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Abstract: Inconel 718 is a widely used superalloy, due to its unique corrosion resistance and me-
chanical strength properties at very high temperatures. Hot metal extrusion is the most widely used
forming technique, if the manufacturing of slender components is required. As the current scientific
literature does not comprehensively cover the fundamental aspects related to the process–structure
relationships, in the present work, a combined numerical and experimental approach is employed. A
finite element (FE) model was established to answer three key questions: (1) predicting the required
extrusion force at different extrusion speeds; (2) evaluating the influence of the main processing
parameters on the formation of surface cracks using the normalized Cockcroft Latham’s (nCL) dam-
age criterion; and (3) quantitatively assessing the amount of recrystallized microstructure through
Avrami’s equation. For the sake of modeling validation, several experimental investigations were
carried out under different processing conditions. Particularly, it was found that the higher the
initial temperature of the billet, the lower the extrusion force, although a trade-off must be sought
to avoid the formation of surface cracks occurring at excessive temperatures, while limiting the
required extrusion payload. The extrusion speed also plays a relevant role. Similarly to the role of
the temperature, an optimal extrusion speed value must be identified to minimize the possibility of
surface crack formation (high speeds) and to minimize the melting of intergranular niobium carbides
(low speeds).

Keywords: extrusion; Inconel 718; metal-forming simulation

1. Introduction

Inconel 718 is probably one of the most important among the nickel-based superalloys,
due to its exceptional properties such as high oxidation resistance, corrosion resistance
and high mechanical strength, even at high temperatures. For this reason, Inconel 718 is
currently widely employed in the aircraft engine industry [1,2]. Specifically, it is used
in many critical engine components (i.e., diffusers, combustion chambers, shells of gas
generators, rocket engines and gas turbines), accounting for over 30% of the total finished
component mass of a modern aircraft engine [3].

Despite its outstanding properties, the workability of Inconel 718 shows several
unsolved critical issues. Its peculiar physics characteristics, such as its lower thermal
conductivity, work hardening, presence of abrasive carbide particles, hardness, affinity for
reacting with the tool material, etc., make Inconel 718 difficult to machine [4–6]. Recent
advances in various material processing techniques, e.g., turning, milling and drilling, for
machining Inconel 718 are investigated and discussed in [7]. Although Inconel 718 is sup-
posed to possess good weldability, cracking problems may still arise [8,9]. As highlighted
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in a welding process review [10], strain cracking during the post-weld heat treatment, so-
lidification cracking and liquation cracking may still arise. In the last decade, the possibility
to obtain Inconel 718 components by using additive manufacturing techniques was deeply
explored [11]. In [12], Inconel 718 semi-finished parts were produced by selective laser
melting (SLM) and tensile tests were performed, showing the capability of the SLM process
to produce parts with mechanical properties better than forged and cast materials at room
temperature and equal to properties to forged material at high temperatures. Recently,
additively manufactured metamaterials were also obtained for the thermal stress accom-
modation of metal heat pipes [13]. Inconel 718 can be also coated to improve its wear
resistance, as suggested in [14].

From the industrial end-user point of view, hot plastic deformation manufacturing
processes remain the most common way to obtain Inconel 718 semi-finished parts. It
is well-known that, in these cases, a detailed processing setup is mandatory to control
recrystallization and grain growth phenomena. The main challenge during the hot working
process of Inconel 718 is related to its high deformation resistance during forging and its
tendency to form a duplex grain structure. These issues can be mitigated by precisely
controlling both temperature and deformation during the manufacturing process [15]. As
far as hot forging is concerned, a better understanding of the competition between several
mechanisms (dynamic recovery, dynamic recrystallization and plasticity hardening) is
presented in [16], where several thermo-mechanical parameters are taken into account.
Additionally, an interesting study on the spatial microstructural evolution of the as-forged
and heat-treated Inconel 718 disks can be found in the literature [17]. In this case, due to
the different thermomechanical conditions across the thicknesses, a variation in the grain
size and characteristics of the reinforcing precipitates were observed.

