
Citation: Albuquerque, C.E.S.; Silva,

P.C.S.; Grassi, E.N.D.; De Araujo, C.J.;

Delgado, J.M.P.Q.; Lima, A.G.B.

Optimizing the Gating System for

Rapid Investment Casting of Shape

Memory Alloys: Computational

Numerical Analysis for Defect

Minimization in a Simple-Cubic Cell

Structure. Metals 2023, 13, 1138.

https://doi.org/10.3390/

met13061138

Academic Editor: Alexander

V. Shelyakov

Received: 25 April 2023

Revised: 6 June 2023

Accepted: 16 June 2023

Published: 19 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Optimizing the Gating System for Rapid Investment Casting of
Shape Memory Alloys: Computational Numerical Analysis for
Defect Minimization in a Simple-Cubic Cell Structure
Carlos E. S. Albuquerque 1 , Paulo C. S. Silva 2 , Estephanie N. D. Grassi 2, Carlos J. De Araujo 2 ,
João M. P. Q. Delgado 3,* and Antonio G. B. Lima 2

1 Production Engineering Council, Federal University of the Vale do São Francisco, Campus Salgueiro,
Rua Antônio Figueira, 134, Salgueiro 56000-000, PE, Brazil; carlos.albuquerque@univasf.edu.br

2 Department of Mechanical Engineering, Center of Science and Technology, Federal University of Campina
Grande, Rua Aprígio Veloso, 882, Campina Grande 58429-900, PB, Brazil;
paulocesarsales@outlook.com (P.C.S.S.); end.grassi@hotmail.com (E.N.D.G.);
carlos.jose@professor.ufcg.edu.br (C.J.D.A.); antonio.gilson@ufcg.edu.br (A.G.B.L.)

3 CONSTRUCT-LFC, Civil Engineering Department, Faculty of Engineering, University of Porto,
4200-465 Porto, Portugal

* Correspondence: jdelgado@fe.up.pt; Tel.: +351-225081404

Abstract: With the aid of virtual prototyping and casting numerical simulation, this work presents
the optimization of an injection system used in a non-traditional investment casting process that
applies perpendicular centrifugal force to inject the molten metal into refractory plaster molds. In
this study, advanced techniques of simulation and production of complex geometries in Computer-
Aided Design CAD (Computer-Aided Design) are used in the design of the casting system of a
miniaturized simple-cubic cell structure. The cast part has a complex shape profile and needs a
high surface finish with strict dimensional tolerance. The alloy used to fill the mold is an aluminum
bronze shape memory alloy (SMA). CAD was used to model the part and the proposed models for
casting optimization. ProCAST software was used for the numerical simulation of the casting process.
Experimental parameters were used as input data for the numerical simulation. The simulation results
were analyzed focusing on the identification of defects in the Cu–Al–Mn SMA simple-cubic structures.
Different feeding systems have been designed to eliminate the identified defects. Concerning the
molten recirculation, the optimal nozzle model has a truncated cone profile, with a larger radius
of 6.5 mm, a smaller radius of 2.0 mm and a height of 8.0 mm (called here model 3). Experimental
observations from cast SMA parts agree with the simulated results of the optimized nozzle model 3.
In addition to the elimination of alloy recirculation with the nozzle optimization in this work, the
shrinkage porosity at the upper base of the part was eliminated with the addition of a compensation
volume close to the region where porosity is more intense. By exploring the possibilities offered
by commercial software, the work contributes to advance the knowledge and application of the
non-traditional investment casting process, highlighting its advantages and potential applications.

Keywords: casting numerical simulation; investment casting; SMA; ProCAST; virtual prototyping

1. Introduction

Metal cellular lattice structures (CLSs) have attracted much attention in biomedical
(e.g., metallic implants) and industrial (e.g., aircraft fuselage and wings) applications due to
their combination of mechanical, thermal and acoustic properties, creating opportunities for
diverse cross-functional structural implementations [1]. These include ultralight structures
with high specific strength [2,3] and stress [4] and excellent impact absorption [5]. While
CLSs can be manufactured as stochastic and periodic patterns, periodic CLSs have superior
characteristics over stochastics; hence, their use in high-value engineering products is
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preferred [6,7]. In addition, the mechanical properties of periodic CLSs can be adjusted
to the required level, which is not the case with stochastic structures [8]. So far, different
types of periodic CLSs have been investigated, including octet trusses [9], triangulated
faces of flat trusses [10], central pyramidal structure [10], simple-cubic and body-centered
cell structure (BCC) [11], BCC-Z [11], F2FCC [11] and F2FCC-Z [11].

Different materials have been used to produce CLSs, including stainless steel, Ti-6Al-
4V and NiTi [12,13]. NiTi, also known as Nitinol, is by far the most applied shape memory
alloy (SMA). SMA belong to a material class called intelligent or smart, which are a group of
new, state-of-the-art materials, that, over the last decades, have been developed and applied
in various sectors. Smart materials are capable of sensing changes in their environment and
responding to these changes in a predetermined way. SMA have the ability to return to a
predetermined shape after a pseudoplastic deformation through simple heating, which is
called shape memory effect (SME). On the other hand, the ability to recover large strains
(8% under isothermal tension) after a simple mechanical unloading is called superelasticity
or pseudoelasticity (SE) [14]. In addition, both phenomena are associated with a mechanical
hysteresis, which benefits dampening and shock absorption applications. There are two
main SMA composition groups: Ni–Ti-based alloys (Ni–Ti–Cu, Ni–Ti–Mo, Ni–Ti–Nb, etc.)
and Copper-based alloys (Cu–Zn–Al, Cu–Al–Ni, Cu–Al–Mn, Cu–Al–Be, etc.). Cu–Al-based
alloys have not only the functional characteristics of shape memory effect (SME) and
superelasticity (SE) but also are low cost and easier to manufacture compared to Ni–Ti-
based alloys [15]. Therefore, in addition to a high strength-to-weight ratio, relatively low
mass, low heat conductivity, high energy absorption and appropriate thermal and sound
insulation properties, CLSs made with SMA offer other benefits such as shape memory
properties [16,17], superelastic behavior [18] and low modulus of elasticity [19,20].

