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Abstract: Due to its near-net-shape manufacturing and ability to treat challenging-to-manufacture
materials such as titanium alloys, Additive manufacturing (AM) is growing in popularity. However,
due to the poor surface quality of AM components, finishing processes such as machining are
required. One of the most difficult aspects of finishing AM components is the fact that even when
using the same machining parameters, the surface roughness can vary significantly depending on
the orientation of the part. In this study, electron beam melting (EBM) Ti6Al4V parts are subjected
to the finishing (milling) process in three potential orientations relative to the direction of the tool
feed. The impact of the feed rate, radial depth of cut, and cutting speed on the surface roughness and
cutting force of the Ti6Al4V EBM part is studied while taking the orientations of the EBM components
into consideration. It is found that the machined surface changes in noticeable ways with respect
to orientation. A factorial design is used for the experiments, and analysis of variance (ANOVA)
is used to evaluate the results. Furthermore, the grey relational analysis (GRA) method coupled
with entropy weights is utilized to determine the optimal process variables for machining a Ti6Al4V
EBM component. The results show that the feed rate has the greatest impact on the multi-response
optimization, followed by the cutting speed, faces, and radial depth of cut.

Keywords: electron beam melting (EBM); surface roughness; Ti6Al4V; cutting force; part orientations;
grey relational analysis (GRA); multi-response optimization

1. Introduction

Ti6Al4V is the most extensively researched member of the family of lightweight al-
loys. Since the introduction of additive manufacturing (AM) techniques, titanium alloys
have attracted considerable interest. Due to the advantages of additive manufacturing,
its mechanical performance, and its corrosion resistance, it has found numerous applica-
tions [1]. The Ti6Al4V alloy is characterized by its high strength, low density, and high
fracture toughness. Approximately 50% of all material markets recognize this alloy as
the most prevalent titanium alloy. Initially, it was employed in the aircraft industry to
construct intelligent aviation components. Due to the alloy’s high strength-to-weight ratio,
jet engines, gas turbines, and a variety of aircraft components can all benefit from the
weight reductions this material provides. In addition, its high biocompatibility with the
human body has led to a variety of biomedical applications [2]. Osseointegration, corrosion
protection, and specific strength all contribute to Ti6Al4V’s prominence as a medical-grade
metal alloy [3,4]. However, it has a poor propensity to be machined [4], particularly when
made through additive manufacturing (AM), due to its unusual microstructure, which is a
function of the AM process parameters. Therefore, it is crucial to choose the appropriate
cutting parameters to simultaneously decrease the cutting force and the surface roughness.
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Additive manufacturing (AM) technologies provide a versatile, effective, and quick
method for making complicated and individualized products [5]. One of the important
techniques in AM is electron beam melting (EBM). EBM refers to a family of manufacturing
methods in which materials are directly joined to create parts, typically in a layer-upon-
layer fashion using 3D modeling data. The manufacturing of end-use parts with EBM is
becoming increasingly common in the industry, which is hastening the development
of related design, process, and manufacturing methods [6]. With the highly praised
benefits of quick design-to-part transition and increased design freedoms, EBM methods
continue to advance toward production-ready technologies [7]. EBM is positioned to bring
about a revolution due to its innovative production model. It provides the possibility of
bulk customization, flexible production, on-demand manufacturing, and decentralized
production. Nonetheless, not only the complexity of manufacturing systems but also the
desire for increasingly complex and high-quality products present several difficulties [8].
Poor surface quality and insufficient mechanical characteristics are also major problems for
EBM processes [9].

In order to accomplish the desired material properties, tolerances, and surface finish
in EBM production cycles, post-processing stages such as heat treatment and machining
are often required [5]. Numerous investigations have been conducted to enhance the
machinability of titanium alloy during the milling process; Iquebal et al. [10] presented
the effects of Ti6Al4V EBM through machining and fine abrasive polishing. The results
indicated that average surface roughness improved by 98.1% and surface hardness by
37.0%. In the case of abrasive finishing, the microhardness increased by 11% while the
average surface roughness decreased by 99.82%. Gong et al. [11] demonstrated statistically
significant differences in the machining behavior of Ti6Al4V across build directions in
EBM specimens, as-AM, and after heat-treated laser powder bed fusion (L-PBF) specimens
(21% reduced specific cutting power in L-PBF). Hojati et al. [12] studied the differences
between micro-milling titanium alloy produced by selective laser melting (SLM), EBM, and
conventional titanium. They tested the impact of various feeds per tooth on the surface
roughness, cutting force, and burr formation. They discovered that despite EBM titanium’s
greater hardness, it produced the same or lower forces. Bonaiti et al. [13] investigated
the micro-milling machinability of additively manufactured Ti6Al4V by analyzing surface
roughness, cutting forces, and burr formation. Comparing the AM material to the conven-
tional titanium alloy, they discovered several differences: due to a finer microstructure, AM
material exhibited higher hardness; standard titanium exhibited greater surface roughness
than AM titanium; despite exhibiting increased hardness, AM titanium exhibited lower
cutting forces; and standard titanium exhibited superior results when considering burr
formation. Rysava and Bruschi [14] compared the micro-milling characteristics of EBM
and direct metal laser sintering (DMLS) Ti6Al4V alloys based on the influence of burr for-
mation, surface topography, surface defects, roughness, tool damage, and microstructural
modifications. The results demonstrated that the most crucial cutting parameter is the
feed per tooth, which directly affects the final surface roughness, the formation of burrs,
and the occurrence of surface defects. In addition, they observed adhered material on the
tool edges as opposed to abrasion wear and no microstructural changes. Çevik et al. [15]
enhanced the surface quality of samples made from Ti6Al4V alloy using powder bed-fed
additive manufacturing with various processing parameters by applying an additional
process, such as CNC machining. The Ti6Al4V samples exhibited greater machinability
with lower cutting forces and lower surface roughness due to the material’s rapid cooling.
Yadav and Pawade [16] evaluated the compatibility and property variations of Ti6Al4V
produced using AM methods (e.g., EBM, SLM, and direct energy deposition (DED)) to
those produced via traditional manufacturing. According to the findings, the feed rate and
the depth of cut are the most important factors in determining the presence and severity of
defects (such as shallow grooves, micro-particle deposits, white layers, etc.) on the turned
surfaces of Ti6Al4V alloy. SLM and DED both have almost 20% greater ultimate tensile
strength and yield strength than EBM. Sartori et al. [17] investigated the turning of Ti6Al4V
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components manufactured by EBM and DMLS. When compared to EBM and wrought
material, the DMLS-induced added characteristics demonstrated higher hardness and
lower thermal conductivity. Because of this variation, spinning DMLS in dry conditions
produced the deepest crater in the tool.

Some studies have shown that the 3D printing layer orientations have a substantial
impact on the final appearance of the additively made components. For example, the
impact of the layers’ orientations during EBM milling and turning of Ti6Al4V components
and milling γ-TiAl components was investigated by [18–20]. The researchers discovered
that different EBM component orientations during machining can result in different levels
of surface roughness, even when using the same machining settings. The part orientation
impact was mitigated for EBM Ti6Al4V components through heat treatment [21]. Another
study [22] looked into how adjusting the layer thickness in L-PBF fabrication of stainless
steel 316L parts affected milling orientations. Cozzolino et al. [23] studied the energy
required to manufacture a Ti6Al4V EBM part and then turned it to achieve the desired
surface roughness. The results indicate that all samples have a high surface roughness,
with Ra values ranging from 27.09 to 37.95 µm in the parallel direction and from 15.66 to
34.00 µm in the perpendicular direction. After the turning process, the direction parallel
to the axis of the cylindrical samples has roughness values greater than in the direction
perpendicular to the axis. Moreover, Cozzolino and Astarita [24] studied the influence of
the milling process parameters of EBM Ti6Al4V components in order to improve surface
finishing and energy consumption. The results show that the roughness varies along the
parallel direction more than the perpendicular direction due to the face. The best surface
roughness is achieved by using a spindle speed of 1600 RPM and a depth of cut of 0.3 mm.
Instead, although it results in somewhat higher roughness than the other process settings,
the medium spindle speed (2500 rev/min) and the highest depth of cut (0.9 mm) of our
experimental campaign should be chosen if minimizing overall energy consumption is the
main target. While the impact of layer orientation on finishing the EBM part is known to be
important, no report has been discovered to date that optimizes this effect.