When the final product is characterized by a high aspect ratio, i.e., turbine blades, hot
metal extrusion techniques are generally preferred. This process induces higher plastic
deformation in comparison to forging, thus a finer process parameter tuning is required
to avoid unwanted microstructural effects [18]. A typical failure occurring during hot
metal extrusion is due to the formation of surface cracks. Such a phenomenon was widely
investigated only in the case of aluminum alloy extrusion, where T-shape extrusion ex-
periments were performed and compared with finite element (FE) simulation, in order
to evaluate the possible predictive criteria to assess material recrystallization and surface
crack formation [19].

Nevertheless, to the best of the authors’ knowledge, no works seem to be available in
the literature dealing with the prediction of the above-mentioned microstructural aspects
in the hot extrusion process of Inconel 718 superalloy, along with other technological
characteristics, such as determining the extrusion force, speed and temperature given the
geometry of the mold. To tackle this outstanding problem, a FE-based numerical model
of the extrusion process of an Inconel 718 component was devised. In parallel, a series of
experimental tests were designed and carried out to examine the extrusion of pre-heated
Inconel 718 billets, thus allowing for the comprehensive validation of the numerical model
and respective results. The validated model was then used to perform parametric analyses
in order to pinpoint ranges of processing conditions that avoid the formation of unwanted
features.

2. Materials and Methods

To accomplish all the envisaged tasks, the study focuses on the hot extrusion of an
axisymmetric-shaped component presenting a high aspect ratio (∼=1:8). Therefore, both
experimental and modeling activities were based upon this assumption. In this section,
all the experimental and numerical details regarding the analyses of the present study
are reported.
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2.1. Extrusion Process Set-Up

The studied extrusion setup consists of three main parts, i.e., a mould, a punch and
a processed material (billet), as illustrated in Figure 1. According to this figure, the billet
shows a cylindrical shape at the beginning of the extrusion process (a), to turn into a
nail-like shape at the end (b). It is important to point out that the billet initial diameter
is slightly smaller than that of the accommodating mold. This implies that the punch
compression against the billet produces a radial expansion of the billet in the initial stage of
the process. At the stage when the material can no longer radially expand, then the material
flows through the narrower section of the mold. The punch arrests prior to reaching its
mechanical travel stop in order to obtain the head of the extruded piece.
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Figure 1. Billet, mold and punch, respectively, (a) at the beginning and (b) at the end of the extru-
sion process.

2.2. Process Simulation and Material Modelling

At present, several commercial products are available for metal-forming simula-
tion [20], based on FE approaches. The possibility of using a digital model, for the pre-
liminary set-up of the technological process, would permit considerable time and cost
reductions. Nevertheless, the reliability of these tools is still an object of debate, particularly
concerning the material properties to be introduced in the model [21,22]. In the present
work, Q-form (10.1.6 version) was used. A metal-forming process simulation of a structural
component made of Inconel 718 can be found in the literature, using the same FE code [23].
Such a reference study presented a partial comparison with experiments, suggesting that
the material model proposed herein is sufficiently accurate.

The simulation of hot plastic deformation processes generally requires huge compu-
tational time. In this case, an axisymmetric geometry was chosen, so that the dimension
of the problem could be reduced by employing a plane model. The billet was modelled
by 6-node triangular isoparametric elements (initial mesh: 9000 nodes, 17,000 elements).
Generally, a plastic deformation process involves very high plastic strain, therefore, to
avoid excessive element distortion, re-meshing was performed when strain increments
higher than 0.1 among subsequent steps occurred. Moreover, the mesh was automatically
updated where high strain and temperature gradients were detected. As the deformation
of the mould is negligible, a fine mesh of this component was only required close to the
inner surface where the thermal gradients could be relevant.

As the study is mainly related to the extrusion process simulation, the mold and
punch were modelled as rigid bodies; their initial temperature was 200 ◦C and the initial
temperature of the air was 20 ◦C. The dimension of the mesh was defined according to a
sensitivity analysis performed referring to the damage parameter D.