Until now, several conventional techniques have been applied to produce CLSs,
including casting, additive manufacturing and mechanical forming [21]. According to
Mun et al. [22], metal additive manufacturing processes that use laser or electron beam on
a metallic powder are completely capable of manufacturing complex 3D metallic CLSs.
Additive metal manufacturing methods consist of progressively depositing layers, one on
top of the other, until forming an object, following a 3D digital model. It is a relatively recent
technology, developed in the 1990s, which enabled new features such as rapid prototyping,
manufacturing of parts with complex geometries and customization of components that
would be difficult to manufacture by conventional routes [23].

However, despite these advantages, there are still restrictions in the process. Metal
parts produced by additive manufacturing are known to have macroscale defects such
as unmelted powder (i.e., lack of fusion), porosity, delamination and distortion [24–29].
On a microstructural scale, metal additive manufacturing processes are associated with
extreme temperature variations in their melting and solidification cycles [30]. Consequently,
they can generate parts with grains of different morphologies and anisotropic behavior
dependent on the construction direction [29,31–33]. This heterogeneous microstructure can
be further accentuated by cyclic recrystallization during repeated layer deposition [26].

Metal casting, on the other hand, allows for excellent microstructural and dimensional
control [34–38]. The investment casting process aided by 3D printing techniques is an
advantageous alternative for the production of CLSs manufactured with SMA. The invest-
ment casting process is one of the preferred casting methods used to produce components
with low dimensional tolerance, high degree of precision and excellent surface finish. Even
though it is a precision manufacturing process, at each manufacturing stage the investment
casting is subject to design and processing errors, resulting in defects in the obtained piece.
Casting defects are discontinuities that do not conform to design requirements with respect
to geometry (mismatches, undulations or dimensional defects); integrity (porosity, cracks,
oxides and inclusions); and material properties (hardness and mechanical resistance below
the specified standards). Broadly, defects in castings can be allocated into four categories:
filling defects; shape-related defects; thermal and appearance defects. Correctly identifying
such casting defects in the initial manufacturing phases significantly reduces the probability
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of product failure, raw materials expenditure, the release of gases into the environment,
and energy and time consumption. There are several ways to analyze the phenomena
that occur in the casting process, among which stand out real casting tests and process
numerical simulation. The later allows a much faster and cheaper analysis and is an advan-
tageous technique used to reduce the risk of defects. Simulation technologies are applied
extensively in casting industries to understand the effects of physical phenomena such as
chemical changes, phase transformation, heat transfer, fluid flow, microstructural evolution
and mechanical stresses on defect formation and final mechanical properties [39].

Although all casting processes are subject to design and processing errors, an early and
correct identification of defects significantly reduces the probability of product failure. In
this sense, numerical simulation of the casting process is an advantageous technique used
to reduce the risk of defects. Simulation technologies are applied extensively in foundry
industries to understand the effects of physical phenomena such as chemical variation,
phase transformation, heat transfer, fluid flow, microstructural evolution and mechanical
stresses on defect formation and final mechanical properties [39].

Numerical simulation of the casting and solidification consists of virtually reproducing
processes such as filling, solidification, defect formation and distribution characteristics
during the casting, which allows predictions and adjustments before performing real
experiments. For this purpose, a detailed knowledge of the casting and solidification
process is necessary, including the behavior of the material as a function of temperature,
the microstructural behavior of the material, the interactions between mold and material
and the appropriate calculation methods to represent the phenomena involved.

Virtual casting analysis has gained increasing attention in the scientific community
due to its advantages in terms of cost-effectiveness, shorter analysis time and reduced
environmental impact compared to real casting tests. Several authors have contributed to
this field by publishing studies employing numerical simulation to investigate fluid flow,
solidification and defect formation in each stage of the casting process, including filling,
injection and solidification [40–45]. These research efforts have played a significant role
in advancing knowledge in this area and improving casting processes. Furthermore, it is
worth mentioning the utilization of the ProCAST® finite element software by researchers,
such as the authors [46–51], to conduct these studies.

In this context, this work proposes a computational analysis of a non-traditional
rapid investment casting process that applies perpendicular centrifugal force to inject the
molten metal inside refractory plaster molds. Despite its relevance, the process is not well-
explored in the literature, offering a wide field to be explored. Therefore, this study’s main
contributions are the application of a non-traditional centrifugal precision casting process
coupled with the analysis of an alloy with distinct functional properties. By exploring the
possibilities offered by commercial software, the work seeks to advance the knowledge and
application of this casting method, highlighting its advantages and potential applications.

In a previous work [52], the potential of applying computational numerical analysis
methods combined with the fabrication of SMA by non-conventional precision casting was
used to study the castability of copper-based SMA, making it possible to estimate interface
heat transfer coefficients (IHTC). In this work, the analysis focuses on the manufacture of a
topologically optimized structure with complex geometry that requires great dimensional
tolerance and the absence of porosity defects that can harm the mechanical properties of the
part. The optimized functional structures are designed to allow experimental tests to aid
the development of vibration control devices. The topology of the cells is simple-cubic, and
the analysis is carried out with the aid of the ProCAST software. The virtual prototyping
analysis is used to optimize the molten metal injection system in the molds, thus reducing
defects and filling time of the Cu–Al–Mn SMA presenting the SME.

2. Methodology

The methodology used in this work is summarized in the flowchart of Figure 1.
The optimization process was divided in two steps: firstly focusing on the solution of
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recirculation during injection and afterwards solving the recurrent porosity on the upper
base of the desired casting geometry.
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Figure 1. Methodology flowchart.

