PF methods. PF’s advantage over the other methods lies within
the field variables, which eliminate the need to identify and track the interface. Tourret
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et al. highlighted some of the most recent applications, perspectives, and challenges in PF
modeling in the most recent review [60].

2.3. Direct-Interface-Tracking

DIT, a front tracking method, is a successful methodology for solving the energy
equation as well as momentum and mass conservation equations. This requires treating the
interface as incompressible. Since it requires the calculation of the temperature gradients at
the interface in combination with the normal velocity and curvature of the interface, DIT is
less powerful in comparison to the other techniques already mentioned [22].

Zhu et al. [77] used a quantitative virtual front tracking model, which is characterized
by its mesh independency, to simulate 2D dendrite growth in the low Pėclet number regime.
This means that the results converge to a finite value when the mesh size is refined. It
has been observed that the mesh dependency is influenced by the methods of curvature
and solid fraction calculations [78]. The simulated columnar dendrite evolution of an
Al-4 wt.% Cu alloy was calculated in a domain of 600 × 1200 meshes on a single CPU in
about 11 h of computational time. Figure 3 shows the evolution of the dendrites after 12 s
when comparing the grain boundaries and solute map. The equilibrium composition was
compared in good agreement to the LGK model.
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Figure 3. Evolution of directional solidification with the thermal gradient after (a) 2 s,
(b) 3.2 s, (c,d) 12 s, (a–c) shows the grain boundaries and (d) solute map [77].

This process is considered with direct numerical simulations of flows with phase
change. Tryggvason et al. [79] expanded on a multiphase flow model where different mate-
rial properties in each phase were added at the phase boundaries. Juric et al. [80] used this
method to observe complex dendritic structures such as liquid trapping, tip-splitting, side
branching, and coarsening. This efficiently handles discontinuities in material properties
between liquid and solid phases. DIT produces a method for simulating morphology that
can be further defined based on tracking criteria. Front tracking explicitly provides the
location of the interface at all times.

2.4. Level Set

Tracking the interface can be accomplished either explicitly or implicitly. Explicit
tracking such as front tracking requires special care for topological changes [81]. Overcom-
ing this is difficult in 3D; however, implicit representations such as LS or PF can handle
these topological changes in a straightforward manner. LS represents the front as a level
set of continuous functions. LS simulations are simple, which is an advantage, especially
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when computing the curvature. LS is similar to PF [82] as it also interchanges the interface
with a field variable; however, it requires the knowledge of the direction in which the
solid front is advancing (along with its velocity and calculation of the normal vector from
the interface) [83].

Tan et al. [84] utilized a LS simulation that combined the features of front-tracking and
fixed-domain. A domain decomposition of eight domains was performed using the Cornell
CTC supercomputer [85] for 5 h, while the 3D simulation of a single dendrite required
12 h with 16 nodes (each of the nodes consisted of two 2048 MHz CPUs). They were able
to prove that the method provides accurate tracking of the interfaces, computation of the
heat/mass/momentum transport avoiding boundary conditions, adaptive meshing, and
the capability of multiple solid phases. The research involved a reasonable mesoscale value
for a mesh width of 12.2 µm for the diffused interface for a full mesh of 1024 × 2048. In
another study, Tan et al. [86] modeled multiple dendrite interaction with undercooling
in the front using a LS method in a 3D domain. A solidification speed of 3000 µm/s and
thermal gradient of 1400 K/cm was required for nucleation and is shown in the simulation
below (Figure 4).
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The LS method is a helpful alternative to PF to avoid the asymptotic analysis needed
for the PF method [62,87]. It is an extension of front tracking methods, where energy
conservation issues derive from discretization errors. This is based on the direct application
of temperature boundary conditions and the computation of heat fluxes, which was first
addressed in Stefan problems [62], where the interface velocity is calculated from interpola-
tion of the heat flux nodes near the interface. A LS method is useful for a direct calculation
of the growth and shape of the solidification of dendrites without the need to apply the
boundary condition explicitly at the freezing interface. Using a fixed FE grid, LS avoids the
need for moving or adaptive gridding while providing an explicit and accurate tracking
of the interface front [88]. Gibou et al. [89] provide a technical analysis of the LS methods
and their applications in the computational review, which provides insight to adaptive
Cartesian grids and parallel architectures.

2.5. Dendritic Needle Network

DNN is another novel method that is featured with respect to simulating the complex
structure of dendrites. A mesoscale simulation resolution is needed for this, as each branch
of the dendritic grain is considered a thin needle crystal, modeled as a network. PF and CA
simulations are used to predict the dynamics of the individual branches for solidification
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or complex dendritic networks at a scale much larger than the diffusion length. Tourret
and Karma [90] created a 2D multiscale model for DNN for both isothermal and directional
solidification that was validated through the comparison with analytic solutions. This DNN
approach allows for investigations into the dynamics and stability of spatially extended
dendritic arrays. The optimization of this model was proven to be four times faster than
normal PF simulations. A 3D DNN simulation was scaled from 2D by defining the flux
intensity factor (FIF), which is the strength of the concentration gradient at the tip of the
needle. This is comparable to calculating the stress factor of a crack’s tip, which is calculated
using a contour integral and modeled as a parabolic tip. The main discrepancy for a 3D
analysis is caused by Laplace’s equation having no solution for a line terminating at a
single point, which was accounted for by considering the solute flux intensity for a needle
of finite thickness. The results were compared with the microscopy of a sample from
NASA’s microgravity solidification experiments, which showed a similar characteristic
scale of the array spacing. Tourret and Karma [91] elaborated on this 3D DNN model
using the same parameters with isothermal and directional solidification. An Al-7 wt.%
Si alloy that was modeled in the previous microgravity experiment was analyzed with
more scrutiny. They utilized a new 2D formulation for thick branches with paraboloidal
tips. The comparison of the 3D simulations to samples from the CET in the Solidification
Processing Project (CETSOL) [92] is shown in Figure 5. The simulation results of DNN,
featured in white, followed a similar primary dendritic spacing to the markers of the
samples featured in purple. This research provided a basis for quantitatively predicting the
full 3D microstructure spacing of individual branches, which determine the mechanical
strength of the structure.
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Figure 5. Cross-section microstructure comparison of the DNN simulation (left) to the polished
microgravity sample (right) [91].

Tourret et al. [93] expanded on the DNN research by focusing on the isothermal
growth of an equiaxed grain in a supersaturated liquid in 3D. Using PF, needle-based, and
envelope-based approaches, benchmarks for an undercooled isothermal equiaxed growth
were used to compare steady-state growth predictions. The theoretical Ivantsov solution
provided the Péclet number that formed the basis of comparison, scaled with respect to the
tip radius and velocity. The comparison of the model types is shown in Figure 6. While
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the lack of truncation radius bounding was apparent in the shapes, the coarseness of the
dendrites caused the velocity to decrease due to the effect of the boundaries.
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using a solute super-saturation (Ω) of 0.25 [93].

Nonetheless, this illustrates the effectiveness of DNN and grain envelope models
(GEM) at reproducing PF results with reasonable accuracy. This comparison of models fea-
tures an operational compromise between resolution and computational efficiency. While
accuracy is important for large-scale simulations, multiscale models enable predictions of
primary dendritic spacings, similar to industrial casting processes [94].

In context with PF, DNN solves a broad range of phenomena, where strong assump-
tions are made for the mesoscale models. Normally, these models do not account for the
detailed evolution of the solid/liquid interface. DNN’s representation of the dendritic
structure as an array of needles allows for both steady-state and transient growth regimes to
be described while accounting for the diffusive interactions between them. This bridges the
PF approach with coarse grained stochastic models. Multiscale DNN allows for convective
effects to be more effectively studied. Most recently, Isensee and Tourret [95] compared
the oscillatory growth behavior to X-ray in situ imaging, identifying the fundamental
mechanisms in which the gravity-induced buoyancy alters the dynamics of the crystal
growth. DNN is a helpful approach for scaling simulations of morphology; however, in
order to predict realistic microstructural evolution, incorporating fluid flow is crucial.