The numerical model for the FE simulation is based on the usual flow formulation [24],
where the material is considered as an incompressible rigid-viscoelastic continuum. The
contact between the punch, mould and billet is dealt with according to a friction model
proposed by [25]. It can be considered as a combination of constant friction and Coulomb
friction models; the first one is dominant in the case of a high value of contact pressure,
whereas, for low values, friction forces are approximately linearly dependent on the normal
contact pressure.
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The billet was made of Inconel 718, showing Ni (51.5%), Cr (18.4%), Fe (20%), Mo (3%)
and Nb (5%) as major alloying elements (by weight %) with balanced other elements. The
mold was made of a chromium-vanadium-molybdenum alloyed steel.

The physical and mechanical properties of the studied Inconel in the range 20–1100 ◦C
were obtained from [26].

The flow stress of Inconel 718 at different strain rates and temperatures are reported
for the case at ε = 0.7% in [27].

In a more general case, flow stresses can be obtained according to the following
relations [28]:

.
ε

−
D(T)

= A
(

sinhα
σ

E(T)

)0.5
(1)

where
.
ε and σ are the strain rate and the flow stress, respectively, while

−
D(T) is the self-

diffusion coefficient, given by:

−
D(T) =

−
D0exp

(
−Qst
RT

)
(2)

where R is the universal gas constant, T the absolute temperature, Qst is the activation

energy and
−
D0 is the maximal diffusion coefficient. In the present study, the latter two

constants are set as:
−
D0 = 1.6 × 10−4 m2/s and Qst = 285 kJ/mol.

The dependence of the Young’s modulus E to temperature T can be obtained through
the following relation [29]:

E = 2(1 + v)G (3)

G = G0

(
1 − 0.5

υ

TM

)
(4)

where G is the shear modulus, G0 is the shear modulus at 300 K (8.31 × 104 MPa), TM is the
meeting temperature (1673 K) and υ is the Poisson coefficient (0.33).

To predict the formation of surface cracks, a damage criterion can be adopted. Several
fracture models are proposed in the literature. In [30], a thorough review of the most
common ductile damage criteria is presented. Probably the most widely used phenomeno-
logical fracture model is the original Cockcroft Latham’s criteria [31]. It assumes that the
material fracture is controlled by maximum principal stress. This approach was improved
in the normalized Cockcroft Latham’s (nCL), also called Oh et al., a criterion where an
equivalent stress is introduced to normalize the maximum principal stress. In the modified
Cockcroft Latham’s (called also Clift et al.) criterion, it is assumed that the ductile fracture
starts or initiates when a critical value of plastic work per unit volume is achieved. Other
fracture models (see [30] for more details), such as Mc Clintock’s, Brozzo’s and RT (also
called Rice and Tracey) models, have been proposed and reported in the literature.

In [19,32], the nCL criterion was indicated as the best amongst the various existing crite-
ria for the prediction of fracture initiation during extrusion. Recently, in [30], a comparative
assessment of failure strain predictions using ductile damage criteria in the metal-forming
of Inconel 718 was performed, concluding that the nCL criterion seems the most suitable
option to predict fracture locus with high accuracy both at room and at high temperatures.
The nCL was also adopted in [33], where a FE simulation of an Inconel 718 machining
process was performed with the aim of predicting chip segmentation during orthogonal
cutting. In particular, another study pointed out that the critical value of D in Equation (5)
should be dependent on the strain path and, therefore, it cannot be considered as a material
constant [34]. Thus, the nCL does not allow for a quantitative prediction of the damage
for an arbitrary technological process of metal forming. The criterion can be used only for
a qualitative comparison of similar technological processes. In this case, the nCL gives
substantial support in evaluating the most critical zones of the final extruded component.
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According to the previously mentioned literature assessments, in this work, the nCL
damage criteria was used:

D =
∫ −

ε f

0

σI
σVM

d
−
ε =

∫ t f

0

σI
σVM

.
εdt (5)

where:
σI = maximum principal tensile stress;
−
ε f = total equivalent strain;
σVM = von Mises equivalent stress;
.
ε = equivalent strain rate;
D = damage index.
The microstructure evolution can be simulated by means of a semi-empirical model [35].