The addressed problem deals with the simulation of the filling, solidification and
defect formation process of a Simple-Cubic (SC) metallic cellular lattice structure using
the ProCAST software (Version 16, ESI, Paris, França). The casting process chosen for the
study uses centrifugal force as a means of forcing the molten metal into the mold. Figure 2a
schematically illustrates the simulated casting method for the production of miniaturized
shape memory alloy components with the Power Cast 1700 equipment [53]. Figure 2b
shows the part and mold design used in this study. The mold has a cylindrical shape with
50 mm in diameter and 70 mm in height. The SC unit cell structure has a strut diameter
and length of 1 mm and 2.5 mm, respectively. A fillet radius of 0.4 mm was used on the
coincident edges. The lattice structure was generated by repeating 5, 7 and 5 unit cells
in the x, y and z directions, respectively, with a spacing of 2 mm, resulting in a porosity
of approximately 59% (with respect to a dense rectangular block of 10.5 × 14.5 mm). In
addition, dense blocks were added at the ends of the SC lattice structure, measuring
10.5 mm of side and 3 mm of thickness.
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used in the studied casting process. (b) CAD of the studied part and mold.

The purpose of the analysis presented in this work is to reduce alloy loss by recircu-
lation, reduce the possibility of damage to the crucible tip and increase the efficiency of
the mold-filling flow. The model originally used to inject the desired cellular compression
structure shows signs of expulsion in counterflow from the alloy to the interior of the
equipment, and in many cases, the piece is joined to the crucible, leading to the loss of the
crucible tip. Figure 3 shows an example of such a joining between the part and the mold
generated during the injection.



Metals 2023, 13, 1138 5 of 23

Metals 2023, 13, x FOR PEER REVIEW 21 of 25 
 

 

 
(a) 

 
(b) 

Figure 2. (a) Inside picture of the PowerCast 1700 equipment and illustration of the centrifuge 
system used in the studied casting process. (b) CAD of the studied part and mold. 

 
Figure 3. Example of the joining between the part and the mold generated by the recirculation of 
the alloy and the consequent tip fracture. 

The converging nozzle studied in this work is divided in two parts. The first is a 
standard base used to support the parts in the mold. This base is 3D printed in polylactic 
acid (PLA) and measures 12 mm in height, 24 mm in the larger diameter and 13 mm in the 
smaller diameter. It was kept unchanged throughout the evaluated cases. The second part 
of the nozzle originally has the shape of a half-sphere with a diameter of 13 mm, but for 
the optimization study, this profile will be replaced by more efficient profiles in relation 
to the fluid flow. Therefore, for the analysis of virtual prototyping, four models of parts 
with simple-cubic geometry cell-structure format were designed using Autodesk Inventor 
software. 

Table 1 displays the dimensional and geometric characteristics of the converging 
nozzle models evaluated in this topic. 

Table 1. Dimensional and geometric characteristics of the converging nozzle models evaluated in 
this topic. 

Nozzle Model Shape Feed Channels (mm) 
Dinlet Doutlet 

Original Spherical (Half sphere with a radius of 6.5 mm) 3.0 2.5 
1 Conical (Diameter equal to 6.5 mm and height of 6.1 mm) 3.0 2.5 

2 Cone trunk (Larger base radius 6.5 mm, smaller base radius 2.0 mm 
and height 8.0 mm) 3.0 2.5 

3 
Cone trunk (Larger base radius 6.5 mm, smaller base radius 2.0 mm 

and height 8.0 mm) 6.0 2.5 
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The converging nozzle studied in this work is divided in two parts. The first is a
standard base used to support the parts in the mold. This base is 3D printed in polylactic
acid (PLA) and measures 12 mm in height, 24 mm in the larger diameter and 13 mm in
the smaller diameter. It was kept unchanged throughout the evaluated cases. The second
part of the nozzle originally has the shape of a half-sphere with a diameter of 13 mm,
but for the optimization study, this profile will be replaced by more efficient profiles in
relation to the fluid flow. Therefore, for the analysis of virtual prototyping, four models
of parts with simple-cubic geometry cell-structure format were designed using Autodesk
Inventor software.

Table 1 displays the dimensional and geometric characteristics of the converging
nozzle models evaluated in this topic.

Table 1. Dimensional and geometric characteristics of the converging nozzle models evaluated in
this topic.

Nozzle Model Shape Feed Channels (mm)
Dinlet Doutlet

Original Spherical (Half sphere with a radius of 6.5 mm) 3.0 2.5
1 Conical (Diameter equal to 6.5 mm and height of 6.1 mm) 3.0 2.5

2 Cone trunk (Larger base radius 6.5 mm, smaller base
radius 2.0 mm and height 8.0 mm) 3.0 2.5

3 Cone trunk (Larger base radius 6.5 mm, smaller base
radius 2.0 mm and height 8.0 mm) 6.0 2.5

Based on the dimensions and geometric characteristics presented in Table 1, Figure 4
illustrates the CAD models used to study the optimization of the converging nozzle that
directs the molten alloy to the interior of the mold.

After the nozzle optimization study, a porosity analysis was performed at the upper
base, a region identified as critical during numerical simulation due to the presence of
shrinkage porosities. In the porosity study, four riser models for shrinkage compensation
were evaluated. Table 2 summarizes the dimensions used in the design of these riser
models, and Figure 5 shows the compensation riser models used in this study.
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Table 2. Dimensions used in the design of the riser models for porosity compensation.