Grey relational analysis (GRA) with entropy weights can solve multi-response opti-
mization problems involving multiple criteria, and its use in multi-response problems has
acquired popularity [25–27]. Dabwan et al. [28] applied the grey relational method with
entropy weights to identify the optimal process parameters for single-point incremental
forming products and found that the tool diameter has the greatest effect on the thinning
of the single-point incremental forming process. She et al. [29] optimized the bending
performance of optical fibers by employing grey relational analysis and discovered that the
bending loss decreased by an order of magnitude. Chen et al. [30] optimized the door panel
design for automobiles using Grey relational analysis and entropy weight. The results
demonstrate that the optimized structure reduces the door’s weight and that the door’s
performance meets the minimum requirements. It is still possible to use multi-response
discrete optimization in various studies and to integrate it into manufacturing processes.

Results from various studies indicate that it is not feasible to predict how EBM pro-
cesses will affect the machinability of the material and that each EBM process will have its
own unique impact on the additively produced components. Therefore, more effort must be
devoted to determining the impact of various EBM techniques on the machinability of the
materials. The different part orientations are one of the important factors influencing EBM
methods of machinability. Milling AM components while considering part orientations is
difficult, but only a few studies have been devoted to tackling this issue. The purpose of
this study is to analyze the effects of milling EBM Ti6Al4V components at different part
orientations, feed rates, radial depths of cut, and cutting speeds on surface roughness and
cutting forces, as shown in Figure 1. Furthermore, the influence of the EBM process on the
machinability of Ti6Al4V is optimized using grey relational analysis coupled with entropy
weights to improve the machined surface of the Ti6Al4V EBM part.
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Figure 1. Marking diagram for the selection of EBM Ti6Al4V milling process parameters.

2. Materials and Methods
2.1. Material Details

Samples of Ti6Al4V were manufactured using the ARCAM EBM technique and mea-
sured 30 mm on a side, 30 mm in height, and 10 mm in depth (see Figure 2). The average
particle size of the Ti6Al4V powder is 71 µm. Table 1 lists the components that compose the
powdered form of Ti6Al4V. The primary EBM process parameters utilized in the fabrication
of the Ti6Al4V components are listed in Table 2. The EBM variables in Table 2 were chosen
based on past research, suggesting that these values were indicated by ARCAM as the
default for achieving desirable microstructures and mechanical characteristics [31,32].
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Table 1. Composition of Ti6Al4V powder data from [33].

Elements Aluminum Vanadium Carbon Iron Oxygen Titanium

Percentage (wt.%) 6.04 4.05 0.013 0.0107 0.13 Balanced
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Table 2. Parameters of the EBM for Ti6Al4V parts data from [31,32].

EBM Parameters Values

Solidus temperature 1878 K
Focus offset 3 mA

Acceleration voltage 60 kV
Preheat temperature 750 ◦C

Powder layer thickness 0.05 mm
Scan speed 4530 mm/s

Electron beam diameter 200 µm
Liquidus temperature 1928 K

Line offset 0.1 Mm
Beam current 15 mA

2.2. Milling Options and Measurements Setups

The faces of EBM-manufactured components have varying surface qualities. For
instance, the upper surfaces of EBM Ti6Al4V components have a Sa value of 6 µm, while
the side surfaces have a Sa value of 21 µm. Despite the fact that EBM components were
manufactured using the optimized parameters discovered in prior research [32], the average
surface roughness value on the side surfaces is still Sa = 21 µm, which is inadequate for
many applications. The top and side surface roughnesses were found to be about the same
(Sa = 7.5 µm and Sa = 21 µm, respectively) after employing the optimized scan methods,
as reported by [34]. Therefore, an additional operation must be performed on the EBM
components in order to produce a smooth surface. In this research, the conventional vertical
milling method is employed for the secondary operation.

For the best possible surface finish when machining EBM components, it is essential
to have the 3D-printed part oriented in the optimal fashion with regard to the tool feed
direction (TFD). When milling an EBM component, the tool can be fed in one of three
directions: (1) perpendicular to the layer planes (Direction 1), (2) parallel to the layer planes
(Direction 2), or (3) in the layer plane itself (Direction 3). The orientations of these three
parts with regard to the TFD are depicted schematically in Figure 3. The first direction
is called “tool movement perpendicular to layer planes”, and it occurs when the TFD is
orthogonal to the layer planes (Direction 1). The second orientation is called “tool moving
parallel to layers planes”, and it occurs when the TFD is aligned to the planes of the layers
being worked on (Direction 2). In the third configuration, known as “tool movement in a
layer plane”, the feed path of the tool lies in the same plane as an EBM layer (Direction 3).

The milling setup is depicted in Figure 4a, and the three tool feed orientations (Direc-
tion 1, Direction 2, and Direction 3) are shown in Figure 4b for an EBM component. The
samples were machined with a 30 mm/min feed rate, 10 mm tool diameter, 50 m/min cut-
ting speed, and 0.4 mm depth of cut to smooth them out before the real experiments were
performed. This was done to smooth out the rough and irregular EBM-created surfaces so
they could be machined more easily. To evaluate the impact of EBM part orientation on
milling quality, milling was carried out using the process settings shown in Table 3. Table 3
shows process values that are consistent with those found in prior research on machining
Ti6Al4V [35–37].

Table 3. Milling process parameters.

Process Parameters Values

Tool feed direction, (TFD) Direction 1, Direction 2, Direction 3
Cutting speed, (V) m/min 50, 80

Radial depth of cut, (Rd) mm 2.4, 4.8
Depth of cut, (d) mm 0.4

Feed rate, (f) mm/min 30, 60
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DMG Mori’s (Oelde, Germany) DMC 635 V Ecoline vertical milling machine was used
for the milling operations. 24 m/min of maximum feed rate, 1 µm of positioning accuracy,
and 8000 rpm of maximum spindle speed are the specifications of this milling machine. The
tool code is ISO: 1P240-1000-XA 1630 and material Id: 6259717, with a four-fluted 10 mm
diameter solid carbide end mill tool having a length of 72 mm, a radial rake angle of 9◦,
an axial rake angle of 5.5◦, and a flute helix angle of 35◦ from SANDVIK COROMANT.
The cutting forces and the surface roughness were the two responses evaluated. Sa is a
surface roughness parameter that was used to measure the degree of roughness across
all three directions. The surface roughness (Sa) of the milled components was measured
using a Bruker (Berlin, Germany) Contour GT-K 3D optical profilometer. ISO 25178-2 was
used as the standard for filtration. After milling, the machined surface was scanned at
3 mm intervals in five distinct locations along each of the three directions (Direction 1,
Direction 2, and Direction 3). The Sa was measured by measuring a 2.2 mm by 1.7 mm area
at each reading, and the meaning of the five readings for each orientation was recorded.
As shown in Figure 4c, during milling, the axial force (Fa), feed force (Ff), and radial
force (Fr) were measured by placing the component in a fixture and then using a Kistler
5697A piezoelectric dynamometer (Kistler Instrument AG, Winterthur, Switzerland), as
shown in Figure 4d. The frequency of force data sampling was 1000 Hertz. The surface
morphology of the components was evaluated after the milling process using a scanning
electron microscope (SEM) manufactured by Jeol, Tokyo, Japan (Model JCM 6000Plus).