To compare the simulation methods that were just described, it is essential to produce
simulations of a similar nature. However, as not many simulations have been created
for this purpose, an analysis of the most outstanding simulations discussed in the above
sections will serve as the basis for comparison (Table 1).

Table 1. Comparison of the simulation techniques.

CA [53] PF [74] LS [84] DIT [77]

Hardware 4 NVIDIA RTX 2080 Ti GPUs TSUBAME 2.0 CTC supercomputer single CPU
Compute time 27.42 min 288 h 5 h 11 h

Domain size (mm) 5 × 2 × 0.5 3.072 × 3.078 × 3.072 12.5 × 25.0 1.2 × 0.6
Mesh size 768 × 768 × 768 4096 × 4101 × 4096 1024 × 2048 600 × 1200

Monte Carlo (MC) simulations have also been widely used in studying solidification
and grain growth processes as they allow scientists to model and predict how microstruc-
tures/grains evolve over time [96,97]. The Monte Carlo method involves making random
changes to the system and then deciding whether to accept or reject the change based on a
probability that depends on the free energy of the system [98]. This deterministic method
is used to simulate grain boundaries on a large-scale, which is featured in the section for
additive manufacturing (AM).
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3. Mathematical Methods for Solving Transport Phenomena

The complex physics associated with the solidification process requires solving a
number of differential equations for heat transfer, diffusion, fluid flow, and phase transfor-
mations. The numerical methods for solving these equations often include finite element
(FE), finite difference (FD), finite volume (FV), and lattice Boltzmann (LB). The first three
are compared with respect to each other due to the many similarities shared between them,
while LB is featured separately. Solving the transport phenomena can be accomplished in
either the mesoscale (FE, FD, FV) or microscale by using molecular dynamics (MD). Solving
a large-scale problem is impossible using this MD method; however, LB bridges the gap
between the two by not considering each particle’s behavior in isolation, as per MD. LB
uses a distribution function to represent the behavior properties of a collection of particles.

The conventional method for the mesoscale is usually divided into two approaches,
continuous or discrete. Using the continuous approach, an infinitesimal control volume
and the conservation of energy, mass, and momentum are used to obtain partial differential
equations, which is difficult to solve with complex geometry, boundary conditions, and
nonlinearity. This problem is solved by discretizing the domain into finite elements, grids,
or volumes in a macroscopic scale. Physical properties such as temperature, pressure, and
velocity are represented at nodal points or averaged or assumed linearly/bilinearly across
a finite volume/nodal point [99].

3.1. Finite Element/Difference/Volume

Many scholars have used FE, FD, and FV methods to solve the governing partial
differential equations. Time and space are structured in a grid, where a continuous field
variable is approximated at discrete grid points [100]. When extending into higher volumes,
the FV methodology enables conformation to an irregularly shaped grid compared to
the FD method’s cartesian grid. The FE method divides a domain into discrete units,
which is distinguished by the connectivity between the nodes and is suited for irregular
structures. The trade-off between resolution and computational speed is dependent on the
methodology chosen.

The FE method is also used to solve the governing equations for solute transport. Feng
et al. [101] used FE to implement a fluid flow model for a mesoscale simulation. Utilizing
the Galerkin FE method [102], an elemental matrix was developed and solved using an open
access program C++ library (IML++) to solve both systematic and nonsystematic linear
systems [103]. These resources have been helpful in developing models for many uses such
as quantitatively predicting the fluid flow behavior induced by solidification shrinkage.
The resulting mesoscale simulations were measured for variations in permeability from
the shrinkage (Figure 7). With an average grain size of 300 µm, the domain contained 8000
realistic grains. The methodology for scaling will be discussed in more detail in context
with the dendrite interactions and competitive growth.
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FV, on the other hand, is functionally designed to work in a 3D environment. Finite
volume works as an integral scheme across an area, similar to FE, in which the chance
for error is minimized. Integral schemes are computationally slower than differential
schemes (FD), but this is dependent on the boundary conditions. FV is a conservative
formulation that allows for a mesh to apply boundary conditions for a flow [94]. FV is
effective for coupling with CA, which was used to study artificial anisotropy [104]. Much
effort has been made to simplify this process in mesoscale [105], for example, by creating a
framework for FV [106] for casting processes (OpenCast) or integrating with sharp solid–
liquid interfaces with the Eulerian–Lagrangian framework [107]. Navier–Stokes is unable to
simply combine thermodynamics with the source term, therefore, FV is a common strategy
for integrating these extra physics. LB, however, can naturally inject the complex physics
of combining thermodynamics with the source term into the model for applications such
as phase changes [101].

Despite their challenges, finite methods have provided useful integrations for model-
ing fluid flow with respect to meshing. Integration was applied as a moving mesh algorithm
for quantitative PF equations by Karma et al. [108]. The sharp interface equations define
the dendrite evolution in terms of the diffusion equation, which is expressed in a moving
frame. Li et al. [109] expanded on the moving mesh framework for 3D multiphase flows.
This adaptive grid method is useful for the disparity between the relatively small thickness
and global length scale, which requires a locally refined grid inside the interface. This
research has inspired others to utilize these methods for greater potential. Wang et al. [110]
used these adaptive FE methods to measure the scalability of these domains. Comparing
the tip velocities for undercooling cases, complex dendrites were studied for the potential
to simulate more realistic physical problems (with a CPU that required about 60 h of time
for 47,905 nodes). This numerical technique presents a framework for multicomponent
(MC) alloys. The previously stated research has its limitations with respect to computation
and time. FE has been used historically to model the transient thermal stresses and residual
stresses from laser heat treatments [111]. With this context, it requires a higher degree of
computation for realistic models. 3D finite element models provide a model for scalabil-
ity [112–114] while other algorithms can enable multiscale complexity. Prakash et al. [115]
provide a review on melting and solidification strategies in general purpose computational
fluid dynamics software, which typically employs these types of methods.

3.2. Lattice Boltzmann

The LB method is a relatively newer approach for solving the solute transport and fluid
flow. It is different from conventional modeling techniques as the system is modeled as a
collection of particles moving on the discrete computational space’s lattices. It is powerful
for simulating both single and multiphase flows in complex geometries, which gives it an
advantage over the conventional Navier–Stokes solvers [116–119]. It is very efficient in
describing the fluid flow computationally [120] and can be coupled with different interface
capturing methods. Interesting observations about the movement of dendrites can be made
using large-scale LB models such as translation and rotation [121–124].

LB has been an important tool for our research on the large-scale simulation of den-
dritic solidification. Jelinek et al. [125] were able to visualize the flow of an Al-3 wt.% Cu
alloy melt in 2D (Figure 8). The arrows represent the velocity vectors of the melt, while
the contours represent temperature, where cooling occurs at the back and front as heat is
applied at the sides. By incorporating the effects of melt convection, solute diffusion, and
heat transfer, LB was able to be scaled using MPI and matched to CA using an identical
mesh. LB’s simple formulation is split into two steps: collision, which is completely local,
and streaming, where MPI is used to transfer the distribution functions.
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LB is very suitable for parallel processing, as this method does not rely on the assembly
of a large global matrix, which makes CA a natural approach for coupling. However, LB
has also been coupled with PF [121,126], where the equations of motion are solved for
tracking the translational and rotational motion of the solid phase. Medvedev et al. [122]
proposed a mesoscopic scheme to simulate dendritic solidification with both the motion
and rotation of grains, which laid the framework for larger-scale simulations. This scheme
was translated into 3D for multiple solid particles by Subhedar et al. [127], which optimized
the diffuse interface-flow simulations. Software such as OPENPHASE [128] utilize PF and
LB methods to combine dendrite growth simulations with fluid dynamics.