Riser Model Dimension

1 Diameter of 6.0 mm and height of 2.0 mm
2 Diameter of 6.0 mm and height of 5.0 mm
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4 Smaller diameter of 6.0 mm, larger diameter of 8.0 and height of 8.0 mm
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In addition to the models shown in Figures 4 and 5, it was also necessary to model
the crucible used for injection. This is because in simulations involving flow, the geometry
of the domain in which the fluid will travel is essential to accurately represent the fluid
dynamic phenomena. The external geometry of the crucible, which is complex and difficult
to accurately measure, was digitized using Matter and Form Desktop 3D Scanner (Matter
and Form Inc., Toronto, ON, Canada). The scanner emits two beams of red light that, when
they fall on the surface of the object to be digitized, are detected by the equipment’s camera
and converted into points in a 3D coordinate system. The internal profile was obtained by
a 3 mm offset using Autodesk Inventor (Version 2019, AutoDesk, San Francisco, CA, USA),



Metals 2023, 13, 1138 7 of 23

assuming that the thickness of the crucible is constant. Figure 6 shows the Matter and Form
Desktop 3D Scanner performing the process of digitizing of the crucible geometry.
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Having generated this external profile, it was possible to obtain the internal part with
a roughing operation of 3 mm, using Autodesk Inventor. At this point, it was assumed that
the thickness of the real crucible is constant. After producing the geometries in Autodesk
Inventor, Visual-Mesh was used to discretize the study domain by generating a mesh
composed of tetrahedral elements. The methodology sequence used in this work for
domain discretization using Visual-Mesh:

I. Import the CAD geometry (using .igs file format);
II. Repair, if necessary, the geometry imported from Autodesk Inventor to ensure the

geometry has a closed volume (using the Repair tool);
III. Create the mold with a cylinder geometry (Basic Shapes and Cylinder tools);
IV. Check for overlapping surface zones and create and merge volumes (Assembly tool);
V. Create 2D mesh, which will be the basis for the volumetric mesh (Surface Mesh tool);
VI. Check for the quality of the surface mesh and eliminate cracking, overlapping, inter-

section, poor-quality and coincident boundary nodes (Check Surface Mesh tool);
VII. Create 3D mesh using tetrahedral elements (Tetra Mesh tool).

The Figure 7 shows the mesh generated following the described methodology for one
of the studied cases.

The alloy selected to develop this work was the Cu-7.90Al-5.40Mn alloy. The choice
was made because it presents the SME both in the ingot and in the injected material,
according to previously performed studies. The properties of the alloy required to feed the
mathematical models were calculated using ProCAST via the right link to the CompuTherm
database. The mold material chosen was Resincast plaster.

Visual-CAST is the environment used to impose the process conditions and feed the
software the necessary information to properly perform the calculations. In this work, the
method chosen to establish the process conditions was through the “Cast” tab, and the
sequence used to model the casting processes:

I. Gravity Vector;
II. Volume Manager;
III. Interface HTC Manager;
IV. Process Condition Manager;
V. Simulate Parameters.
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In the Gravity Vector, the direction of gravity was defined. In the Volume Manager, the
materials of each volume of the geometry are defined as well as their initial temperature
and initial filling percentage. For the mold, the initial filling is considered 0%; for the
crucible, a volumetric percentage compatible with the total mass needed to fill the part and
the riser is used. In the HTC Manager Interface, the type of contact that the parts have can
be selected. In this work, the COINC type contact was used for the contact between mold
and metal, and for this contact, it is also necessary to define the heat transfer coefficient
between the elements involved in the contact. Boundary conditions are created in the
Process Condition Manager. In this work, for each case, thermal conditions of heat transfer,
rotation geometry, fluid dynamics of wall pressure, etc., were imposed. Table 3 shows the
summary of the input data used in this analysis.

Table 3. Values used in the design of the riser models.

Variable Input Data

Cu-based SMA (%wt) SMA Cu-7.90Al-5.40Mn
Mold Resincast refractory plaster

Filling method Centrifugal
Rotation speed (rpm) 400

Rotation time (s) 11
Superheat (◦C) 5

Solidus temperature (◦C) 993 (calculated using CompuTherm)
Liquidus temperature (◦C) 1038 (calculated using CompuTherm)

Mold temperature (◦C) 420 (constant)
Temperature outside the mold (◦C) Room temperature

Coefficient of heat exchange between the mold
and the environment (W/m2·K) 65 (forced convection)

Metal/mold interface heat transfer coefficient
(hi in W/m2·K) 535

Cast alloy mass (g) 25
Distance between mold inlet and center of

rotation (mm) 120
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Finally, the simulation parameters are imposed through the “Simulate Parameters”
tool. For this work, we used a pre-definition for the centrifugal process; however, some
parameters were changed to better suit our specific case.

The software also presents three basic tabs with simulation parameters (General, Ther-
mal and Flow). In addition to these, in this work, we activated Turbulence model, choosing
the Realizable k-epsilon model, as it has already been proven in several experiments that
the realizable model k–ε provides better accuracy for flows involving rotations, strong
recirculation or separation [54].

3. Mathematical Modeling

Applicable to any transport phenomenon, the governing equations for solidification
modeling are the conservation of mass, conservation of momentum or momentum equation
and energy equation [55].

The equation for conservation of mass, or continuity equation, used in ProCAST is
given by [56–58]:

∂ρ

∂t
+∇·(ρ→u ) = 0 (1)

where
→
u the velocity, t is the time, ρ represents the density and the operator ∇, referred

to as grad, nabla or del, represents the partial derivative of a quantity with respect to all
directions in the chosen coordinate system.

The linear momentum equation, derived from the Navier–Stokes equations, used by
ProCast is given by [57,58]:

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

+
∂

∂xj

[
pδij(µ + µT)

∂ui
∂xj

]
= ρgi −

µ

K
ui (2)

where p is the pressure, gi the gravity acceleration, δij the kronecker delta, µ the viscosity,
µT the turbulent viscosity and K is the permeability, which reflects the resistance of the
solid pattern to fluid flow, and is calculated using the Kozeny–Carmen equation [56].

K(gs(t), λ2(t)) =
(1− gs(t))

3

gs(t)
2

λ2
2(t)

180
(3)

where gs(t) is the solid volume fraction and λ2(t) is the secondary dendrite arm spacing,
which can be evaluated at any point in the soft zone using a thickening law [46].