2.3. Grey Relational Analysis (GRA) with Entropy Weights

This study also employs a GRA-based optimization strategy in conjunction with en-
tropy weights to determine the optimal combination of process parameters for the machined
EBM Ti6Al4V part [28,38]. GRA is one of the most intelligent decision-making methods
in an industrial context; it relies on original data; provides quick and straightforward
estimates; and requires minimal training or expertise to implement [39,40]. Furthermore,
it has a small data size and can be effectively applied in multi-factor evaluation. The
GRA strategy is exemplified below [41–43]. Linear normalization is a data transformation
performed by GRA to make otherwise uncomparable input data fall within the range of 0
to 1. Equations (1) through (3) represent the normalized information for the ith experiment
and the kth response (or quality measure).

x*
i (k)=

x(O)
i (k)−min x(O)

i (k)

max x(O)
i (k)−min x(O)

i (k)
Higher-the-better (1)

x*
i (k) =

max x(O)
i (k)− x(O)

i (k)

max x(O)
i (k)−min x(O)

i (k)
Lower-the-better (2)

x*
i (k)=

∣∣∣x(O)
i (k)− TV

∣∣∣
max{max x(O)

i (k)− TV, TV −min x(O)
i (k)

} Nominal-the-better (TV¯Target Value) (3)

Consequently, a reference sequence is determined using standardized (or compa-
rability) sequences. The Grey Relational Coefficient (GRC) is computed by putting the
normalized sequences into Equation (4).

GRC
(

x*
O(k), x*

i (k) ) =
∆min + ε∆max

∆oi(k) + ε∆max
(4)

where

∆oi(k) represents the differences between a sequence of normal (x*
i ). Furthermore, a se-

quence of references (x*
O) is denoted by the symbolization oi(k), where x*

O(k), is the se-
quence of standard and x*

i (k) the sequence between the sequence of reference x*
O(k), and
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the normalized sequence x*
i (k), i.e., ∆oi(k) = |x*

O(k)− x*
i (k)|is the absolute value of the

difference between x*
O(k) and x*

i (k).
∆min = min

∀i
min
∀k

∆oi(k) and ∆max = max
∀i

max
∀k

∆oi(k), where i =1, 2, . . . , m and k = 1, 2, . . . , n.

ε: distinguishing coefficient, ε [0, 1].

Individual GRCs are grouped into a singular multi-response parameter during the
subsequent phase. This is accomplished by assigning weights to each GRC and subse-
quently combining them. Individual GRC response weighting variables are analyzed using
the entropy method [43]. Entropy weight calculation is a method for objectively evaluating
the relative weights of responses based on their inherent information. As a result, distur-
bance can be reduced in the resulting weights, leading to impartial results [43,44]. This
method depends on the number of data and thus reveals effective response information.
The response’s larger entropy weight indicates its higher significance. Assume there are
n responses and m experiments, whereas xij represents the value of ith experiment and
jth response. It is possible to make a rough approximation of the entropy weight using
Equations (5)–(8) [43,44].

Adjusting numbers for the ith experiment and the jth response so that they are nor-
malized, rij

Response of benefit (higher the better) =
xij

xmax
(5)

Response of cos t (smaller the better) =
xmin
xij

(6)

where, (i = 1, 2, 3, 4, . . . , m; j = 1, 2, 3, . . . , n)
Entropy computation

Hj= −
∑m

i=1 Pijln Pij

ln m
(i = 1, 2, 3, 4, . . . , m; j = 1, 2, 3, . . . , n) (7)

where, Pij =
rij

∑m
i=1 rij

(i = 1, 2, 3, 4, . . . ., m; j = 1, 2, 3, . . . , n)

Estimation of the weight of entropy

wj=
1− Hj

n−∑n
j=1 Hj

, ∑n
j=1 wj = 1, (j = 1, 2, 3, . . . , n) (8)

Grey relational grade (GRG) is a metric that incorporates weighting with the proper
GRC in each experiment. The GRG is used to evaluate the overall performance of multi-
response optimization.

GRGi = ∑n
k=1 wkGRCik (9)

where GRGi represents the GRG for ith experiment, wk represents the weighting for the kth
response, and n represents the response number. From a design of m experiments (in the
present study, forty-eight), the combination of experiments with the largest GRG presents
the best multi-response performance, i.e., the experiment with the largest GRG results in
the process parameter configuration that generates the optimal performance.

3. Results and Discussion

The measurements and design of experiments (DOE) matrices with two replications
are listed in random sequence in Table A1.

3.1. ANOVA Analysis

Analysis of variance (ANOVA) was utilized to examine the significant factors and
interactions for each response. Reducing the model by removing nonsignificant (p < 0.05)
variables one by one unless they are part of a significant higher-level interaction. The term
with the highest p value is eliminated first, and the procedure of fitting is repeated. The
ANOVA is run again, and the elimination procedure is repeated until a reduced model
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containing all significant terms is obtained. Table A2 presents the reduced model of an
analysis of variance (ANOVA) for surface roughness (Sa), which reveals that the variables
Face, cutting speed (V), feed rate (f), and radial depth of cut (Rd) have a significant effect
on the output, which are consistent with those found by [19,21]. There is a considerable
effect on the Sa from two-source interactions such the Face and V, Face and f, Face and Rd,
V and f, and V and Rd. Moreover, three-source interactions, including Face, V, and f, Face,
V, and Rd, and Face, f, and Rd, have significant effects on the Sa. The R-square, adjusted
R-square, and predicted R-square values presented in Table A2 indicate that the model
terms provide an outstanding representation of the data variability.

Table A3 displays the findings of an ANOVA for radial force (Fr), which reveals that
the variables Face, Feed rate (f), and Radial depth of cut (Rd) have a significant effect
on output, as reported by [19]. There is a significant effect on the Sa from two-source
interactions such the Face and f, V and f, and f, and Rd. Moreover, three-source interactions,
including V, f, and Rd have significant effects on the Sa. The R-square, adjusted R-square,
and predicted R-square values presented in Table A3 indicate that the model terms provide
an outstanding representation of the data variability.

The ANOVA results for Feed force (Ff) presented in Table A4 indicate that Feed rate
(f) and Radial depth of cut (Rd) have a significant effect on output. Only one significant
effect on the Sa from two-source interactions including V and f was found. Moreover,
three-source interactions, including Face, V, and F and V, f and Rd have significant effects
on the Sa. The R-square, adjusted R-square, and predicted R-square values presented in
Table A4 indicate that the model terms provide an outstanding representation of the data
variability.

Table A5’s ANOVA results for Axial force (Fa) indicate that Cutting speed (V) and
Feed rate (f) have a significant effect on output, as reported by [45]. There is a significant
effect on the Sa from two-source interactions such the V and Rd, and f and Rd. Moreover,
three-source interactions, including Face, V, and f and V, f, and Rd have significant effects
on the Sa. The R-square, adjusted R-square, and predicted R-square values presented in
Table A5 indicate that the model terms provide an outstanding representation of the data
variability.

3.2. Grey Relational Analysis (GRA) with Entropy Weights Analysis

As a first step in the GRA implementation, the experimental findings from Table A1
are normalized between 0 and 1 under the lower-the-better condition using Equation (2).
Both the reference sequence xO*(k) and the standardized or comparability sequence xi*(k)
(k) are given to response quantities. After cleaning the data, an overview of all sequences
can be found in Table A6. As stated by Deng (1989) [46], a higher number of normalized
values correlates with optimal performance and, consequently, shows greater efficacy.

The deviation sequences ∆01(k) in Table A7, can be obtained as follows.