LB has advantages that are clear; computations are local and easy to handle in terms
of complexity. It is efficient for parallelization while handling accuracy, numerical stability,
and constitutive versatility. Therefore, the transport phenomena can be computed in a
variety of use cases outside of fluid flow such as reaction systems, phase changes, material
processing as well as heat transfer. Typically, simple simulations are performed using LB;
however, with greater computation power, LB can be utilized for more than one use-case in
a single simulation such as by studying phase change in combination with heat transfer.
Ren et al. [129] verified this with experimental temperature profiles. They studied the
influence of the dispositive position and relative position of the adjacent component and
analyzed it with the metal droplet deposition method (MDDM) under heat conduction.
LB was used to predict the heat transfer and phase change in the multi-layer deposition.
Sakane et al. [130] used a domain decomposition method to simulate the free growth of
an equiaxed dendrite in a domain of 2 × 2 × 6 mm3. This allowed for multiple-GPU
parallelization, where the boundaries moved to divide the dendrite evenly.

When the heat transfer equation is solved in large-scale simulation for most metals,
since thermal diffusivity is 100–1000 times larger than the solute diffusivity, the temporal
resolution required for the solute diffusion equation is too fine for the energy equation [35].
If all the numerical models for simulating microstructure growth are explicit, then separate
spatial scale and temporal scales for each physics can be employed to alleviate the problem
and reduce the computational time. In other words, unique grid sizes and time steps
can be used for different physics. The grid size and time steps are selected through the
Courant–Friedrichs–Lewy condition [131] for each physics. However, the length scales
should be fine enough to capture the secondary dendritic arm spacing (SDAS) and inter-
dendritic flow for fluid flow and solidification growth features. This will result in a much
coarser grid for fluid flow that reduces the overall computational cost [132]. This method
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has been successfully applied by many researchers to reduce the computational time of
large-scale simulation [34,35,132,133]. Recently, our group [133] studied the accuracy and
computational efficiency of a multiple grid and time step scheme for a natural convection
benchmark problem. We showed that through the appropriate selection of the grid and time
step, computational savings up to tenfold could be obtained compared to when the same
time step and grid size were used. The model was also accurate and only lost 9% accuracy
for the worst case [133]. Chen et al. [134] presented a critical review on LB methods and
applications that focused on solving multiphase problems.

4. Computational Approaches

In recent years, general-purpose computing on CPUs and GPUs with MPI and CUDA
has been employed to speed up large-scale simulations of the solidification microstruc-
ture [135–141]. When MPI is used for parallelization, the computational domain is de-
composed into finite subdomains in all directions. The information exchange between
subdomains is carried through halo regions or ghost nodes. Based on the location of
the subdomain, ghost nodes are either physical boundary conditions or contain neighbor
subdomain boundary information. The ghost nodes are updated at each temporal iteration
using MPI and the intercommunication between the subdomains [132]. The host program
(CPU) divides the computational domain into thousands of thread blocks. Each thread
block consists of a multiple of 32 threads. The kernel function is executed by the total
number of threads in parallel in the device. It was shown that the computation time for a
GPU with massive computation capacity and bandwidth is two orders of magnitude faster
when compared with a serial CPU core [142].

Under certain conditions, CPUs are effective for simulations in comparison to GPUs.
Sun et al. [143] characterized the accelerated performance quantitatively based on the
total node points run on a single Intel Xeon E5-2699 v4 core and four NVIDIA GPUs.
Figure 9 shows that at a lower number of nodes, the GPU efficiency was low. At 643 nodes,
the speedup ratio was only 8.83, while the 6403 case had a speedup of 155.29. The data
communication between the devices was time consuming, while the calculation source
of the GPU was largely unoccupied. The decline in speedups (10243 nodes = 152.30)
is believed to be caused by the time used for output. Furthermore, the GPU efficiency
increased as the number of nodes increased. With greater development, the acceleration in
GPUs can be doubled by using shared memory [142], which is located at and shared by the
same block.
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Using multi-GPU cellular automata models, Wang et al. [144] simulated solidification
structures in continuous casting blooms, which is known to be a computationally time-
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consuming process. The model utilized a heterogeneous GPU-CA parallel algorithm to
optimize the calculation parallelism and a multi-stream communication scheme to overlap
computations and data transfers. They validated the model by the analytical LGK model
and applied it to simulate the solidification structure. In comparison to single-core CPUs,
the proposed model achieved speedups of 700× while maintaining similar calculation
precision and producing results with minimal relative error.

The evolution of technology has given rise to a diversity in applications. Computer
processing for large-scale simulations has been improved due to the number of processors.
Supercomputers were the source of this amount of computation required, while CPUs
were soon replaced by GPUs, which allowed for even faster calculations. Eventually, the
bottlenecks for the speed were determined by the programming. Innovations in GPU
technology such as NVLink, which allows for direct communication between GPUs, were
assisted with toolkits such as NVIDIA’s CUDA to program the GPUs directly. TSUBAME 3.0
(the most current of the series of supercomputers based at the Tokyo Institute of Technology)
employs this technology, allowing four 20 GB/s data link per GPU for a total of 47.2 PFlop
performance in half-precision [145]. MPI has shown effective use throughout trials, and the
combination of techniques and optimizations has been proven to show significant success
in GPU-rich supercomputers.

Jelinek et al. [125] produced a large-scale simulation for 2D dendritic growth, which
was accomplished through MPI parallelization. Parallel programming utilizing this type
of communication between the distributed-memory systems is the standard for large-
scale simulations. The programming is approached using a single program, multiple data
streams (SPMD) [146]. SPMD uses each processor, executing the same program on different
data for MPI processes. Using a notion of rank to distinguish processes, the point-to-point
communication is the fundamental primitive for sending and receiving. The scalability
enabled this type of research to utilize Oak Ridge National Laboratory’s Cray XT5 system
(Kraken supercomputer) [147,148]. The dendrites were grown to a reasonable size in an
“incubation region”, then the results were stored to restart using the scalability of 41,472 of
a total of 112,000 cores of the Kraken supercomputer. Figure 10 shows the final snapshot of
the dendrite incubation domain, where the magnified portion shows the flow of the alloy
melt between solidifying dendrites.

Metals 2023, 13, x FOR PEER REVIEW 15 of 42 
 

 

snapshot of the dendrite incubation domain, where the magnified portion shows the flow 
of the alloy melt between solidifying dendrites. 

 
Figure 10. Large-scale domain of dendrite growth with enlarged composition analysis where the 
colors in the background and dendrites are represented as the solute concentration. Both the size 
and color of the arrows represent the magnitude of velocity [125]. 

The parallelization required for this amount of detail for such a large domain is only 
possible with a technique of spatial domain decomposition. This popular method of split-
ting the spatial domain into equally-sized domains is specific to the number of cores used 
for the computation. The benefit of the CA-LB model is that only the subdomain boundary 
values need to be exchanged between the subdomains [125]. Implementing this in binary 
Hierarchical Data Format 5 (HDF5) yielded a high efficiency that resulted in a 50% reduc-
tion in the memory and computational time required, enabling high scalability. 

Continuing this research, Eshraghi et al. [137] utilized the CA-LB model to simulate 
3D dendrite growth in a macroscale domain of approximately 36 billion grid points (1 
mm3). The scale-up performance (strong scaling), where the number of processors was 
increased with the fixed domain size, was compared with the speed-up performance of a 
fixed processor load by scaling the domain size (weak scaling). Using this combination, 
the entire domain was filled with dendrites, as shown in Figure 11. The competition be-
tween the dendrites shows that the ones with orientations other than 90 degrees were 
blocked by the perpendicular dendrites. 