The ProCAST software uses four types of energy equation that are chosen depending
on how heat flows through the metal and mold and how it is released to the environment.
The methods are linear conduction transient, nonlinear conduction transient, transient lam-
inar advection–diffusion and transient turbulent advection–diffusion. Linear conduction
transient can be calculated by [57,58]:

ρcp
δT
δt
−∇[k∇T]− q(x) = 0 (4)

where T represents the vectors of nodal temperatures, q(x) the spatially variable volu-
metric heat source, ρ the constant density, cp is the specific heat constant and k is the
conductivity constant.

The nonlinear conduction transient can be calculated by the equation [57]:

ρ
δH
δT

δT
δt
−∇[k∇T]− q(x) = 0 (5)
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in which case ρ = ρo f (T) is the temperature-dependent density, k = ko f (T) is the
temperature-dependent conductivity and H is the enthalpy as a function of temperature
calculated by:

H(T) =
∫ T

0
cpdT + L[1− fs(T)] (6)

where L is the latent heat and fs is the solid volume fraction.
For transient laminar advection–diffusion, the used equation is [57]:

ρ
∂H
∂t
− ρui

∂H
∂xi
−∇(k∇T)− q = 0 (7)

where ui = flui,liq is the surface velocity component, fl is the liquid volume fraction and
ui,liq is the current velocity of the liquid.

Finally, for transient turbulent advection–diffusion the equation used is [57]:

ρ
∂H
∂t
− ρui

∂H
∂xi
−∇

[
(k +

µT
σT

)∇T
]
− q = 0 (8)

where µT is the turbulent viscosity and σT is the turbulent Prandtl number.
The turbulent vortex viscosity is calculated from the turbulent kinetic energy, kT , and

the turbulent dissipation rate, ε, as follows:

µT =
Cµρk2

T
ε

(9)

where Cµ = 0.09 is a default value.
The conservation equation for turbulent kinetic energy used by the software is given

by [46]:
∂(ρkT)

∂t
+ uj

∂(ρkT)

∂xj
− ∂

∂xj

(
µT
σk

∂kT
∂xj

)
= µTG− ρε (10)

where:
kT = 1

2
(
u2 + v2 + w2);

u, v, w = fluctuating velocity components;
σk = Prandtl number of turbulent kinetic energy, typically set to 1;

G =
(

∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

= turbulence generation rate;
ε = turbulence dissipation rate.

The turbulence dissipation rate used in Equation (10) can be calculated by:

∂(ρε)

∂t
+ uj

∂(ρε)

∂xj
− ∂

∂xj

(
µT
σε

∂ε

∂xj

)
=

ε

k
(C1µ

T
G− C2ρε) (11)

where σε is the Prandtl number for the turbulence dissipation rate, normally defined as 1.3,
and the default constant values are C1 = 1.44 and C2 = 1.92.

The initial and boundary conditions for solving the previous equations are applied to
temperature, velocity, pressure, fixed turbulent kinetic energy, fixed turbulent dissipation
rate and specific, convective and radiation heat flux [58]. An iterative algorithm is used to
simulate solidification by solving the equations of motion and energy, finding a coherent
solution between the enthalpy and temperature results. More details on this strategy can
be found in [56,59].

3.1. Turbulence Modeling

According to [56], ProCAST models turbulence using the Reynolds-averaged Navier–
Stokes equations (RANS), where the additional turbulent stresses arising from the averaging
procedure are approximated using the vortex viscosity approach. In this approximation,
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the Reynolds stresses are assumed to be proportional to the mean rate of the strain tensor in
an analogy to the laminar stress–strain relationship. The proportionality constant is called
the turbulent viscosity µT .

There are several models in the literature to obtain turbulent viscosity. Popular among
these are the two-equation turbulence models, in which two additional transport equations
are solved for the kinetic energy of turbulence (k) and the rate of turbulence dissipation
(ε). ProCAST has the following two-equation turbulence models [46]: Standard k–ε Model,
RNG k–εModel and Realizable k–ε (RKE).

As aforementioned, for flows involving rotations, strong recirculation or separation,
it has been proven in several experiments that the realizable model k–ε provides better
accuracy [54]. The standard k–ε model is based on the model proposed by Launder and
Spalding [60].

The transport equations for k and ε are [54]:

∂(ρk)
∂t

+
∂
(
ρujk

)
∂xj

= ρP− ρε +
∂

∂xj

[(
µ +

µT
σk

)
∂k
∂xj

]
(12)

∂(ρε)

∂t
+

∂
(
ρujε

)
∂xj

= C1
ε

k
ρP− C2

ε

k
ρε +

∂

∂xj

[(
µ +

µT
σε

)
∂ε

∂xj

]
(13)

with the turbulence production term P defined as:

P = µT

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∂um

∂xm
δij

)
− 2

3
k

∂um

∂xm
(14)

The constants used in this model assume the following default values: C1 = 1.44 e and
C2 = 1.92.

The realizable k–ε turbulence model (RKE) is described and characterized as a variant
of the standard k–ε model. In particular, the RKE model can be distinguished from the
standard k–ε model by the following [54]:

I. Replacing the transport equation for ε in the standard k–ε model with a similar
transport equation that models the dissipation rate according to the dynamic behavior
of the mean square vorticity fluctuation in the high turbulent Reynolds Number limit;

II. Replacing the eddy viscosity equation of the standard k–ε model with an eddy viscos-
ity equation that ensures satisfaction of the realizability constraints (for the normal
and shear turbulent stress components).