∆01(1) = |xO*(1) − x1*(1)| = |1 − 0.5734| = 0.4266

∆01(2) = |xO*(2) − x1*(2)| = |1 − 0.2320| = 0.7680

∆01(3) = |xO*(3) − x1*(3)| = |1 − 0.2319| = 0.7681

∆01(4) = |xO*(4) − x1*(4)| = |1 − 0.0503| = 0.9497

therefore, ∆01 = (0.4266, 0.7680, 0.7681, 0.9497).
Results for all ∆0i for i = 1, . . . ., 48 are shown in Table A7 and the same calculation

method is used for i = 2, 3, 4, . . . , 48.
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By analyzing the data in Table A8, ∆min (k) and ∆max (k) can be defined as follows.

∆min = ∆021 (1) = ∆021 (2) = ∆032 (3) = 0.0000

∆max = ∆026 (1) = ∆018 (2) = ∆018 (3) = 1.0000

Differentiating coefficient integration ε = 0.5 into Equation (6) yields the GRC for each
response.

Listed below are examples of the GRCi (k) approximation.

GRC1 (1) =
0.0000 + 0.5× (1.0000)
0.4266 + 0.5× (1.0000)

= 0.5396

GRC1 (2) =
0.0000 + 0.5× (1.0000)
0.7680 + 0.5× (1.0000)

= 0.3943

GRC1 (3) =
0.0000 + 0.5× (1.0000)
0.7681 + 0.5× (1.0000)

= 0.3943

GRC1 (4) =
0.0000 + 0.5× (1.0000)
0.9497 + 0.5× (1.0000)

= 0.3449

Hence, GRC1(k) = (0.5396, 0.3943, 0.3943, 0.3449), k = 1, 2, 3. The same steps are taken
for i = 2, 3, 4, . . . ., 48. Table A8 illustrates the GRC for every experiment conducted.

Weights for every measure of performance must be known in order to optimize a
problem with numerous responses. Expertise and trial-and-error are highly reliant on the
traditional method of evaluating the values of each response, leading to a rise in decision-
making uncertainty. Entropy is introduced as a technique for dispassionately assessing the
significance of each response in GRA. The GRC of each quality measure is represented by
an element in Table A6 of the array Multiple Quality Characteristics (MQC). The estimated
weights in Equations (4)–(7) are calculated using this data.

The GRG of the experiments’ comparability sequence can be obtained as shown in
Table A9.

Based on the experimental design, Table A9 reveals that the machining of Ti6Al4V ex-
periment number 19 has the highest GRG. Consequently, experiment number 19 determines
the optimal multi-response parameter from the 48 experiments.

The average GRG for each parameter level is calculated to identify the best set of
processing variables for enhanced usefulness. This procedure clusters the GRGs based on
the process parameter levels in each column, then averages the parameters with the same
parameter levels. For example, for the factor faces (Table A1), experiments 1, 2, 3, 4, 5, 6, 7,
8, 25, 26, 27, 28, 29, 30, and 32 are adjusted to level 1. Consequently, the average GRG for
A1 can be determined by analyzing the data in Table A10:

A1 =
0.41828 + 0.56443 + 0.7633 + 0.58548 + · · ·+ 0.61729 + 0.64201 + 0.66599

16
=

9.612681073
16

= 0.600793

Both A2 and A3 are predicted to have average GRGs of 0.56073 and 0.565408, respec-
tively.

Each level of machining parameter is computed using the same procedure, and
Table A10’s main effect analysis is performed.

Figure 5 demonstrates that the various responses of the machining of the EBM Ti6Al4V
component are influenced by changes to the process variables. The selection in faces
(Direction 1) and decrease in radial depth of cut increases the GRGs, leading to a decrease
in surface roughness and cutting forces which are consistent with [19–21]. However, as
cutting speed and feed rate decrease from a greater to a lesser value, the relational grades
for the output characteristics diminish. This indicates that increased cutting speed and
feed rate are essential for minimizing surface roughness and cutting force. Changes from
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level 1 to level 2 and level 3 in faces have a significant influence on surface roughness
and cutting force. The surface morphology of milled Ti6Al4V EBM in three directions is
shown in Figure 6. Scanning electron micrographs (SEM) reveal various tool feed marks.
The prominent tool feed marks are generated when the milling tool is moved parallel
to the layers’ planes, which impart larger roughness on the surface after machining, as
shown in Figure 6c. While the thick tool feed marks are generated when the interfaces
between successive layers are perpendicular to the tool feed direction, leading to large
surface roughness, as shown in Figure 6b. Furthermore, the minor tool feed marks are
generated when the milling tool is moved perpendicular to the layers, which achieved a
smaller surface roughness, as shown in Figure 6a. All of this is consistent with [19–22].
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Figure 6. SEM image for the milled surface of EBM orientations: (a) Direction 1; (b) Direction 2;
(c) Direction 3 at 80 m/min of cutting speed, 30 mm/min of feed rate, and 2.4 mm of radial depth.

The difference in surface roughness among the three directions is because the tool
interacts with a single EBM layer while machining along Direction 3 and exerts compressive
forces at the EBM layer interface, which causes the bonded layers to rupture, resulting
in a high surface roughness. In contrast, if the tool is fed in Direction 1, it interacts/cuts
the group of layers with radial depth while exerting force on the layer bonds/interfaces,
thereby preventing the tearing of adjacent layers. The layer interfaces still experience
tensile stresses when Direction 2 is employed, and bond breaking may take place as the
tool is fed throughout the layer group. This contributes to Direction 2’s mild roughness.
Figure 7 shows the differences in 3D surface topography characterizations extracted along
Direction 1, Direction 2, and Direction 3.
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Regarding the cutting forces, when machining is conducted in Direction 1, the tool
interacts with a group of EBM-bonded layers without causing tensile stresses at the in-
terfaces of the layers. This results in different cutting forces in Direction 1 compared to
Direction 3, in which the tool passes/cuts a single EBM layer while exerting maximal
tensile forces on the interfaces, resulting in the lowest machining resistance. On the other
hand, in Direction 2, the tool traverses multiple layers covered by the radial depth of cut.
However, the interfaces of the layers are still subjected to tearing forces, which degrade the
material for cutting, and intermediate cutting forces are generated. The results of surface
morphology, roughness, and cutting forces are consistent with the result of GRG.

Therefore, by choosing the parameter level with the highest GRG (level 1 in faces,
level 2 in cutting speed, level 1 in feed rate, and level 1 in the radial depth of cut; Figure 5),
the optimal combination of process parameters can be easily derived from the main effect
analysis. The optimal parameter settings that produce the lowest surface roughness and
cutting force for machined EBM Ti6Al4V parts are predicted to be level 1 for faces, feed
rate, and radial depth of cut, and level 2 for cutting speed.

The level-wise GRG (Figure 5) demonstrates the change in the multi-response as the
process parameters progress from levels one to levels two and three. Comparing the values
in the final column of Table A10, the difference between the minimum and maximum GRG
values for factor feed rate is clearly the greatest, followed by factors cutting speed, faces,
and radial depth of cut. This demonstrates that the feed rate has the greatest impact on
multi-response optimization, followed by cutting speed, faces, and radial depth of cut.

4. Conclusions

This study demonstrates the value of careful process parameter control in the milling
of Ti6Al4V components made through the EBM process. This study firmly establishes
the significance and impact of controlling process factors on a finished machined surface.
Improved surface roughness and less cutting force are two outcomes of this study’s work
on the Ti6Al4V EBM component. Furthermore, the effect of milling parameters on the part
orientation of the Ti6Al4V EBM component is optimized using the grey relational analysis
(GRA) technique with entropy weights.

The following are the main points of conclusion:

• Feed rate is the most important component when assessing surface roughness and
cutting force regarding the milling process for the Ti6Al4V EBM part.

• Cutting speed is the second factor that affects the surface roughness and cutting force
for the milling performance of the Ti6Al4V EBM part.

• The selection of the direction of layer orientation in the EBM part has a significant
effect during the milling process to achieve minimum surface roughness and cutting
force.