Figure 10. Large-scale domain of dendrite growth with enlarged composition analysis where the
colors in the background and dendrites are represented as the solute concentration. Both the size and
color of the arrows represent the magnitude of velocity [125].

The parallelization required for this amount of detail for such a large domain is only
possible with a technique of spatial domain decomposition. This popular method of
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splitting the spatial domain into equally-sized domains is specific to the number of cores
used for the computation. The benefit of the CA-LB model is that only the subdomain
boundary values need to be exchanged between the subdomains [125]. Implementing this
in binary Hierarchical Data Format 5 (HDF5) yielded a high efficiency that resulted in a
50% reduction in the memory and computational time required, enabling high scalability.

Continuing this research, Eshraghi et al. [137] utilized the CA-LB model to simulate 3D
dendrite growth in a macroscale domain of approximately 36 billion grid points (1 mm3).
The scale-up performance (strong scaling), where the number of processors was increased
with the fixed domain size, was compared with the speed-up performance of a fixed
processor load by scaling the domain size (weak scaling). Using this combination, the entire
domain was filled with dendrites, as shown in Figure 11. The competition between the
dendrites shows that the ones with orientations other than 90 degrees were blocked by the
perpendicular dendrites.
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Figure 11. The 1-mm3 domain of a 3D columnar dendritic microstructure simulated from 4000 initial
seeds and approximately 36 billion grid points [137].

Shimokawambe et al. [135] were able to perform the first petascale PF simulation of
dendrite growth that we know to date. The process was implemented locally on a single
GPU using CUDA; then using 4000 GPUs, MPI was implemented, so host CPUs were used
as a bridge for the data exchange. They used overlapping techniques to utilize both GPUs
and CPUs to optimize the scalability, which were defined as Hybrid-YZ and Hybrid-Y.
First, Hybrid-YZ exploited the data independency for array elements by dividing each
subdomain into five regions, which were computed separately. The CPU cores were used
to compute four y and z boundary regions, while the GPU was used to compute inside the
region to produce halo regions. Hybrid-Y instead assigned only boundary regions in the y
orientation of the boundary to CPUs [146]

Hybrid techniques for computational simulations have been the focus of research since
modern high-performance computing (HPC) systems have been introduced to simulations.
Yamanaka et al. [142] proved that GPU-accelerated PF simulation was faster than its CPU
counterpart by two orders of magnitude. Heterogeneous computing has resulted in the de-
velopment of many frameworks [149,150]. These many frameworks have been developed
to enhance the computation and portability of these HPC techniques. “Multiphysics Object-
Oriented Simulation Environment” (MOOSE) [151], FEniCS [152], “Portable, Extensible
Toolkit for Scientific Computation” (PETSc) [153], Mesoscale Microstructural Simulation
Project (MMSP) [154], and Structured Adaptive Mesh Refinement Application Infrastruc-
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ture (SAMRAI) [155] are a few resources that have been built upon the models previously
discussed. High performance interconnection networks [156] have also optimized research
regarding many of the features described below.

5. Features and Applications

There are many unique use-cases for large-scale simulations of the solidification
microstructure. The original focus of initial works was to provide a large macroscale
domain for the direct numerical simulation of dendrites. The simulations grew in both
dimensions and scale. Stochastic-based methods of modeling [54,55] have been used
to produce larger simulation domains, but researchers had to develop special dynamic
allocation techniques to minimize the computation costs for the large number of cells [57].
The trade-off between 2D and 3D is important for distinct use cases. A dendrite growing
in a 3D domain versus a 2D domain in the presence of convection will experience less
effect of flow on its growth and morphology, which is because of the obvious reason that
the moving melt can flow around the dendrite arms in 3D. We studied the comparison
of natural convection and forced convection on a single dendrite evolution in 2D and 3D
using LB [157]. 3D dendrites grow faster than 2D, while secondary arms are more likely to
form. Jegatheesan et al. [158] studied the effects of distributing nanoparticles in a buoyancy
driven convection solidification by using an enthalpy-based method. When considering
methods for convection, a reduction in volume from solidification (shrinkage driven flow)
was not considered as it was studied only in 2D. However, adding a third dimension can
improve the nanoparticle transport due to the enhanced diffusion, which is the result of
the extra simulated room for the convection. This comparison serves as a helpful example
of how observations in 2D can provide effective results. The simulation also highlighted
the accumulation of nanoparticles at the grain boundaries while the presence of a large
number of dendrites or even nanoparticles, with or without convection, could reduce the
growth of a dendrite.

In a 3D space, competitive growth can be studied in detail, which cannot be expressed
in 2D. When a dendrite enters the space of another, dendritic branches can block growth
based on orientation. Sakane et al. [138] studied the dendrite interactions in the direc-
tional solidification of an Al–Cu binary alloy bicrystal using 512 GPUs with 10243 meshes.
A PF-LB model was utilized with MPI to demonstrate that 3D phase field simulations
could be performed within a reasonable computation time (12 h) while showing tertiary
dendrite growth.

Another helpful comparison of 2D and 3D simulations of dendrite growth was accom-
plished by Sun et al. [143] by comparing the effectiveness of the MC PF model. In this case,
a 2D simulation of Ti6Al4V was performed using Al and V solute simultaneously, which
was a first of its kind. The results showed that the driving force and growth were magnified
artificially in the pseudo-binary in comparison to the MC (ternary) PF model, violating the
sharp interface (Figure 12). As a result of the benchmark comparisons, the MC PF model
was scaled into a 3D model using a 5123 nodal box with a capillary length of 0.840 µm.
Using four Tesla K80 GPUs for a total of nearly 20 k cores, the resulting simulation showed
that the inhibited growth of the shortest dendrite by diluted Al (V) was merged by its
surrounding dendrites. This phenomenon has been studied experimentally in AM for the
incremental arm spacing and coarsening of primary dendrites.

5.1. Dendrite Interactions and Competitive Growth

Dendritic growth is dependent on many factors that can generate many different
phenomena. These effects need to be understood in detail to be able to predict the changes in
the microstructure. Traditionally, the Walton and Chalmers competitive growth model [159]
is utilized for the selection of growing multiple dendrites. Nickel-based superalloys have
shown some astonishing growth phenomena [160–162] that cannot be simulated using
the conventional model. First, this section will highlight the traditional model, then will
expand on the phenomenon and other effects associated with competitive growth.



Metals 2023, 13, 1169 17 of 40

Figure 12. (a) Comparison of the pseudo-binary model (top) and MC model (bottom); (b) 3D
simulation of 99 nucleation seeds for 3D view (top) and top view (bottom); (c) 2D evaluation of the
solute concentration for Al (top) and V (bottom) solute [143].

In 2017, Yang et al. [163] used PF simulation to create a 3D dendrite growth in a nickel-
based superalloy. The results were generated using a single NVIDIA GTX1080 GPU for a
total of 774.292 GFLOPS (giga floating-point operations per second). From the dendrite arm
spacing to inclination angles, the dendrite morphology evolution during this superalloy’s
casting can be understood to optimize the mechanical properties. The simulation was
accomplished using a simplified approach by assuming the alloy as a pseudo-binary alloy,
which was first popularized by Raghavan in 2012 [164]. PF has the capacity to simulate both
isothermal and non-isothermal dendrite growth, which makes it versatile for applications
such as asynchronous concurrent GPU computations. This allowed Yang et al. to show the
interactions between the dendrites in an equiaxed multi-dendrite domain, which caused
the dendrite arms to grow with a deviation from their initial crystal orientations [163]. As
they fill the entire domain, the dendrites coarsen and coalesce, causing the melting of the
secondary arms.