The transport equation for turbulent kinetic energy, k, in the RKE model remains
unchanged from the standard k–εmodel and the transport equation for ε, in the achievable
RKE model, can be written as [54]:

∂(ρε)

∂t
+

∂
(
ρujε

)
∂xj

= C1ρSε− C2ρ
ε2(

k +
√

ε
) + ∂

∂xj

[(
µ +

µT
σε

)
∂ε

∂xj

]
(15)

where: C1 = max
[
0, 43. η

η+5

]
, C2 = 1.92, Cµ = 1

A0+A5U∗ k
ε

, η = S k
ε , S =

√
2SijSij and

U∗ =

√(
2SijSij +

∼
Ωij
∼
Ωij

)
,
∼
Ωij is the average rate of rotation seen in a rotating frame

with angular velocity ωk. The parameter A5 is determined by A5 =
√

6cos(φ), φ =

1
3 arccos

(√
6W
)

, W =
SijSjkSki
∼
S

3 and
∼
S =

√
(S ijSij

)
. The value of A0 is taken as 4.04.

3.2. Porosity Modeling

There are essentially two types of solidification porosity [54]:
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- Shrink porosity: solidification shrinkage cannot be compensated by incoming liquid
flow when feed flow is no longer possible. Consequently, shrinkage porosity is formed.

- Gas porosity: gas porosity is the result of two concomitant mechanisms among solidi-
fication, shrinkage and segregation of gases. The higher density of the solid induces a
suction of the viscous liquid towards the pasty permeable zone, thus decreasing the
pressure in the liquid. Being segregated in the remaining part of the liquid, the gas in
the liquid can reach a concentration that exceeds the solubility limit, especially since
this limit decreases with the temperature, and the pressure of the liquid. Nucleation
and pore growth must be considered at this stage.

Two main equations are used to describe porosity formation during solidification [44].
The first governing equation is the conservation of alloy mass, which is a continuity
equation. Assuming that the solid phase is not moving and that there is no deformation
and, in addition, neglecting the specific mass of the bubbles, the average mass conservation
equation written for both phases gives [56]:

∂

∂t
[ρsgs + ρl gl ] +∇(ρl glvl) = 0 (16)

where ρs is the specific mass of the solid and vl is the effective velocity of the fluid among
the solid cast (i.e., v = glvl). If porosity formation has already occurred, the volume fraction
of liquid, gl , is given by [55].

gl = 1− gs − gp (17)

gs is the solid volume fraction and gp is the pore volume fraction.
The continuity equation can also be written as [54]:

div(ρl glvl)− ρl
∂gp

∂t
= −∂〈ρ〉

∂T
∂T
∂t

(18)

where ρ = (ρs·gs + ρl·(1 − gs)) is the average mass of the solid–liquid mixture without
porosity. Solidification shrinkage and specific mass variations, the term on the right side of
the equation, can be compensated by interdendritic liquid feeding (first term on the left
member) or by microporosity formation (second term on the left member) [54].

The other equation is the Darcy flow equation, which is a flow moment equation,
that governs the resistance of a porous medium to the flow of viscous liquid. The porous
medium is the solid dendritic network in which the alloy solidifies. The Darcy flow
equation is [44]:

v = glvl = −
K
µ
[gradpl − ρl g] (19)

where pl is the local pressure in the liquid, K is the permeability of the solid cast, µ is the
dynamic viscosity of the liquid and g is the gravity vector. Most terms are alloy properties.
Combining the continuity equations with Darcy flow:

div
[

ρl
K
µ
(gradpl − ρl g)

]
+ ρl

∂gp

∂t
=

∂〈ρ〉
∂T

∂T
∂t

(20)

As it can be seen, two unknown scalar fields appear in this equation: the liquid
pressure, pl(x,t), and the microporosity volume fraction, gp(x,t). The terms pl and gp are
solved by applying boundary conditions.

4. Results and Discussion
4.1. Converging Nozzle Optimization: Simulation

Table 4 summarizes the fill time and nozzle recirculation results obtained in this
analysis. The assessment of whether or not there was recirculation in the nozzle refers
to the alloy that would be expelled from the mold when changing the flow direction
during filling.
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Table 4. Values used in the design of the nozzle models.

Evaluated Parameter
Nozzle Model

Original Model 1 Model 2 Model 3

Filling time (s) 0.53 0.48 0.46 0.44
Recirculation in the converging nozzle Yes Yes Yes No
Shrinkage porosity (on the top base) 58.85% 61.18% 61.45% 62.62%

Observing the data presented in Table 4, the filling time improved by 17% and the
recirculation of the alloy was eliminated in the simulation with nozzle model 3. This
result was achieved by analyzing and identifying the defects present in the simulations
with the original nozzle profile and afterwards implementing new profiles, similar to the
methodology used by Kumar et al. [61].

In the simulations with the original profile, it was possible to identify that, under
the applied injection conditions, the molten metal is directed first to the wall on the right
side of the nozzle and, subsequently, flows to the center of the converging point of the
feed channels that ultimately inject the alloy inside the mold. In the case of the original
nozzle profile, due to the spherical curvature, a large part of the injected molten mass must
perform a curved trajectory, changing the flow direction by almost 90◦. This, consequently,
leads a portion of the molten alloy on a tangent to the entrance of the feed channels and to
the opposite wall, which ultimately changed the flow direction of the molten mass by 180◦,
generating recirculation.

In view of this analysis, it is clear that the recirculation is primarily explained by the
lack of orientation provided by the geometry of the original nozzle, making it difficult for
the alloy to reach the feed channels and wasting a large part of the centrifugal flow inertial
energy. In order to overcome this problem, the nozzles designed in this work have a profile
directed towards the converging point of the feed channels, reducing the direction changes
in the molten flow. This result is supported by the reduction in filling time observed as
the nozzle models were optimized. The second point that favored recirculation was the
restriction generated by the small diameters of the feed channels. By increasing the feed
channel inlet diameter from 3 mm to 6 mm, this problem was solved, generating a feed
system without recirculation and with smaller filling time.

Figure 8 displays the filling time profile for each model. It can be seen that the original
model has more regions with longer filling times, whereas models 2 and 3 show great
improvements. It is also possible to infer that the upper base is the part of the piece that
takes the longest to fill.