• The radial depth of cut is the lowest effect factor during the milling process for the
Ti6Al4V EBM part.

• The study also concludes that the part orientation effect is likely one of the most
important factors governing the surface roughness and surface morphology of the
machined EBM Ti6Al4V component.

• The multi-response optimization (GRA-Entropy) shows that the optimal machining
efficiency of a Ti6Al4V EBM component can be achieved if the component is machined
in direction 1 at a feed rate of 60 mm/min, a cutting speed of 80 m/min, and a radial
depth of cut of 2.4 mm.
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Appendix A

Table A1. DOE matrix and corresponding results.

9
Input Parameters Responses

Faces V (m/min) f (mm/min) Rd (mm) Sa (µm) Fr (N) Ff (N) Fa (N)

1 C 50 30 2.4 0.145 147.1 73.02 177.3
2 B 50 30 2.4 0.193 102.8 99.63 173.2
3 A 50 30 2.4 0.147 90.04 88.6 171.5
4 A 50 30 2.4 0.148 114.1 78 170
5 A 80 30 4.8 0.114 31.68 85.46 154.6
6 A 80 30 4.8 0.116 41.66 82.59 152.6
7 B 50 60 2.4 0.142 6.21 46.12 152.6
8 C 50 30 2.4 0.144 139.3 60.23 149.1
9 B 50 60 4.8 0.156 65.78 72.51 138.7

10 A 80 60 4.8 0.146 20.03 74.06 137.9
11 C 80 60 4.8 0.127 65.65 54.63 126.1
12 B 80 30 4.8 0.136 49.29 80.35 123.5
13 C 50 30 4.8 0.177 56.11 55.17 119.7
14 B 80 60 4.8 0.157 20.71 61.41 119.4
15 B 80 30 4.8 0.137 9.75 77.08 118.3
16 B 80 30 2.4 0.175 64.2 49.17 117.9
17 B 80 60 2.4 0.159 64.2 49.17 117.9
18 B 50 60 2.4 0.131 9.07 48.81 117.6
19 C 50 30 4.8 0.186 49.7 55.07 117.2
20 C 80 30 2.4 0.178 65.95 48.88 109.2
21 C 50 60 4.8 0.179 61.02 45.88 106.6
22 C 50 60 4.8 0.182 58.09 45.18 106.4
23 C 80 30 4.8 0.152 47.22 48.9 104.4
24 C 80 60 4.8 0.14 7.916 45.1 103.9
25 B 50 60 4.8 0.154 58.64 50.47 103.8
26 B 50 30 4.8 0.154 21.41 45.55 102.4
27 A 50 30 4.8 0.173 34.23 53.66 102.3
28 B 50 30 2.4 0.189 60.07 50.63 102
29 A 50 60 4.8 0.157 11.22 52.14 101.2
30 A 50 60 4.8 0.165 15.07 50.53 99.89
31 A 50 30 4.8 0.165 29.55 46.04 94.71
32 C 80 60 2.4 0.152 54.25 67.95 88.59
33 A 80 60 2.4 0.164 50.5 53.77 76.64
34 B 50 30 4.8 0.146 38.76 41.43 74.52
35 C 80 60 2.4 0.154 35.9 57.44 74.49
36 C 80 30 4.8 0.151 41.23 39.11 73.74
37 A 50 60 2.4 0.135 11.72 14.84 72.74
38 A 50 60 2.4 0.132 22.38 27.66 71.54
39 B 80 60 2.4 0.16 49.21 36.93 71.49
40 A 80 60 4.8 0.136 44.01 26.2 67.06
41 A 80 30 2.4 0.127 75.45 39.58 61.4
42 A 80 60 2.4 0.161 29.58 40.61 50.86
43 B 80 30 2.4 0.165 13.33 21.93 46.41
44 A 80 30 2.4 0.127 24.6 27.19 43.66
45 B 80 60 4.8 0.157 37.62 19.27 43.14
46 C 80 30 2.4 0.175 56.98 16.39 36.98
47 C 50 60 2.4 0.191 6.755 6.378 32.22
48 C 50 60 2.4 0.188 4.895 11.07 31.37
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Table A2. ANOVA results for Sa.

Source DF Seq SS Adj SS Adj MS F-Value p-Value

Model 20 0.01748 0.01748 0.000874 17.02 0
Face 2 0.003046 0.003046 0.001523 29.67 0

V 1 0.002023 0.002023 0.002023 39.4 0
f 1 0.000001 0.000001 0.000001 0.02 0.898

Rd 1 0.000295 0.000295 0.000295 5.74 0.024
Face*V 2 0.000713 0.000713 0.000356 6.94 0.004
Face*f 2 0.000762 0.000762 0.000381 7.42 0.003

Face*Rd 2 0.000708 0.000708 0.000354 6.9 0.004
V*f 1 0.000269 0.000269 0.000269 5.24 0.03

V*Rd 1 0.002367 0.002367 0.002367 46.11 0
f*Rd 1 0.00019 0.00019 0.00019 3.71 0.065

Face*V*f 2 0.004162 0.004162 0.002081 40.54 0
Face*V*Rd 2 0.000677 0.000677 0.000338 6.59 0.005
Face*f*Rd 2 0.002267 0.002267 0.001134 22.08 0

R-sq = 92.65%, R-sq (adj) = 87.21%, R-sq(pred) = 76.78%.

Table A3. ANOVA results for Fr.

Source DF Seq SS Adj SS Adj MS F-Value p-Value

Model 11 38,179.4 38,179.4 3470.86 10.61 0
Face 2 2411.9 2411.9 1205.93 3.69 0.035

V 1 946.8 946.8 946.76 2.89 0.098
f 1 7354.6 7354.6 7354.61 22.48 0

Rd 1 3045.6 3045.6 3045.64 9.31 0.004
Face*f 2 2268.3 2268.3 1134.17 3.47 0.042

V*f 1 5432.2 5432.2 5432.17 16.6 0
V*Rd 1 47.1 47.1 47.13 0.14 0.707
f*Rd 1 8125 8125 8125.04 24.83 0

V*f*Rd 1 8547.9 8547.9 8547.91 26.12 0
R-sq = 76.42%, R-sq (adj) = 69.22%, R-sq(pred) = 58.08%.

Table A4. ANOVA results for Ff.

Source DF Seq SS Adj SS Adj MS F-Value p-Value

Model 15 14,204 14,204 946.93 4.58 0
Face 2 556.7 556.7 278.37 1.35 0.274

V 1 5 5 4.98 0.02 0.878
f 1 1944.4 1944.4 1944.39 9.41 0.004

Rd 1 782.8 782.8 782.77 3.79 0.06
Face*V 2 282.6 282.6 141.31 0.68 0.512
Face*f 2 341.6 341.6 170.82 0.83 0.447

V*f 1 1253.6 1253.6 1253.56 6.07 0.019
V*Rd 1 649 649 649.03 3.14 0.086
f*Rd 1 131.7 131.7 131.68 0.64 0.431

Face*V*f 2 1941 1941 970.49 4.7 0.016
V*f*Rd 1 6315.6 6315.6 6315.62 30.56 0

R-sq = 68.23%, R-sq (adj) = 53.34%, R-sq(pred) = 28.52%.
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Table A5. ANOVA results for Fa.

Source DF Seq SS Adj SS Adj MS F-Value p-Value

Model 15 43,930.1 43,930.1 2928.7 3.42 0.002
Face 2 860.6 860.6 430.3 0.5 0.61

V 1 4572 4572 4572 5.33 0.028
f 1 4894.9 4894.9 4894.9 5.71 0.023

Rd 1 1578.9 1578.9 1578.9 1.84 0.184
Face*V 2 250 250 125 0.15 0.865
Face*f 2 2738.6 2738.6 1369.3 1.6 0.218

V*f 1 2616.1 2616.1 2616.1 3.05 0.09
V*Rd 1 7079.6 7079.6 7079.6 8.26 0.007
f*Rd 1 2088 2088 2088 2.44 0.128

Face*V*f 2 6908.4 6908.4 3454.2 4.03 0.027
V*f*Rd 1 10,343.1 10,343.1 10,343.1 12.07 0.001

R-sq = 61.56%, R-sq (adj)= 43.54%, R-sq(pred) = 13.51%.