The comparison was accomplished using directional grain growth, allowing the height
to be competitive. This illustrates that the growth is dependent on both the inclination
angle and the position of the adjacent dendrites. This simulation showed how the favorably
oriented (FO) dendrites outperformed the unfavorably oriented (UO) dendrites. This
simulation was performed using an asynchronous concurrent algorithm to show that
774.29 GFLOPS were obtained in 5123 computational grids on a single NVIDIA GTX1080
GPU. The growth of the dendrites obtained a height of 6.42 mm. However, in contrast
to this study, the following study illustrates conditions where the opposite is true (UO
outgrows FO).

Takaki et al. [165] published a study focused on simulating the competitive growth
with converging grain boundaries in a large domain of 3.072 × 6.144 mm2. The directional
solidification of 3D dendrites was simulated to compare the effect of unfavorably oriented
(UO) grain inclination angles. Using the Walton–Chalmers model [159], Takaki modeled a
contrasting phenomenon where at the grain boundaries, the UO dendrites overgrew the
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FO dendrites. This unusual overgrowth was more common when the thickness of the
sample and the UO grain inclination angle were small. The secondary arms had higher
growth at boundaries. Tertiary arm growth was enlarged at the convergence with the
domain boundary.

Takaki used this competitive growth model for 3D analysis, where a collision of FO
and UO grains occurred in the middle of the domain to form a straight GB. The FO and
UO grains shared different properties, where the arrangements of the dendrites gradually
became ordered [124]. The FO grains form a hexagonal arrangement, while the UO grain
migrates in a lateral direction. This occurred as the UO dendrites penetrated deeper into
the FO grains with respect to the reduction in the angle of orientation. This interaction
was termed as “space-to-face interaction” [124]. Figure 13 shows the convergence of the
differently oriented grains with respect to different degrees of orientation. This perspective
from above the columnar dendrites shows that the UO dendrites with a lesser degree
of orientation had a greater convergence, which is expected from previous competitive
growth patterns.
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In large-scale grain growth, the Walton–Chalmers model is largely accepted as the
general competitive-growth model for grain selection. In this model, FO grains block UO
grains. In contrast, when analyzing primary arm spacing, Fourier transformation (FT),
Voronoi decomposition, and minimum spacing tree have been employed to evaluate the
arm arrays [57]. This has been the basis for new models to be developed for greater accuracy.
Voronoi tessellation (VT) has been applied to approximate the morphology of equiaxed
dendritic grains. The dendrites are formed from a mesoscale domain, where Voronoi
grains are formed in the triangulation technique exemplified below (Figure 14) forming a
polyhedral structure. These assumption models allow for complex model domains to be
generated. For example, Feng et al. [101] simulated a 3D semi-solid microstructure using
1000 grains, where VT was used to approximate the final grain morphology to compare the
volumetric inflow caused by shrinkage. Permeability will be discussed in more detail in a
later section.

In order to evaluate the arrays, ordering, and spacing of primary arms, especially
in 3D directional growth, different methods have been employed historically such as
minimum spacing tree [166], Fourier transformation [167], Voronoi decomposition [168],
and many others [169–172]. Using a modified Voronoi decomposition technique, where
the small sides are removed from the Voronoi cells, the primary arm array was eval-
uated by Takaki et al. [173]. The hexagonal pattern showed typical-hepa defects that
decreased with respect to time for tilted columnar dendrites in a computational domain of
1.152 × 1.152 × 0.768 mm3. These enabled predictions of the primary arm spacing, which is
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crucial for the integrity of the material. This was ultimately possible through a convergence
analysis of the tip undercooling of the dendrite/cell.
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The ability to predict dendrite spacing is important for permeability research, as the
fluid flow can only be researched under certain conditions. Porosity, which is an important
type of defect that can form from casting, can be caused mostly by either shrinkage, where
the volume changes upon solidification with a restricted feeding of the liquid, or the
condensation of dissolved gases in the melt upon freezing. This has a strong negative effect
on ductility and fatigue life, where internal pores create initiation sites for cracks and local
stress concentrators [100]. As convergence occurs, permeability is another condition that
requires a lot of research for the consideration of realistic predictions. Li et al. [174] produced
a review article on Ti–6Al–4V solidification simulations for AM, where competitive growth
is featured in context to different modeling techniques.

5.2. Columnar to Equiaxed Transition

In the context of design, columnar or equiaxed grains may be desired depending on the
expected properties. The transition between columnar and equiaxed has been investigated
for many years, where heterogeneous nuclei are commonly used to promote equiaxed
grains. An example where equiaxed grains are preferred is for processes of the direct-chill
casting of aluminum alloys [175]. However, its high angle grain boundaries can reduce
creep rupture life. Therefore, it is important to control the grain structures using conditions
such as high thermal gradients and low growth rates. We recently performed a 3D PF
simulation of CET for an Inconel 718 alloy in a domain of 0.2 × 0.1 × 0.4 mm3. A CET
solidification map was created to compare the growth rates and temperature gradients
for the evolution of dendrites in equiaxed, columnar, and mixed regimes, as depicted in
Figure 15. A model was developed to predict the primary dendrite arm spacing (PDAS) of
columnar growth in a wide range of temperature gradients, solidification rates, and initial
grain sizes. This novel approach is effective for optimizing process parameters for melting
and solidification on a preexisting substrate such as in AM or welding applications.

Studies to determine the mechanisms behind CET have been a popular focus for
research. Hunt [176] proposed an analytical model to predict CET based on the potential
for equiaxed grains to nucleate ahead of the columnar front’s undercooled region. The
solid fraction was calculated using the truncated Scheil equation empirically to relate the
cooling rate to the tip undercooling. Next, it was modified by Gäumann, Trivedi, and Kurz
(GTK model) [177] to include the non-equilibrium effects of rapid solidification. Hunt’s
model shares the same relationship for CET based on key parameters of pulling velocity,
thermal gradient, and composition.

The process of predicting the CET has been demonstrated by comparing 2D (10 × 30 mm2)
and 3D (10 × 30 × 2 mm3) models using a stochastic model for alloy 718 [178]. CET begins
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earlier in the 3D simulation because the grain growth is not confined in the third (z)
direction, and there are more nucleation sites.
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Dong et al. [179] showed a situation where equiaxed grains were placed ahead of the
growth of the columnar front during solidification of Ni-based superalloys. This real-life
situation results in casting defects such as stray grains or “tree rings” [180]. This was the
precursor of the CET simulations, where it showed the gradual transition, realistic dendrites,
and complex solute concentration profiles. The size of the domain was 2.5 × 4 mm2 for
a total of 500 × 800 cells in the domain. In another work, Dong et al. [176] focused on
the solute interactions within the CET modeling. It was a unique finding that the solute
interactions were strong in the secondary and tertiary arms, while a weak interaction
between the solute and arms was observed in the columnar tips [1].

DNN provides a promise for describing the transient growth dynamics of higher order
branches, which normally relies on strong assumptions. Geslin et al. [181] effectively simu-
lated the CET in 2D, using DNN in a large domain with a 22.5 × 30 mm2 size. Using a sharp
interface model for directional solidification, they were able to observe complex phenomena
such as “circular growth” (branchless growth), abrupt and progressive transitions with
different grain structures. Therefore, when casting large samples in a crucible, the columnar
front that progresses toward the inside of the sample is accurately simulated, where the
slower solidification rates favor the nucleation of equiaxed grains [100]. Balasubramani
et al. [182] reviewed the origin of equiaxed grains in solidification within the context of
manufacturing treatments, which provides a greater understanding to the application of
these simulations.

5.3. Solute Transport and Segregation

Solute transport is a phenomenon that is very flow dependent and can have effects
on the development of the dendrites under well-defined thermal conditions. Effects on
dendrite spacing and symmetry have been notably studied [183,184]. Wang et al. [55] were
able to utilize a CA-FD model to simulate a controlled solute diffusion in the solidification
of a binary alloy. Using a 2D model, they simulated a tertiary dendritic arm growth from
a secondary dendrite arm, which was then blocked by another secondary dendrite. This
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was helpful in predicting the primary dendrite arm spacing. The average primary arm
spacing was found to be dependent on the current growing conditions and the way those
conditions were reached.