Figure 9 shows the recirculation in each model. The software presented a limitation
when imposing an open boundary condition in the region where the alloy would be
expelled to the environment due to the counterflow, so the representation of material loss
due to recirculation is displayed as an alloy accumulation on the wall that, when colliding
with the standard base wall, returns to the correct flow direction. In the real injection, the
material is expelled out of the mold.

In the original model, the fluid begins to recirculate at 0.32 s but reaches a maximum
counterflow at 0.38 s (Figure 9a); in model 1, the fluid recirculation starts at 0.30 s and
peaks at 0.34 s (Figure 9b); model 2 exhibits a maximum recirculation at 0.35 s (Figure 9c);
and model 3 has no recirculation (Figure 9d). From these images, we can infer that the
nozzle model that presented the highest recirculation was the original model, and that the
improvements made in the nozzle design had gradual positive effects until reaching the
ideal model, which is model 3.
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Another parameter affected by changing the filling nozzle construction parameters
was the maximum gas pressure inside the mold. Figure 10 shows the points of maximum
pressure of the gas inside the mold. The original model (Figure 10a) presented points with
maximum pressure distributed in the center of the part, with a maximum value of 2.81 bar.
Model 1 showed a similar behavior (Figure 10b), with a maximum pressure of 3.98 bar in
one segment of the cell structure. Models 2 and 3 (Figure 10c,d) also presented maximum
pressure points on the upper base of the part but compared to the previous models showed
a reduction in maximum gas pressure, showing maximum pressure points of 2.24 and
2.06 bar, respectively.
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The pressure variation observed in each case is due to gas entrapment. The results
presented in Figure 10 show that the optimization of the feeding system, in addition to
improving the flow of molten metal into the mold, has a positive influence on the removal
of air from the mold, thus reducing the internal pressures of the mold and improving the
filling of the part details in the mold.

In addition to the pressure of the trapped gas, the pressure of the alloy was also
evaluated, and in this analysis, it was possible to verify that the pressure of the alloy
becomes higher at points far from the inlet gate, probably due to the effect of the centrifugal
force that takes into account the distance from the rotation axis. This pressure increase
in the outermost segments can cause the mold to rupture, consequently leading to filling
failures. Figure 11 shows an example of the pressure gradient of the alloy in the mold. The
gradient displayed was generated in the simulations of model 3, but all evaluated cases
show a similar behavior.



Metals 2023, 13, 1138 16 of 23

Metals 2023, 13, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 10. Maximum gas pressure inside the mold. (a) Original profile. (b) Modified profile 1. (c) 
Modified profile 2. (d) Modified profile 3. 

In addition to the pressure of the trapped gas, the pressure of the alloy was also eval-
uated, and in this analysis, it was possible to verify that the pressure of the alloy becomes 
higher at points far from the inlet gate, probably due to the effect of the centrifugal force 
that takes into account the distance from the rotation axis. This pressure increase in the 
outermost segments can cause the mold to rupture, consequently leading to filling fail-
ures. Figure 11 shows an example of the pressure gradient of the alloy in the mold. The 
gradient displayed was generated in the simulations of model 3, but all evaluated cases 
show a similar behavior. 

 
Figure 11. Alloy pressure inside the mold. (a) Nozzle model 3 at 0.44 s. (b) Nozzle model 3 at 0.71 s 
time. 

Regarding the misrun sensitivity, Figure 12 compares the risk that each nozzle model 
generates. Misrun sensitivity is a measure used by the ProCAST software to assess the 
probability of occurrence of filling failures in a casting process. Taking into account factors 

Figure 11. Alloy pressure inside the mold. (a) Nozzle model 3 at 0.44 s. (b) Nozzle model 3 at
0.71 s time.

Regarding the misrun sensitivity, Figure 12 compares the risk that each nozzle model
generates. Misrun sensitivity is a measure used by the ProCAST software to assess the
probability of occurrence of filling failures in a casting process. Taking into account factors
such as mold geometry, material properties and operating conditions, it indicates the ability
of the injection system to correctly fill all regions of the mold, ensuring proper formation of
the casting. We can notice that the original model is the one that presents more points with
a high risk of filling failures and, as the geometries were being optimized, the number of
points of high risk decreased.
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This occurs because, as shown in the previous analyses, the nozzle models with high
levels of recirculation also have higher internal gas pressures and reduced flow inertia,
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which hinders the filling of the part details in the mold. In addition to the internal pressure
of the gas and pressure drop, another point that must be considered is that the recirculation
reduces the temperature at which the alloy comes into contact with the mold, decreasing
its viscosity and consequently its castability.

4.2. Converging Nozzle Optimization: Experiments

The image in Figure 13 shows the comparison between the real parts injected with the
original feeding system (Figure 13a) with the designed model 3 feeding system (Figure 13b).
Both pieces showed signs of cracking in the casting as some regions that should have been
empty close to the upper base were filled. A hypothesis for this problem was discussed
in the analysis of the virtual prototyping and presented in Figure 11. In this discussion, it
was identified that the most distant points from the feed channels presented the highest
pressures, and this could harm the structure of the mold.

Metals 2023, 13, x FOR PEER REVIEW 21 of 25 
 

 

observed in the experimentally cast part. On the other hand, the real component manu-
factured with the nozzle model 3 showed an improvement in relation to the filling of the 
details of the part since its structure did not show a lack of filling. As shown in Figure 12d, 
these results were pointed out in the simulation results as the software signaled high risks 
of filling failure in a few internal elements of the cellular structure and limited risk in the 
rest of the piece. 

 
Figure 13. Photo of the parts injected with the feeding systems. (a) Original. (b) Modified model 3. 

In addition to the filling improvement, it was possible to identify in the injection ex-
periments that recirculation was eliminated in the designed nozzle model 3. As shown in 
Figure 3, when injecting the alloy with the original feeding model, the tip of the crucible 
was damaged during the process as the alloy recirculated and joined the piece with the 
crucible. As a result of this joining, the riser of the injected part with the original model 
presents a mark of the shape of the diameter of the crucible tip, as can be seen in Figure 
14a. In Figure 14b, however, we can see that this mark is not present, confirming that the 
recirculation was indeed reduced with the optimized model 3. 