Table A6. The Resulting Sequences of Data Preprocessing.

Run Sa (µm) Fr (N) Ff (N) Fa (N)

1 0.5734 0.2320 0.2319 0.0503
2 0.3622 0.8267 0.5747 0.5659
3 0.7381 0.9520 0.9092 0.7165
4 0.3580 0.9284 0.5265 0.5305
5 0.8353 0.5039 0.6440 0.7942
6 0.9747 0.7415 0.1827 0.1692
7 0.3749 0.6794 0.4918 0.6898
8 0.5945 0.8936 0.2742 0.2702
9 0.0602 0.6121 0.5255 0.5157
10 0.5987 0.7619 0.6242 0.7043
11 0.6494 0.9908 0.5738 0.1696
12 0.4720 0.5719 0.2908 0.2647
13 0.2270 0.5830 0.5412 0.4074
14 0.7297 0.6879 0.2068 0.3689
15 0.4298 0.5830 0.5412 0.4074
16 0.4636 0.8888 0.4098 0.3967
17 0.6241 0.0551 0.4226 0.1933
18 0.2017 0.6399 0.4768 0.3946
19 0.0285 0.9869 1.0000 0.9941
20 0.1806 0.6054 0.5764 0.4848
21 0.1890 0.5707 0.5443 0.4666
22 0.5396 0.7445 0.6490 0.7096
23 0.5227 0.6530 0.3398 0.6079
24 0.8353 0.5729 0.4826 0.3506
25 0.5861 0.4013 0.1183 0.0394
26 0.2608 0.7938 0.4930 0.5137
27 0.7761 0.8771 0.7718 0.7247
28 0.4593 0.9555 0.5092 0.5218
29 0.8437 0.8615 0.7768 0.9158
30 1.0000 0.8117 0.1519 0.1554
31 0.4129 0.8264 0.6329 0.8664
32 0.7254 0.7250 0.7875 0.7554
33 0.0000 0.3113 0.0000 0.0284
34 0.5016 0.8839 0.5800 0.5131
35 0.7888 0.9706 0.5450 0.4090
36 0.4974 0.6222 0.5271 0.5039
37 0.3622 0.9407 0.8333 0.8969
38 0.7170 0.9659 0.2418 0.4046
39 0.4213 0.6884 0.6724 0.7250
40 0.4551 0.7699 0.8617 0.9193
41 0.6177 0.0000 0.2854 0.0000
42 0.0919 0.6850 0.4778 0.4120
43 0.0665 1.0000 0.9497 1.0000
44 0.1426 0.6260 0.5839 0.4860
45 0.2270 0.6338 0.8926 0.9616
46 0.5269 0.7024 0.5440 0.4997
47 0.5016 0.7820 0.4525 0.7045
48 0.6748 0.9788 0.5848 0.5032
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Table A7. Deviation sequences.

Run Sa (µm) Fr (N) Ff (N) Fa (N)

1 0.4266 0.7680 0.7681 0.9497
2 0.6378 0.1733 0.4253 0.4341
3 0.2619 0.0480 0.0908 0.2835
4 0.6420 0.0716 0.4735 0.4695
5 0.1647 0.4961 0.3560 0.2058
6 0.0253 0.2585 0.8173 0.8308
7 0.6251 0.3206 0.5082 0.3102
8 0.4055 0.1064 0.7258 0.7298
9 0.9398 0.3879 0.4745 0.4843
10 0.4013 0.2381 0.3758 0.2957
11 0.3506 0.0092 0.4262 0.8304
12 0.5280 0.4281 0.7092 0.7353
13 0.7730 0.4170 0.4588 0.5926
14 0.2703 0.3121 0.7932 0.6311
15 0.5702 0.4170 0.4588 0.5926
16 0.5364 0.1112 0.5902 0.6033
17 0.3759 0.9449 0.5774 0.8067
18 0.7983 0.3601 0.5232 0.6054
19 0.9715 0.0131 0.0000 0.0059
20 0.8194 0.3946 0.4236 0.5152
21 0.8110 0.4293 0.4557 0.5334
22 0.4604 0.2555 0.3510 0.2904
23 0.4773 0.3470 0.6602 0.3921
24 0.1647 0.4271 0.5174 0.6494
25 0.4139 0.5987 0.8817 0.9606
26 0.7392 0.2062 0.5070 0.4863
27 0.2239 0.1229 0.2282 0.2753
28 0.5407 0.0445 0.4908 0.4782
29 0.1563 0.1385 0.2232 0.0842
30 0.0000 0.1883 0.8481 0.8446
31 0.5871 0.1736 0.3671 0.1336
32 0.2746 0.2750 0.2125 0.2446
33 1.0000 0.6887 1.0000 0.9716
34 0.4984 0.1161 0.4200 0.4869
35 0.2112 0.0294 0.4550 0.5910
36 0.5026 0.3778 0.4729 0.4961
37 0.6378 0.0593 0.1667 0.1031
38 0.2830 0.0341 0.7582 0.5954
39 0.5787 0.3116 0.3276 0.2750
40 0.5449 0.2301 0.1383 0.0807
41 0.3823 1.0000 0.7146 1.0000
42 0.9081 0.3150 0.5222 0.5880
43 0.9335 0.0000 0.0503 0.0000
44 0.8574 0.3740 0.4161 0.5140
45 0.7730 0.3662 0.1074 0.0384
46 0.4731 0.2976 0.4560 0.5003
47 0.4984 0.2180 0.5475 0.2955
48 0.3252 0.0212 0.4152 0.4968
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Table A8. GRC for forty-eight comparability sequences.

Run Sa (µm) Fr (N) Ff (N) Fa (N)

1 0.5396 0.3943 0.3943 0.3449
2 0.4394 0.7426 0.5404 0.5353
3 0.6563 0.9124 0.8463 0.6382
4 0.4378 0.8748 0.5136 0.5157
5 0.7522 0.5020 0.5841 0.7084
6 0.9518 0.6592 0.3796 0.3757
7 0.4444 0.6093 0.4959 0.6171
8 0.5522 0.8245 0.4079 0.4066
9 0.3473 0.5631 0.5131 0.5080
10 0.5548 0.6774 0.5709 0.6284
11 0.5878 0.9818 0.5399 0.3758
12 0.4864 0.5387 0.4135 0.4047
13 0.3928 0.5453 0.5215 0.4576
14 0.6491 0.6157 0.3866 0.4421
15 0.4672 0.5453 0.5215 0.4576
16 0.4824 0.8181 0.4586 0.4532
17 0.5708 0.3460 0.4641 0.3826
18 0.3851 0.5813 0.4886 0.4523
19 0.3398 0.9745 1.0000 0.9884
20 0.3790 0.5589 0.5413 0.4925
21 0.3814 0.5381 0.5232 0.4838
22 0.5206 0.6618 0.5876 0.6326
23 0.5116 0.5903 0.4309 0.5605
24 0.7522 0.5393 0.4915 0.4350
25 0.5471 0.4551 0.3619 0.3423
26 0.4035 0.7080 0.4965 0.5069
27 0.6907 0.8026 0.6866 0.6449
28 0.4805 0.9183 0.5047 0.5111
29 0.7619 0.7830 0.6913 0.8558
30 1.0000 0.7264 0.3709 0.3719
31 0.4599 0.7423 0.5766 0.7892
32 0.6455 0.6452 0.7017 0.6715
33 0.3333 0.4206 0.3333 0.3398
34 0.5008 0.8115 0.5435 0.5066
35 0.7030 0.9445 0.5236 0.4583
36 0.4987 0.5696 0.5139 0.5020
37 0.4394 0.8940 0.7499 0.8291
38 0.6386 0.9361 0.3974 0.4564
39 0.4635 0.6161 0.6042 0.6452
40 0.4785 0.6848 0.7833 0.8611
41 0.5667 0.3333 0.4117 0.3333
42 0.3551 0.6135 0.4892 0.4595
43 0.3488 1.0000 0.9085 1.0000
44 0.3683 0.5721 0.5458 0.4931
45 0.3928 0.5772 0.8232 0.9286
46 0.5138 0.6269 0.5230 0.4999
47 0.5008 0.6964 0.4773 0.6285
48 0.6059 0.9592 0.5463 0.5016
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Table A9. The grey relational grade and its rank.