These features for prediction models serve as a helpful analysis to develop a real-life
understanding of the grain interactions. From interactions of both equiaxed and directional
grain growth, the competition models show a clear understanding of the evolutional inter-
actions. Even highlighting the transition between the two phases, comparing the mesoscale
interactions on a microscale level requires a manageable distribution of resources. The
prediction models for spacing utilize innovative techniques that provide a new understand-
ing of competitive grain growth, even within the same primary arm. The features for this
analysis have provided the foundation for more progress to be made with more complexity
in dendritic evolution. Solute plumes are a resulting situation that occur in a directional
solidification of Ga–In alloys. This solute-rich liquid that flies up is believed to be a crucial
factor that causes, during solidification, a freckle defect [185]. Takaki et al. [186] studied the
effects of natural convection in both 2D and 3D simulations. Performing a series of simu-
lations where gravity was changed, they were able to show that as the gravity decreased
in the negative region, primary arm spacing increased. Furthermore, the downward flow
enhanced the growth of secondary arms, as unstable dendrite growth is caused by a large
upward flow. Figure 16 shows the differences in the dendrite tips in 3D, while 2D shows
the plume and freckle-like solidification defects forming. Using PF-LB simulations on
TSUMBAME 2.5, they were able to simulate a domain of 0.384 × 0.384 × 1.536 mm3 with
95 h of computation time.
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Figure 16. Dendrite morphologies and solute concentration distributions for 3D (a,b), and 2D
(c,d) when comparing different forms of gravitational acceleration [186].

The flow influences both the solute transport variations and the upstream–downstream
dendritic growth. The effects of convection can limit the downstream growth, while the
upstream dendrites are promoted by the convection-induced anisotropy. The solute plumes
are the result of gravity assisting in the direction of the dendrite growth. The presence of
convection can change both the time- and length-scales, which can result in differences
in the morphologies from the purely solute transport. Our team studied the buoyancy-
induced flow during the directional solidification of 3D thin domains by comparing the
Al–Cu and Pb–Sn alloy systems [187]. Sn is lighter than Pb, where more solute is rejected
into the melt and its concentration around the interface increases. Upward buoyant force
results from the decrease in the density of the liquid mixture around the interface. This
large solute boundary layer that forms with a peak at the center is shown in Figure 17 and
is also referred to as a chimney. This phenomenon has the potential to be stable during the
solidification process, which carries the solute up, forming a recirculating flow. This can
lead to decreased growth or remelting in this region during later stages of solidification
and can form a freckle defect once completely solidified.
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Macrosegregation is the solute composition inhomogeneities at a macroscopic scale
of a casting [188]. Heat treatment can remove these imperfections; however, spatial varia-
tions of mechanical properties can occur with respect to the nature, amount, and size of
these defects. Gross compositional defects such as the formation of freckles or segregated
chimneys is caused by macrosegregation. This is associated with the following causes:
solidification shrinkage [189–192], natural and forced convection [193–195], grain move-
ment [196], mushy deformation [195], and cavitation bubbles [197]. Fragmentation has
been researched as an important phenomenon using large-scale simulations as it is respon-
sible for grain refinement [198–201]. It is undesirable for certain manufacturing processes
such as single crystal turbine blade casting [202] or AM of metastable β-Ti alloys [203,204].
Process parameters can define the formation of freckles that can be caused by remelting,
where there is a sudden rise in temperature, deceleration of a growth front, or a change
in flow conditions. Simulation is an effective method to study this capillary force driven
process [59].

Kao et al. [132] developed a large-scale model to simulate freckle formation for the
casting of Ga-25 wt.% In. Freckles form due to the remelting and fragmentation of dendrite
arms by thermosolutal fluid flow, especially for alloys where the partitioned solute is
lighter than the bulk fluid. Examples of such phenomena include Ni-based superalloy
and Ga-25 wt.% In. The authors utilized the LB method for fluid flow and CA to simulate
the solidification growth. The coupling between these two main equations is achieved
by natural convection force and energy and solute transport equations at each node, so
they utilized the MPI parallel algorithm to accelerate the large-scale simulation [205].
The formation of the freckles in the simulation is shown in Figure 18. The domain for the
numerical model was a total of 32 × 32 × 0.16 mm3, which is equivalent to 164 million cells.

Zang et al. [185] studied a comparison of forced and natural convection simulations
in both equiaxed and columnar dendrite evolution. Understanding the effects on an Al–
Cu alloy using PF-LB in an AMR algorithm, they were able to illustrate some unique
phenomena. Dendritic fragmentation, angulation of dendrite arms, and splitting are
dendritic growth behaviors that were the subjects of interest for the forced convection
simulations, where the direction and intensity of the convection had a significant influence.
Fragmentation occurred regardless of orientation for columnar dendrites, but was instead
dependent on convection type.
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Freckle formation, also known as channel segregation, is a unique byproduct of vac-
uum arc remelting (VAR). The solute is ejected upward and solidifies as freckles. Research
has been conducted in understanding the segregation defects on the VAR process, simulat-
ing the ingot evolution under different arc distributions [206]. However, a lot of detail can
be obtained by employing large-scale simulations of the microstructure, where solute trans-
port is a driving factor. Hecht et al. [207] provided a review on multiphase solidification,
where the effects of solute transport are mentioned in context to large-scale simulations.

5.4. Natural and Forced Convection

Forced convection has been a subject of interest for large-scale simulations as it has a
lot of influence on solute distribution. Research has provided context for dendritic growth
and compared the effects with and without convection. Another helpful comparison is
between natural convection and forced convection. Convection was originally solved using
NS solutions [208]. Simulations of dendrite growth with melt flow was first possible in
the 1990s using PF [209–211], while being limited to 2D [42,212]. Early simulations of 3D
were limited to a single dendrite [213], however, it is important to scale these algorithms
for complex microstructures. Yuan et al. [214] studied the effects of dimensionality on
dendritic growth simulations for convection by using a modified projection method of
NS. When the 2D flow has a blockage from the primary dendrite arms, the 3D flow has
the ability to wrap around the primaries. Therefore, it demonstrated that 3D simulations
are necessary to correctly predict unconstrained solidification microstructures. Forced
convection was studied by Jakhar et al. [215] in combination with thermal isotropy, where
pressure fields were solved using the SIMPLER algorithm. The model was extended to
multi-dendritic simulations with random distributions and orientations in order to study
microstructural evolution. Takaki et al. [186] performed a large-scale PF and LB simulation
(0.384 × 0.384 × 1.536 mm3) to study the effects of natural convection during directional
solidification. Comparing 2D and 3D, the effects of gravity were smaller for 3D, while the
average primary arm spacing increased as gravity decreased, similar for both. Downward
flow enhanced the growth of secondary arms, while upward flow, larger than a critical
value, could produce plumes and freckle-like solidification defects. Using the TSUBAME
2.5 supercomputer, the computation took about 95 h for 1.5 × 106 computation steps in 3D.