Figure 13. Photo of the parts injected with the feeding systems. (a) Original. (b) Modified model 3.

The part injected with the original feeding model (Figure 13a) shows regions with
filling defects in the upper base, mainly in the left corner and in the lower base, but with
weaker intensity. These experimental results are similar to the results presented in the
virtual prototyping shown in Figure 12, which indicate high risks of filling failure in several
regions in the upper base and some points of the cell structure. The numerical simulation
did not predict, however, the risk of filling failure in the lower base, which was observed in
the experimentally cast part. On the other hand, the real component manufactured with the
nozzle model 3 showed an improvement in relation to the filling of the details of the part
since its structure did not show a lack of filling. As shown in Figure 12d, these results were
pointed out in the simulation results as the software signaled high risks of filling failure in
a few internal elements of the cellular structure and limited risk in the rest of the piece.

In addition to the filling improvement, it was possible to identify in the injection
experiments that recirculation was eliminated in the designed nozzle model 3. As shown
in Figure 3, when injecting the alloy with the original feeding model, the tip of the crucible
was damaged during the process as the alloy recirculated and joined the piece with the
crucible. As a result of this joining, the riser of the injected part with the original model
presents a mark of the shape of the diameter of the crucible tip, as can be seen in Figure 14a.
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In Figure 14b, however, we can see that this mark is not present, confirming that the
recirculation was indeed reduced with the optimized model 3.
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4.3. Shrinkage Porosity Simulation

As shown in Table 4, all studied models in the nozzle optimization showed shrinkage
porosity in the upper base, including the model with the best filling results (nozzle model 3).
Model 3 presented shrinkage porosity in the upper base with a maximum of 62.62%.
Observing these results, it is clear that the upper base is a critical point concerning porosity
defects. It can also be noted that as the injection systems were optimized, the percentage of
shrinkage porosity was high. This is because the optimization of the feed models allows a
faster filling and consequently a greater thermal load to be dissipated during solidification
inside the mold. This favors the formation of contraction porosities in the upper base, which
does not present any compensation mechanism and is one of the last regions to solidify.

Figure 15 shows the position and a sectional view that shows the maximum shrinkage
points in the virtually molded part with the optimized nozzle.
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According to Rajkolhe and Khan [62] and Ingle and Sorte [63], shrinkage defects such
as porosity-considered closed shrinkage defects occur when there feed metal supply is
insufficient to compensate for shrinkage as the metal solidifies.
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This type of porosity can be reduced or eliminated with geometric modifications
such as changes in the feeding system, insertion of mass to compensate for shrinkage,
modification of the part geometry and with manipulation of injection parameters such as
rotation speed, injection pressure and temperature, thermal insulation, among others. The
focus of this work, however, was not to modify the injection parameters, mainly because the
data used as boundary condition and input parameters were replicated from preliminary
physical experiments. Therefore, in order to reduce the porosity in the part, compensation
volumes were added and were designed to move the porosity to its interior. These volumes
were positioned on the upper base and centered around the region identified as being the
most critical concerning the presence of shrinkage porosity. All porosity cases evaluated in
this topic were made from the optimized convergent nozzle model (nozzle model 3).

Figures 16–19 show the results obtained for each type of projected compensation
volume. In riser models 1 and 2, the shrinkage compensation volume has the shape of a
cylinder. In Figure 16, we can see that the riser model 1 displaced the porosity to its interior,
but a large part is still present in the part because the volume does not have enough mass
to compensate for the shrinkage of the alloy nor to change the temperature field in that
region. In model 2, the height of the volume was increased by 3 mm in order to increase
the compression mass. As it can be seen in Figure 17, it caused a greater displacement
of porosity compared to the riser model 1, but a part of the porosity is still present in the
cell structure.
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The riser models 3 and 4 have volumes in the shape of a truncated cone (Figure 5).
Model 3 generated a displacement that almost removed all the porosity of the upper region
of the part (Figure 18). Based on this result, the riser model 4 was designed with the same
diameter dimensions but with a greater height in relation to model 3, approximately 3 mm.
In the case of the riser model 4, the displacement generated by the compensation volume
was sufficient to completely displace the porosities to its interior, leaving the part free of
shrinkage porosities, as can be seen in Figure 19.

5. Conclusions

In this work, virtual prototyping is used to optimize the efficiency and accuracy of
a non-traditional precision casting process that uses centrifugal force to inject the molten
alloy into the mold. This modified casting differs from traditional processes because it uses
centrifugal force in the perpendicular direction to the rotation axis to inject the molten metal
inside the mold; while traditional processes use centrifugal force in the same direction of
the rotation axis.

The virtual castings carried out in this work enabled the analysis and design of the feed-
ing systems for the production of a simple-cubic cellular structure with complex geometry
manufactured with a copper-based shape memory alloy. The numerical simulation of the
process allowed reducing and correcting possible defects that may impair the production
and integrity of the part, especially recirculation and shrinkage porosity that mechanically
weaken the component.
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The results showed that gas circulation inside the mold has a strong influence on the
filling process. Badly designed feeding systems tend to make it difficult for the gas to return
and generate high pressures that can trap the gases, forming voids in the parts or causing
damage such as cracking and mold rupture. Regarding the design of the studied part in
this article, it is possible to conclude that the convergent nozzle proposed in model 3 is a
better design to reduce filling time and eliminate recirculation, but due to the presence of
retraction pores, it is necessary to add compensation for volume shrinkage. The shrinkage
compensation volume that presented the best results has the shape of a truncated cone
with a larger diameter of 8 mm, a smaller diameter of 6 mm and a height of 8 mm, such as
the riser proposed in model 4 in this work.
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