The model takes into account both the recrystallization (dynamic and static) and grain
growth, providing the average grain size and the fraction of recrystallized grains [36]. In
the considered alloy, dynamic recrystallization usually occurs starting on deformed grain
boundaries after the critical strain is reached for a certain applied strain at a certain pro-
cessing temperature [37–39]. The fraction of recrystallized crystals Xdyn can be calculated
by means of Equation (6). The formula is obtained from Avrami’s equation:

Xdyn = 1 − exp

[
−ln2

(
ε

ε0.5

)1.9
]

(6)

The strain condition ε0.5 at which 50% of grains are recrystallized (Equation (7)), that
is a parameter necessary to determine the fraction of dynamically recrystallized grains,
depends on the initial grain size d0 and on the Zener–Hollomon parameter Z, which is
calculated on the basis of processing conditions (strain rate and temperature).

ε0.5 = 0.029 d0.2
0 Z0.06 (7)

The grain size during dynamic recrystallization
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Further recent work concerning the simulation of microstructure evolution and dy-
namic crystallization in hot plastic deformation of metals can be found in [40,41].

The main process parameters analyzed in the simulations are the punch speed and the
initial temperature of the billet Tb in the range 1020–1090 ◦C, within the classic deformation
temperature limits for Inconel 718 hot working [26]. In fact, these alloys are limited in terms
of processing temperatures due to the intergranular precipitations of Nb compounds at
temperatures above 1150 ◦C that reduce the ductility of the material, while, at temperatures
below 950 ◦C, the material is prone to generate adiabatic shear bands [27].

The mold geometry is characterized by an extrusion ratio of ~1:6. The punch and mold
undergo relevant loads during the extrusion process and, thus, they must be designed
thoroughly, in order to avoid possible failures. Nevertheless, this aspect is strongly related
to the specific product shape and thus it is not the objective of this work.

2.3. Extrusion Process Test

The parent billets were obtained by cutting a circular bar and turned to remove sharp
edges, thus facilitating its self-centering at the first phase of the process. To lubricate and
avoid oxidation at the surface of the billets, a glass-based coating was subsequently applied
(see Figure 2a).
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To perform the extrusion tests, the following procedure was carried out:

• The billet was heated to a temperature Tb (holding time 1500 s).
• The punch and mold were lubricated with a graphite and water mixture.
• The billet was transferred from the oven to the mold (duration time: 3 s).
• The billet was maintained in position for 3 s (in this phase, heat was transferred from

the billet to the mold)
• The punch was moved forward to perform the extrusion of the billet at constant speed v.
• Finally, the punch was retracted and the extruded billet was extracted.

A total of 63 tests were performed at different extrusion speeds, spanning from
0.27vmax to 1.0vmax and at an initial temperature of the billet of Tb = 1090 ◦C. vmax is
a normalizing velocity. The selected speed range and temperature was set, such that the
formation of surface cracks was inhibited. In particular, in the present study, higher temper-
atures (>1095 ◦C and lower extrusion speeds (<0.270vmax) were discarded as preliminary
experimental tests showed the formation of surface cracks on final extruded components at
0.19vmax and at T = 1110 ◦C. An example is shown in Figure 2c,d.

The value of the force was obtained by measuring the hydraulic fluid pressure at a
sampling speed of 100 Hz.

2.4. Macro and Micro-Structure Analysis

The extruded specimen underwent a macro- and micro-structural characterization. In
particular, one extruded sample was cut into two halves along the longitudinal direction to
obtain flat surfaces, above which the microstructural analyses were performed. The target
surface was then manually ground and polished to obtain a mirror-like surface. Afterwards,
the sample was macro-etched (submerged) by using a solution of HCl and iron chloride for
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30 min. The sample was finally rinsed in deionized water with 1 M of sodium bicarbonate
and visually inspected to analyze the macroscopic structural features.

Following this, metallographic samples were extracted from the previously analyzed
sample at the areas circled in Figure 3. These samples were ground and polished again to
reach a mirror-like surface and then etched using Marble’s etchant for 1–2 min to reveal
the microstructure. The microstructure was then analyzed by light microscopy and the
grain size was measured through the line intercept method. The exact locations of analyses
are indicated in Figure 3. In detail, the microstructural characterization was performed
in the centerline of the test specimen and in the proximity of the extruded surface. The
filleted region, indicated by the large circle in Figure 3, was analyzed in detail from a
microstructural point of view in order to detect the critical deformation that triggers the
grain crystallization. In this area, an evaluation of the recrystallized fraction was carried
out by using the image analysis approach (phase partition analysis).
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3. Results and Discussion
3.1. Extrusion Process and Force Evolution: Numerical Simulation and Experiments