Computational cost has been a limiting factor for research on convection, where LB is
the most efficient for multi-GPU computation as the growth is able to be simulated with
the solid motion, liquid flow, collision, and coalescence of multiple solids, and subsequent
grain growth. However, much effort has been made to enhance this ability. Sakane
et al. [216] created a 2D simulation for a large number of dendrites (350) utilizing PF
and LB methods. Figure 19 shows the evolution of the solute concentration and flow



Metals 2023, 13, 1169 24 of 40

velocities, where a sedimentation path formed from the dendrites. Assuming inelastic
collisions, the coalescence of the grains was observed. The nuclei generated at the top of
the domain settled downward while growing equixially. The ability to scale performance
was widely studied in this research, utilizing active parameter tracking (APT) [217,218].
Tracking the execution time with and without APT was compared to grains with and
without motion, proving the efficiency of the model, where APT excels with convection.
The parallel efficiency of the model showed that a simulation could be performed in a
64x larger domain with only twice the amount of time compared to a single GPU. The
simulation was performed with 2048 × 2048 grid points and five grains per one GPU. APT
algorithms were employed to simulate coalescence-free grain growth within a reasonable
computation time [219].
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Zhang et al. [220] combined the PF and LB with a parallel AMR algorithm for several
studies of convection, both natural and forced, in 2D and 3D. They quantified the effect
of both convection and undercooling by comparing the length ratio of dendrite arms.
The investigation showed that as the undercooling decreased and the effect of convection
increased, the length ratio had a peak value. This was due to the decrease in the crystal
size compared to a higher undercooling. Second, the effect of gravity with a lateral force
of convection was studied, where columnar dendrites grew anti-parallel to gravity. The
accumulation of the solute from gravity stunted the growth; however, with the convection,
the primary trunks of the dendrites showed a constant deflection angle until reaching a
critical value. Sun et al. [221] used a 2D LB model to show that asymmetrical dendrites
grew faster in an upstream direction, while slower downstream. Studies like this can help
to optimize the solidification conditions for manufacturing by analyzing the effects of
convection on dendrite growth.

5.5. Permeability

Permeability predictions have produced an effective method to analyze the distinct
solidification conditions of the liquid flow through a mushy zone. Anisotropic porous
media use Darcy’s law, which is derived from the Navier–Stokes equation using an aver-
aging procedure [222]. Interfacial stresses occur when the solid fraction is high enough
for the solid to form a continuous structure. In a mesoscale domain, the solute distri-
bution is limited by the permeability of the solidification structure, with consequences
for grain refinement [223]. 3D interdendritic flow simulations have been performed us-
ing microtomography mappings to measure the permeability in Al–Cu [224]. However,
the compromise between resolution and sample size is limited to the camera. Therefore,
simulations have provided a solution with parallel programming, simulating both the
morphology and the fluid flow. The complexity of the transport phenomena has resulted
in interesting studies in large-scale such as cross-permeability [225], where experiments
measuring permeability have a limitation of experimental volume fraction [226].
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Permeability research has been characterized both numerically and experimentally.
Permeability simulations have been validated in hypoeutectic aluminum alloys by Khajeh
et al. [227], where the simulated microstructures for a dendritic network were modeled
using the CA technique. 3D printing has been a helpful tool to perform experimental
measurements from a simulated model. Most recently, Berger et al. [228] used a fused
filament fabrication (FFF) technique to scale a PF model from 150 µm3 to 5 cm3 of an
Al–Si–Mg alloy sample with a fraction solid varying from 0.61 up to 0.91.

Validation of these models requires more detail to ensure that the correct physics is
being modeled [180]. Mitsuyama et al. [229] performed an analysis on the permeability of a
large domain of 1.152 × 1.152 × 0.768 mm3 using PF and LB, and approximated using the
Kozeny–Caman (KC) equation [230], which is used most frequently to express permeability.
Alternatively, the Poirier–Heinrich (PH) [231] equation can be used, but with uncertain
accuracy due to its derivation from 2D simulations and experimental data [232]. Therefore,
a lot of research has gone into validating these models. Such discrepancy has invoked
studies based on different types of flow and growth patterns. In parallel flow, a solid
fraction can change in dimensions with respect to the liquid that flows through the entire
columnar dendrites, as shown in Figure 20. The simulations validated the use of a KC
coefficient of Kc = 3 and the permeability tensor for this use case. Thus, the permeabilities
in arbitrary directions for columnar solidification structures can be calculated without
simulation. The main area of interest regards the specific interface areas and the temporal
changes, described by the solid fraction.
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While approximation for equiaxed dendrites is effective, the KC equation is not as
certain for directional solidification [233,234]. Takaki et al. [235] utilized a new permeability
prediction method [209,225,232,236,237] using a parallel process of GPUs. They performed
an analysis on permeability for columnar solidification structures with a periodic regular
hexagonal array simulated using PF and LB. They were able to develop smooth variations
in the qualities of solidification morphologies, where the permeability was shown to be
independent of the array ordering of a consistent primary arm structure. This dimensionless
permeability for a specific interface area can be attributed to the parallel GPU computing
that performed this large-scale simulation. This reiterates the importance of large-scale
simulation to study what is normally not possible with experiments.

5.6. Additive Manufacturing Applications

The study of AM is an important application of large-scale simulations where the
solidification microstructure and related phenomena can significantly alter the material
properties [238,239]. The porosity, propagation of cracks, or precipitation of second phases
can have unique effects on the mechanical properties of the material. Many factors can
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contribute to this, and this section elaborates on the different types of AM methods and
studies that produce advances in our understanding of these processes. The molten pool
is an interesting area of focus, where different dendrite morphologies can be obtained
by controlling the thermal gradient and cooling rates. As an example, a FE-CA model
was used by Yin et al. [240] to simulate dendritic growth in the molten pool of the laser
engineered net shaping (LENS) process to study the laser moving speed, layer thickness,
and substrate size. Comparing the simulations to experimental results is an effective
measure for success. Yu et al. [241] researched a multigrid CA model to simulate these
properties from an electron beam selective melting (EBSM) of a Ni-based superalloy, Inconel
718. Using the experimental data, the growth of tertiary dendrite arms was validated. This
thermal-fluid model was compared to the experimental results of single-track scans, as
shown in Figure 21. By studying how primary dendrite arms grow in the melt pool at the
mesoscale, this research provided a promising approach for studying shrinkage porosity
and the propagation of hot cracking.
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Figure 21. Comparison of the experimental (a) and simulated (b) microstructure by liquid solute
concentration in the interfacial cells. (c) Simulated melt track showing temperature gradient (top) and
cooling rate (bottom) compared with the experimental (d) solidified melting pool region, where
numbers 1, 2, and 3 correspond to the parallel locations between simulation and experimental
results [241].

The complexity of AM requires many components to efficiently model the processes.
An interesting aspect of AM processes is the potential for location-specific microstructure
control. Shi et al. [242] studied the effect of laser beam shaping on the morphology, size,
and crystallographic texture for the laser powder bed fusion (L-PBF) of stainless steel. First,
they used a process modeling code, ALE3D, for solving the continuity, momentum, and
energy equations, which was developed at Lawrence Livermore National Laboratory using
a hybrid finite element and finite volume formulation [243]. The output of the ALE3D
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was the temperature field for all nodes through time. The transient temperature field was
then imported to a simplified CA model to capture the grain structure. The ALE3D solver
needed a coarser grid compared to the CA model. Therefore, the output temperature field
from the ALE3D solver was projected on a finer CA mesh. They utilized the DREAM 3D
software [244] and experimental measurements for the initial grain structure required in
the CA model.

The properties of AM builds are highly dependent on the process parameters. Lian
et al. [245] proposed a 3D CA-FV method to study the process parameters including laser
scan speed and laser power to predict the grain structure for the single track directed
energy deposition (DED) AM process of the Inconel 718 alloy. They also presented the
grain growth for a multiple-layer deposition process with different raster patterns. The
comparison of the 3D simulation results with electron backscattered diffraction (EBSD)
and pole figure experimental results are shown in Figure 22. In their proposed method,
the cellular automaton method, enriched with a grain nucleation scheme, was used to
predict columnar, equiaxed, and mixed grains, while the FV method was used to solve heat
transfer and thermocapillary flow.
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L-PBF is the most popular process for manufacturing functional parts for different
applications [138,157–159]. The simulation of L-PBF requires considering localized phenom-
ena that are highly transient, making the simulation very complex. Marangoni convection
in the melt pool, rapid solidification, topological depression of the melt, and thermal cycling
are examples of such complex phenomena [242]. Elahi et al. [246] recently presented a
computational framework for this type of simulation by using a combination of CALPHAD
calculations for alloy properties, macroscale FE thermal simulations, and microscopic PF
models for the melt pool solidification. They were able to calculate a billion grid points on
a single cluster node of eight GPUs, providing insight into the grain texture selection with
the details of dendrites for a realistic multiscale SLM simulation.