Run GRG Rank

1 0.41828 46
2 0.56443 25
3 0.7633 4
4 0.58548 22
5 0.63666 13
6 0.59156 20
7 0.54167 29
8 0.54778 28
9 0.48285 38
10 0.60786 16
11 0.62134 14
12 0.46084 43
13 0.47928 41
14 0.52336 32
15 0.49788 35
16 0.55309 27
17 0.44089 44
18 0.47686 42
19 0.82568 1
20 0.49293 37
21 0.48161 39
22 0.60066 19
23 0.52333 33
24 0.55448 26
25 0.4266 45
26 0.52873 31
27 0.70624 6
28 0.60364 18
29 0.77301 3
30 0.61729 15
31 0.64201 12
32 0.66599 9
33 0.35677 48
34 0.59059 21
35 0.65736 10
36 0.52104 34
37 0.7281 5
38 0.60712 17
39 0.58224 23
40 0.70195 7
41 0.41126 47
42 0.47932 40
43 0.81433 2
44 0.49482 36
45 0.68045 8
46 0.54089 30
47 0.57576 24
48 0.65326 11

Table A10. Calculation of GRGs main effects.

Parameters Level 1 Level 2 Level 3 Max-Min

Faces 0.600793 0.56073 0.565408 0.040062
Cutting speed

m/min 0.555477 0.59581 - 0.040334

Feed rate
(mm/min) 0.543518 0.60777 - 0.064251

Radial depth of cut
(mm) 0.586122 0.56517 - 0.020956

References
1. Ghio, E.; Cerri, E. Additive Manufacturing of AlSi10Mg and Ti6Al4V Lightweight Alloys via Laser Powder Bed Fusion: A Review

of Heat Treatments Effects. Materials 2022, 15, 2047. [CrossRef] [PubMed]
2. Torino, P.D.I. Characterization of Powder and Its Bulk Ti-6Al-V Samples Produced by Electron Beam Melting Process. Master’s

Thesis, Polytechnic University, Bari, Italy, 2019.

https://doi.org/10.3390/ma15062047
https://www.ncbi.nlm.nih.gov/pubmed/35329496


Metals 2023, 13, 1130 20 of 21

3. Murr, L.E.; Quinones, S.A.; Gaytan, S.M.; Lopez, M.I.; Rodela, A.; Martinez, E.Y.; Hernandez, D.H.; Martinez, E.; Medina, F.;
Wicker, R.B. Microstructure and Mechanical Behavior of Ti-6Al-4V Produced by Rapid-Layer Manufacturing, for Biomedical
Applications. J. Mech. Behav. Biomed. Mater. 2009, 2, 20–32. [CrossRef] [PubMed]

4. Özel, T.; Thepsonthi, T.; Ulutan, D.; Kaftanoglu, B. Experiments and Finite Element Simulations on Micro-Milling of Ti–6Al–4V
Alloy with Uncoated and CBN Coated Micro-Tools. CIRP Ann.-Manuf. Technol. 2013, 60, 85–88. [CrossRef]

5. Gong, X.; Zeng, D.; Groeneveld-Meijer, W.; Manogharan, G. Additive Manufacturing: A Machine Learning Model of Process-
Structure-Property Linkages for Machining Behavior of Ti-6Al-4V. Mater. Sci. Addit. Manuf. 2022, 1, 6. [CrossRef]

6. Grierson, D.; Rennie, A.E.W.; Quayle, S.D. Machine Learning for Additive Manufacturing. Encyclopedia 2021, 1, 576–588.
[CrossRef]

7. Oyelola, O.; Crawforth, P.; M’Saoubi, R.; Clare, A.T. Machining of Additively Manufactured Parts: Implications for Surface
Integrity. Procedia CIRP 2016, 45, 119–122. [CrossRef]

8. Qin, J.; Hu, F.; Liu, Y.; Witherell, P.; Wang, C.C.L.; Rosen, D.W.; Simpson, T.W.; Lu, Y.; Tang, Q. Research and Application of
Machine Learning for Additive Manufacturing. Addit. Manuf. 2022, 52, 102691. [CrossRef]

9. Peng, X.; Kong, L.; Fuh, J.Y.H.; Wang, H. A Review of Post-Processing Technologies in Additive Manufacturing. J. Manuf. Mater.
Process. 2021, 5, 38. [CrossRef]

10. Iquebal, A.S.; Shrestha, S.; Wang, Z.; Manogharan, G.P.; Bukkapatnam, S. Influence of Milling and Non-Traditional Machining
on Surface Properties of Ti6Al4V EBM Components. In Proceedings of the 2016 Industrial and Systems Engineering Research
Conference, ISERC 2016, Anaheim, CA, USA, 21–24 May 2016; pp. 1120–1125.

11. Gong, X.; Manogharan, G. Machining Behavior and Material Properties in Additive Manufacturing Ti-6AL-4V Parts. In
Proceedings of the ASME 2020 15th International Manufacturing Science and Engineering Conference, Online, 3 September 2020;
Volume 1. [CrossRef]

12. Hojati, F.; Daneshi, A.; Soltani, B.; Azarhoushang, B.; Biermann, D. Study on Machinability of Additively Manufactured and
Conventional Titanium Alloys in Micro-Milling Process. Precis. Eng. 2020, 62, 1–9. [CrossRef]

13. Bonaiti, G.; Parenti, P.; Annoni, M.; Kapoor, S. Micro-Milling Machinability of DED Additive Titanium Ti-6Al-4V. Procedia Manuf.
2017, 10, 497–509. [CrossRef]

14. Rysava, Z.; Bruschi, S. Comparison between EBM and DMLS Ti6Al4V Machinability Characteristics under Dry Micro-Milling
Conditions. Mater. Sci. Forum 2016, 836–837, 177–184. [CrossRef]

15. Çevik, Z.A.; Özsoy, K.; Erçetin, A. The Effect of Machining Processes on the Physical and Surface Morphology of Ti6al4v
Specimens Produced through Powder Bed Fusion Additive Manufacturing. Int. J. 3D Print. Technol. Digit. Ind. 2021, 5, 187–194.
[CrossRef]

16. Yadav, S.P.; Pawade, R.S. Manufacturing Methods Induced Property Variations in Ti6Al4V Using High-Speed Machining and
Additive Manufacturing (AM). Metals 2023, 13, 287. [CrossRef]

17. Sartori, S.; Moro, L.; Ghiotti, A.; Bruschi, S. On the Tool Wear Mechanisms in Dry and Cryogenic Turning Additive Manufactured
Titanium Alloys. Tribol. Int. 2017, 105, 264–273. [CrossRef]

18. Anwar, S.; Ahmed, N.; Abdo, B.M.; Pervaiz, S.; Chowdhury, M.A.K.; Alahmari, A.M. Electron Beam Melting of Gamma Titanium
Aluminide and Investigating the Effect of EBM Layer Orientation on Milling Performance. Int. J. Adv. Manuf. Technol. 2018, 96,
3093–3107. [CrossRef]