Thanks to the numerical simulation of the hot extrusion process, it is possible to
graphically distinguish three phases of the process (see Figure 4), referring to an extrusion
speed v = 0.67vmax. At t = 0, the punch touches the billet, producing its radial expansion
up to t = 0.09 s. After that time, the material starts flowing inside the matrix up to t = 0.18 s.
During this phase, the high friction between the billet and the mold produces heat and,
consequently, a significant increase in the temperature of the billet. From t = 0.18 s up to the
end of the process (t = 0.35 s), the billet shows its final forms and starts flowing more freely.

For the sake of the validation of the FE model, the extrusion force for two different
extrusion speeds is compared (i.e., simulation vs. experiment). Figure 5 shows the evolution
of the simulated extrusion force versus time for two different values of the extrusion speed.
An interpretation of the force evolution can be proposed; during the first phase of the
process (1), (see Figure 5), the slope of the curve is constant and relatively low, up to the
beginning of the second phase (2), where a rapid increase is observed. This is mainly
related to the large plastic deformation occurring in the billet. Moreover, the extrusion
force has to overcome the high frictional forces due to the increase in the contact pressure
occurring between the billet and the mold. In this phase, once the frictional force cannot
increase any further, the peak force is reached. In the last phase (3), a slight decrease in the
force is observed. This is due to the heat produced by the sliding of the mold with respect
to the billet that increases the temperature of the material, thus reducing the flow stress.
Moreover, as the extrusion process evolves, the contact between the extruded part and
the mold shows a progressive area reduction at the head of the billet, with a consequent
decrease in friction, thus a decrease in the extrusion force.
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The measured values of forces are also reported. The agreement is satisfactory in the
first two extrusion phases (1 and 2, in Figure 5); in the third phase a higher difference is
clearly observed. This is probably related to the high extrusion force reached in this phase.
A large compression force thus acts on the punch, producing a radial expansion due to
Poisson’s effect. It follows that a slight shrink fit in the punch–mold coupling is likely to
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arise. Therefore, an increase in the friction—and consequent force—takes place. In the
simulation, the punch and mold were modeled as rigid bodies and, therefore, this effect
could not be captured.

To even further support the validation concerning the extrusion force, a set of experi-
ments and simulations were carried out at different extrusion speeds. Figure 6 shows the
values of maximum extrusion forces (Fmax) at different extrusion speeds; furthermore, the
simulated results are compared with the experiments (each point is the average of 6–10
different tests). It can be observed that the extrusion force remains almost constant with
respect to the extrusion speed. This is justified by considering that the increase in the flow
stress (and also the force), with the strain rate (and the speed), is counterbalanced by the
heat exchange from the billet to the mold that is reduced for high speeds, promoting high
temperatures and subsequent low stress flow values. Simulated extrusion forces are always
slightly lower with respect to the measurements; this is probably due to the uncertainty of
the value of the friction parameters to be used in the simulation and also due to the shrink
fit phenomena mentioned above.
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3.2. Parametrical Analyses and Surface Crack Formation

In this section, the results of the parametric simulations to assess the influence of the
billet temperature, and of the extrusion velocity, are shown.

Concerning the maximum extrusion force, Figure 7a shows its inverse proportionality
to the initial billet temperature,Tb, at a constant extrusion speed of 0.67vmax. This is
due to the flow stress of the material that is higher at lower temperatures, making the
extrusion force significantly increase. On the other hand, an increase in the D parameter
also takes place when Tb increases, which nullifies the beneficial effect of the reduction
in the extrusion force at higher Tb. Consequently, Tb must be chosen as the minimum
temperature suitable to guarantee the extruded forces are compatible with the technological
limits due to extruder payloads (Tb = 1090 ◦C in this case). Moreover, the influence of the
extrusion speed on the maximum surface temperature Tb experienced at the surface of
the billet and the damage parameter D are displayed in Figure 7b. Regarding the surface
temperature, it is possible to observe its increase at high magnitudes of extrusion velocities.
This can be imputed to the thermal exchange with the mold that is drastically reduced at
high velocities and, thus, the process becomes almost adiabatic with a significant increase in
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the billet temperature. Conversely, the greater the extrusion speed, the greater the damage
parameter D. Nevertheless, as Ts,max above 1150 ◦C has to be avoided, due to the possible
intergranular melting of Niobium precipitates, extrusion speeds higher than 0.67 should
be avoided.
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Figure 7. Influence (a) of the initial billet temperature Tb on the maximum extrusion force and on
the damage parameter D. Influence (b) of the normalized extrusion speed on the maximum surface
temperature of the billet Ts,max and on the damage parameter D.