The large-scale simulations have enabled innovative melting strategies for AM such as
localized melt-scanning to control the grain size and spacing of the primary dendrite arms.
Raghavan et al. [247] produced predictions for grain sizing for a corresponding qualitative
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texture plot. This process allows for a consistent solidification microstructure across the
build. By comparing the experimental results with the simulations, context for the types of
microstructures was validated with the types of melt strategies.

Kinetic Monte Carlo [248] has been used to simulate complex, non-traditional geome-
tries, which are observed in AM processes. 3D grain structures have been simulated under
diverse experimental conditions by Rogers et al. [249]. The open-source Stochastic Parallel
Particle Kinetic Simulator (SPPARKS) distribution [250] was built to scale using MPI and a
spatial-decomposition of the simulation domain. The 3D simulation below (Figure 23) was
both quantitatively and qualitatively compared to the experimental results of AM processes
such as LENS and L-PBF to study the temperature dependent grain boundary mobility and
molten zones, respectively, which were both in good agreement.
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The research by Rogers et al. provides a comprehensive comparison of AM microstruc-
ture simulation methods such as CAFE [57,251], CA-LB [252], Monte Carlo [253,254], and
empirical microstructure models [255]. In comparison, the CA models have a higher compu-
tation cost requirement. In addition, they are limited to a few passes of a heat source, which
currently does not simulate solid-state grain evolution after solidification. On the other
hand, Monte Carlo does not allow for the direct coupling of thermal and microstructural
models or the incorporation of the material texture/anisotropy. However, Monte Carlo
is open source in comparison, and utilizes idealized molten zones without the need to
parameterize for specific material systems.

In their comparative study of phase field (PF) and cellular automaton (CA) compu-
tational models, Elahi et al. [256] sought to forecast the microstructure evolution during
solidification in AM. The researchers discovered that PF simulations were superior in terms
of accurately capturing microscopic features, whereas the CA simulations necessitated
grid refinement to achieve a partial congruence with PF outcomes. Despite certain dis-
crepancies, the average grain distributions drawn from various simulations demonstrated
a satisfactory concurrence between the PF and CA models. However, the researchers
identified differences between PF and CA in aspects such as transient growth regimes and
the morphology of the solid–liquid interface. PF simulations depicted an initial period of
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near-planar solidification, which then destabilized morphologically into cells or dendrites,
an aspect overlooked in CA simulations. Additionally, the PF simulations accounted for the
dynamics of side-branching post destabilization, leading to the removal of less favorably
oriented grains, a phenomenon absent in CA simulations, which, in contrast, yielded
smoother grain boundaries compared to those obtained from the PF simulations.

The potential for simulating AM is ever growing, as are the processing parameters.
Because of AM’s complex geometries, many novel techniques have been applied to deter-
mine the most optimal conditions. New simulation approaches are necessary to represent
the performance and validate experiments.

6. Future Developments

The progression of large-scale simulations of the solidification microstructure has
shown that the factors for realistic results are constantly improving. In prediction analysis,
the complexity has grown with respect to technological advances. An interesting concept of
utilizing machine learning for simulating grain growth has a lot more potential for future
development. In 2017, Hu et al. [257] used a CA method, along with machine learning,
to simulate the grain and pore growth in aluminum alloys. The back propagation neural
network (BPNN) was used to create a correlation between the solidification parameters
and pore growth; however, the domain was restricted to a size of 200 × 200 µm. Ma-
chine learning has the unique potential to assist in the modeling of dendritic features
and has been implemented in the prediction of secondary arm spacing in aluminum al-
loys [258]. While deep learning has been used for the prediction of porosity defects in
aluminum alloys [259], applications with simulations have been limited. Most recently,
Hu et al. [260] used recurrent neural networks to accelerate PF predictions. By comparing
different dimensionality-reduction methods such as linear (principal component analysis
(PCA) [261]) and nonlinear embedding (isometric feature mapping (Isomap)) [262] and uni-
form manifold approximation and projection (UMAP) [263] techniques, the latent space can
preserve the PF input parameters. The autocorrelation-based PCA proved to be the most
efficient, while a computation speedup of 3x was able to be implemented using recurrent
neural network (RNN) models with a fewer number of cells and a gating mechanism such
as the gated recurrent unit (GRU) [264] or long short-term memory (LSTM) [265]. Figure 24
shows the implementation of the RNN model. Future development shows promise with
the integration of mesoscale simulation systems.

Figure 24. The RNN model to predict microstructural evolution in latent space for PF modeling [260].

Another potential area for higher development is the complexity of remelting in
larger domains. The evolution of dendrite remelting consists of four stages, while the last
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stage consists of fragmentation [266], which enables the further discretion of large-scale
realistic simulations. An interesting phenomenon, where secondary arms remelt at the
roots, detaching from the primary trunk, and moving toward unsolidified melt can be better
understood in larger domains [267]. The combination of improved physics models and
computational algorithms with thermodynamic databases would enable the calculation of
multicomponent phase equilibria, allowing for more reliable simulations for real-world
industrial applications.

7. Conclusions

The applications of simulating the evolution of the microstructure during solidifica-
tion are as diverse as the observable features. The large-scale domain requires extensive
computing power; therefore, a combination of hardware and numerical techniques are
necessary to enable scaling. Employing the most efficient numerical methods together with
communication techniques over a large number of processing units, the research into solid-
ification simulations has resulted in innovative methodologies, enabling the investigation
of various features during alloy solidification.

To enable efficient simulation of the solidification microstructure, various numerical
methods have been developed to improve the simulation results over larger domains.
Cellular automaton (CA), with its simplicity and computational efficiency, has been featured
to simulate dendrite growth in large 2D and 3D domains. Phase field (PF), being the most
popular, has been utilized to reproduce the physics more accurately. Although more
computationally demanding compared to CA, PF has been used in the largest dendrite
growth simulation to this date. Direct interface tracking (DIT) and level set (LS) methods
are less popular for large-scale simulations. However, they provide a direct method to
handle the sharp interface front, avoiding PF’s asymptotic analysis, where techniques of
adaptive mesh refinement (AMR) and parallelization have become a drawback in some
situations. Scaling with a dendrite needle network (DNN) method allows for analytical and
coarse-grained models to be used in combination, which can serve as a useful multiscale
modeling technique.

Solving the transport phenomena is necessary for realistic simulations with a trade-
off in complexity. Solving the differential equation can be integral to the performance
of the simulation. While finite element, finite difference, and finite volume have been
conventionally used to solve the heat transfer, diffusion, and fluid flow equations, the
lattice Boltzmann method offers an alternative local method to reduce the computation
cost, especially for the case of fluid flow. However, there are many trade-offs between the
methods of simulating the transport phenomenon.

Many features were discussed in detail of increasing complexity. Competitive growth
and dendrite interactions are better understood in large-scale simulations, which can result
in a more realistic interpretation for columnar to equiaxed transition (CET). Simulating the
solute transport can provide a deeper understanding of segregation, which can be greatly
influenced by convection, both natural and forced. The mushy zone permeability is another
area that can greatly benefit from large-scale parallel simulations. Additive manufacturing
(AM) processes often involve complex physics, which can be influenced by processing
parameters specific to the simulation, demanding higher computational power.

Several manufacturing and materials processing techniques can take advantage of the
prediction capabilities offered by large-scale simulations of the solidification microstructure.
The modeling approaches still have a lot of future improvements to innovate upon, with
promising developments in machine learning and computing power.
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