19. Dabwan, A.; Anwar, S.; Al-Samhan, A.M.; Nasr, M.M. On the Effect of Electron Beam Melted Ti6Al4V Part Orientations during
Milling. Metals 2020, 10, 1172. [CrossRef]

20. Dabwan, A.; Anwar, S.; Al-Samhan, A.M.; Alqahtani, K.N.; Nasr, M.M.; Kaid, H.; Ameen, W. CNC Turning of an Additively
Manufactured Complex Profile Ti6Al4V Component Considering the Effect of Layer Orientations. Processes 2023, 11, 1031.
[CrossRef]

21. Dabwan, A.; Anwar, S.; Al-Samhan, A.M.; Nasr, M.M.; AlFaify, A. On the Influence of Heat Treatment in Suppressing the Layer
Orientation Effect in Finishing of Electron Beam Melted Ti6Al4V. Int. J. Adv. Manuf. Technol. 2022, 118, 3035–3048. [CrossRef]

22. Dabwan, A.; Anwar, S.; Al-Samhan, A.M.; AlFaify, A.; Nasr, M.M. Investigations on the Effect of Layers’ Thickness and
Orientations in the Machining of Additively Manufactured Stainless Steel 316L. Materials 2021, 14, 1797. [CrossRef]

23. Cozzolino, E.; Franchitti, S.; Borrelli, R.; Pirozzi, C.; Astarita, A. Energy Consumption Assessment in Manufacturing Ti6Al4V
Electron Beam Melted Parts Post-Processed by Machining. Int. J. Adv. Manuf. Technol. 2023, 125, 1289–1303. [CrossRef]

24. Cozzolino, E.; Astarita, A. Energy Saving in Milling of Electron Beam–Melted Ti6Al4V Parts: Influence of Process Parameters. Int.
J. Adv. Manuf. Technol. 2023, 127, 179–194. [CrossRef]

25. Tran, Q.P.; Nguyen, V.N.; Huang, S.C. Drilling Process on CFRP: Multi-Criteria Decision-Making with Entropy Weight Using
Grey-Topsis Method. Appl. Sci. 2020, 10, 7207. [CrossRef]

26. Wang, D.; Li, S.; Xie, C. Crashworthiness Optimisation and Lightweight for Front-End Safety Parts of Automobile Body Using a
Hybrid Optimisation Method. Int. J. Crashworthiness 2021, 27, 1193–1204. [CrossRef]

27. Haq, A.N.; Marimuthu, P.; Jeyapaul, R. Multi Response Optimization of Machining Parameters of Drilling Al/SiC Metal Matrix
Composite Using Grey Relational Analysis in the Taguchi Method. Int. J. Adv. Manuf. Technol. 2008, 37, 250–255. [CrossRef]

28. Dabwan, A.; Ragab, A.E.; Saleh, M.A.; Ghaleb, A.M.; Ramadan, M.Z.; Mian, S.H.; Khalaf, T.M. Multiobjective Optimization of
Process Variables in Single-Point Incremental Forming Using Grey Relational Analysis Coupled with Entropy Weights. Proc. Inst.
Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235, 2056–2070. [CrossRef]

https://doi.org/10.1016/j.jmbbm.2008.05.004
https://www.ncbi.nlm.nih.gov/pubmed/19627804
https://doi.org/10.1016/j.cirp.2011.03.087
https://doi.org/10.18063/msam.v1i1.6
https://doi.org/10.3390/encyclopedia1030048
https://doi.org/10.1016/j.procir.2016.02.066
https://doi.org/10.1016/j.addma.2022.102691
https://doi.org/10.3390/jmmp5020038
https://doi.org/10.1115/MSEC2020-8487
https://doi.org/10.1016/j.precisioneng.2019.11.002
https://doi.org/10.1016/j.promfg.2017.07.104
https://doi.org/10.4028/www.scientific.net/MSF.836-837.177
https://doi.org/10.46519/ij3dptdi.947650
https://doi.org/10.3390/met13020287
https://doi.org/10.1016/j.triboint.2016.09.034
https://doi.org/10.1007/s00170-018-1802-7
https://doi.org/10.3390/met10091172
https://doi.org/10.3390/pr11041031
https://doi.org/10.1007/s00170-021-07995-3
https://doi.org/10.3390/ma14071797
https://doi.org/10.1007/s00170-022-10794-z
https://doi.org/10.1007/s00170-023-11502-1
https://doi.org/10.3390/app10207207
https://doi.org/10.1080/13588265.2021.1926809
https://doi.org/10.1007/s00170-007-0981-4
https://doi.org/10.1177/14644207211020401


Metals 2023, 13, 1130 21 of 21

29. Yu-Lai, S.; Wen-Tao, Z.; Guoling, L.; Yuan, T.; Shan, T. Optimal Design of Large Mode Area All-Solid-Fiber Using a Gray Relational
Optimization Technique. Optik 2021, 242, 167188. [CrossRef]

30. Chen, H.; Lu, C.; Liu, Z.; Shen, C.; Sun, M. Multi-Response Optimisation of Automotive Door Using Grey Relational Analysis
with Entropy Weights. Materials 2022, 15, 5339. [CrossRef]

31. Ameen, W.; Al-Ahmari, A.; Mohammed, M.K. Self-Supporting Overhang Structures Produced by Additive Manufacturing
through Electron Beam Melting. Int. J. Adv. Manuf. Technol. 2019, 104, 2215–2232. [CrossRef]

32. Umer, U.; Ameen, W.; Abidi, M.H.; Moiduddin, K.; Alkhalefah, H.; Alkahtani, M.; Al-Ahmari, A. Modeling the Effect of Different
Support Structures in Electron Beam Melting of Titanium Alloy Using Finite Element Models. Metals 2019, 9, 806. [CrossRef]

33. Ameen, W.; Al-Ahmari, A.; Mohammed, M.K.; Abdulhameed, O.; Umer, U.; Moiduddin, K. Design, Finite Element Analysis
(FEA), and Fabrication of Custom Titanium Alloy Cranial Implant Using Electron Beam Melting Additive Manufacturing. Adv.
Prod. Eng. Manag. 2018, 13, 267–278. [CrossRef]

34. Biffi, C.A.; Fiocchi, J.; Ferrario, E.; Fornaci, A.; Riccio, M.; Romeo, M.; Tuissi, A. Effects of the Scanning Strategy on the
Microstructure and Mechanical Properties of a TiAl6V4 Alloy Produced by Electron Beam Additive Manufacturing. Int. J. Adv.
Manuf. Technol. 2020, 107, 4913–4924. [CrossRef]

35. Sun, J.; Guo, Y.B. A Comprehensive Experimental Study on Surface Integrity by End Milling Ti-6Al-4V. J. Mater. Process. Technol.
2009, 209, 4036–4042. [CrossRef]

36. Liu, H.; Wu, C.H.; Chen, R.D. Effects of Cutting Parameters on the Surface Roughness of Ti6Al4V Titanium Alloys in Side Milling; Trans
Tech Publications, Ltd.: Zurich, Switzerland, 2011.

37. Oosthuizen, G.A.; Nunco, K.; Conradie, P.J.T.; Dimitrov, D.M. The Effect of Cutting Parameters on Surface Integrity in Milling
TI6AL4V. S. Afr. J. Ind. Eng. 2016, 27, 115–123. [CrossRef]

38. Rao, R.; Yadava, V. Multi-Objective Optimization of Nd:YAG Laser Cutting of Thin Superalloy Sheet Using Grey Relational
Analysis with Entropy Measurement. Opt. Laser Technol. 2009, 41, 922–930. [CrossRef]

39. Wei, G. Grey Relational Analysis Model for Dynamic Hybrid Multiple Attribute Decision Making. Knowl.-Based Syst. 2011, 24,
672–679. [CrossRef]
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