For the sake of illustrating a significant full-field distribution of the damage parameter
D over the analyzed domain, we decided to choose the following process parameters:
Tb = 1090 ◦C and v = 0.67vmax. Following this, Figure 8 shows the result of this analysis.
It can be observed that the most critical values occur over the surface of the upper part
of the extruded workpiece (maximum value of D at the point labelled as “A”). In this
zone, the risk of surface crack formation is higher than that of the remaining regions of the
model. Although the damage parameter does not provide a quantitative evaluation of the
crack formation condition, the proposed model is certainly capable of identifying the most
critical regions, as verified by the preliminary experimental tests conducted in this work
(see Figure 2c,d). Therefore, D should be minimized as much as possible to avoid material
cracking within the limits of the other technological constraints.

In order to better understand the obtained results, point “A” was monitored through-
out the whole extrusion process to observe the evolution of the damage parameter D (see
Figure 9). It can be observed that ~50% of damage D accumulates during the first extrusion
step that involves the billet expanding radially (1). At t = 0.08 s, the radial expansion of the
billet in the mold is concluded and point “A” is located by the entrance of the mold diame-
ter reduction. From t = 0.08 s to t = 0.18 s, mostly the inner part of the billet material starts
to flow within the smaller section of the mold (2). In fact, in this time interval, point “A”
does not undergo major displacement and deformation, therefore the damage parameter D
remains almost constant. At t = 0.18 s, the severe plastic deformation of the flowing billet
starts also involving the external regions of the billet, which slides with respect to the mold
wall, including point “A”. At t = 0.19 s, point “A” exits the mold and detaches from the
mold wall (3). In this phase, a further increase in D occurs, mainly due to the positive stress
in the axial direction induced by the friction forces and counterbalanced by the reaction of
the mold. The evolution of the ratio σI

σVM
is also reported to be made clear, according to the

expression reported in Equation (5), when the increase in D is related to an increase in the
strain rate (1).
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σVM
.

3.3. Experimental and Numerical Macro and Micro-Structure Analysis

The macro-etched sample (process parameters: Tb = 1090 ◦C; v = 0.67vmax) shows the
presence of a uniform microstructure along the main body of the billet (Figure 10). Some
differences are well highlighted in the proximity of the ends of the extruded sample. In
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detail, the two ends present a coarser grain distribution in comparison to the core of the
billet. This grain distribution is linked to both low material deformation at the larger end,
and at the material first undergoing extrusion at the thinner end. The extruded sample
does not show any fibering due to both a possible homogenous chemical composition
(absence of segregated areas) and to a probable homogenous monophasic recrystallized
microstructure that is not prone to highlight the presence of microstructural bands.
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Figure 10. Macro structure of the analyzed sample obtained after macro-etching.

The material, in any case, is composed of a monophasic gamma microstructure with
no apparent precipitates at the micron-scale. Going into the details of the metallographic
characterization, it is possible to observe a colony of grains along the centerline and close
to the extruded free surface. In the centerline of the billet, the grain size is equiaxed
and completely re-crystallized, although, in some regions, re-crystallization did not take
place. The presence of these microstructural features probably indicates a meta-dynamic
recrystallization process. No appreciable variations of the grain size were observed in the
non-re-crystallized grains, although significant plastic deformation induced grain rotation
and shearing effects. At the billet free-surface, the grains seem to be finer in comparison
to the centerline due to higher cooling rates. Such experimental evidence allowed for the
validation of the numerical model regarding the microstructure evolution, as shown in
Figure 11. These results are in good agreement with the simulations in terms of the average
grain size at the end of the process. In fact, finer grains can be easily observed at the
extruded external surface with respect to the centerline, whereas, at the two ends, where
the material is nearly undeformed, their dimension is unchanged (∼=170 µm) in comparison
to the pre-extrusion conditions.
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The analysis of the microstructure in the proximity of the billet large fillet in Figure 12
shows the presence of a gradual deformation of the grains leading to a re-crystallization of
the material that is fully accomplished before the material flows outside the smaller section
of the mold.
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show a good agreement as far as the grain size is concerned, between the values evaluated 
by using the numerical methods previously presented and the experimental observations. 
On the other hand, the same match could not be fully verified at the regions where partial 
recrystallization occurred. In this case, the differences are more related to the difficulty in 
measuring the grain size by image analysis (intercept method). 
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Figure 12. Grain size evaluation: experimentally measured vs. calculated. Labels refer to the regions
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A graph that compares the calculated grain dimension and the measured grain size is
shown in Figure 12. The graph confirms that the regions with a fully recrystallized grain
show a good agreement as far as the grain size is concerned, between the values evaluated
by using the numerical methods previously presented and the experimental observations.
On the other hand, the same match could not be fully verified at the regions where partial
recrystallization occurred. In this case, the differences are more related to the difficulty in
measuring the grain size by image analysis (intercept method).

Specifically, new grain nuclei, at approximately half of the fillet, are formed, where a
mixture of re-crystallized and un-recrystallized grains are gradually observed. The position
where around 50% of grains are recrystallized can be easily identified, and it corresponds,
by comparing the position from microstructural characterization (Figure 13), to the plastic
strain map obtained from the simulation (Figure 14), to a total strain between 1.2 and 1.5.

In this region, the plastic strains can also be experimentally evaluated by analyzing
the length of undeformed grains and comparing this measurement to the initial dimension
of the austenitic grain to assess the total strain in this position. A very good match was
found with the total strain obtained from the numerical model.

Finally, the length of the extruded samples was measured and compared with the anal-
ogous dimensions obtained via simulation, observing a difference that was always lower
that 5%. This value fulfills the technological requirements for the considered component.
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Figure 14. Strain distribution at the end of the extrusion process.

4. Conclusions

In this work, an extensive study was carried out to tackle the problem of Inconel 718
hot extrusion by employing both numerical and experimental methods, a subject that is
scarcely addressed by the current literature. The development of a numerical approach,
supported by experimental evidence, allowed for the evaluation of how key technological
parameters (i.e., initial temperature of the billet, extrusion speed) affect both the required
extrusion force and the final quality of the product (i.e., surface cracks, microstructure).
The results show a very good agreement between the measurements and simulation. In
particular, the proposed model was able to accurately predict the evolution of the extrusion
force and the location of the zone of possible surface crack formation. Additionally, the
model was capable of accurately capturing the microstructural grain deformation and
re-crystallization.
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Thanks to the fully validated developed model, the following recommendations can be
drawn to attain the structural integrity and the sought mechanical performance of the final
product. A higher initial temperature of the billet permits the extrusion force to be reduced,
although the surface quality of the final product may be impaired if such a temperature is
excessively increased. For the case presented in this work, a temperature around 1090 ◦C
could be a reasonable trade-off. An increase in the punch speed is also advisable, as it
lowers nCL’s damage parameter, reducing the probability of surface cracks formation.
Nevertheless, excessive values of speed could produce an increase in the temperature of
the billet, which may be detrimental as it may induce the local melting of niobium carbide.
An extrusion speed of 0.6 ÷ 0.7 v/vmax could fulfill the abovementioned requirements.

The proposed procedure aims at providing a robust tool for the setting up of hot
extrusion processes, regardless of the complexity of the geometry. This aspect is pivotal
to reducing the design-to-market time and massively reduces the costly trial and error ap-
proaches.
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resources, F.S.; data curation, S.B.; writing—original draft preparation, F.D.B.; writing—review and
editing, F.D.B. and E.S.; visualization, E.S.; supervision, F.D.B. and P.M.; All authors have read and
agreed to the published version of the manuscript.
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