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Abstract: The present research used the stir-casting method to develop an Al-based composite.
The developed composite exhibited challenges while being processed on conventional machining.
Thus, a non-traditional machining process was opted to process the composite. The machining
variables selected for the current research were the pulse off time (Toff), pulse on time (Ton), servo
voltage (SV), current (I), and tool electrode. Three tool electrodes (SS-304, copper, and brass) were
used to process the developed composite (Al/SiC/Gr). The experimental plan was designed using
response surface methodology (RSM). The output responses recorded for the analysis were the
material removal rate (MRR) and tool wear rate (TWR). The obtained data was optimized using
complex proportional assessment (COPRAS) and machine learning methods. The optimized settings
predicted by the RSM–COPRAS method were Ton: 60 µs; Toff: 60 µs; SV: 7 V; I: 12 A; and tool:
brass. The maximum MRR and TWR at the suggested settings were 1.11 g/s and 0.0114 g/s,
respectively. A morphological investigation of the machined surface and tool surface was conducted
with scanning electron microscopy. The morphological examination of the surface (machined)
presented the presence of cracks, lumps, etc.

Keywords: Al/SiC/Gr composite; COPRAS; EDM; hybrid composite; optimization

1. Introduction

A mixture, which constitutes two diverse materials, is termed a composite, and
the properties of a composite are an aggregate of its constituent parts. In the current
scenario, metal matrix composites (MMCs) are gaining popularity among industrialists
and researchers because of the properties they possess, such as superior fatigue resistance,
expansibility, better electrical/thermal conductivity, high microplastic strain resistance, and
an improved modulus of electricity [1]. Various materials and their alloys are available
and can be utilized as a matrix, such as Zn, Co, Pb, Ni, Ti, Mg, Cu, and Al metals. Of these
available materials, Al and its alloy are widely used because of their low weight, high heat
conductivity, and easy availability. These alloys have numerous applications in aerospace.
To use these alloys, it is essential to cut them into the proper shape. However, due to the
hard particles reinforced in the matrix material, a non-traditional machining process is
adopted for the machining purpose.

Out of all the available non-traditional techniques, electrical discharge machining
(EDM) is considered one of the most viable options due to the nature of the workpiece (Al
is conductive in nature). EDM is assumed to be a complex machining process due to the
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involvement of many input variables, namely water pressure [2], the material of the elec-
trode [3–7], spark variables (pulse duration, frequency, current, servo voltage, and pulse off
time (Toff)) [8], the dielectrics used in the EDM process [9], etc. Considering the above facts,
it is essential to perform an EDM control factor performance analysis. Thus, to apply EDM
technology successfully to machine hard materials and improve processing, it is mandatory
to select appropriate process parameters. Furthermore, improvements in cutting efficiency,
cost, productivity, and quality can be made by selecting optimal machining conditions.
The parameters are optimized according to the response variables. Sometimes, more than
one response variable is considered collectively; these variables are opposite in nature.
These kinds of problems are termed multi-criteria decision-making (MCDM) problems.
There are many statistical and artificial intelligence techniques, such as response surface
methodology (RSM) [10–12] and artificial neural networking (ANN) [13], that are used for
modeling purposes. Other techniques, such as the Taguchi method [14–17], Grey relational
analysis (GRA) [18–20], desirability [21,22], and principal component analysis (PCA) [23],
have been used for performance analysis. To assess the process’s machinability, several
approaches have been used for planning, modeling, analysis, and optimization [24–28].

From the literature, it is evident that a number of hard-to-machine materials have been
processed by EDM [29–31]. These materials include titanium and its alloys, stainless steel,
and nickel alloys (Nimonic, Monel, Inconel, and Hastelloy). However, few articles have
been published on the machining of Al-based hybrid composites. Due to the reinforcement
in Al alloys, it is very difficult to process it with the EDM process (the reinforcements are
ceramics, which are non-conductive). Therefore, in the current work, an Al-based hybrid
composite was initially developed using a stir-casting route. Then, it was processed with
EDM using different process parameters and tool materials. Different electrode materi-
als have different material characteristics; therefore, the output parameters responded
differently. The objectives of the current work were:

(i) To design the experiments as per the number of machining variables and their levels.
(ii) To investigate the effect of the machining variables on the MRR and TWR during the

machining of the Al composite with EDM.
(iii) To determine the influence of different tool materials on the morphology of the

machine surface of Al composite.
(iv) To establish an empirical relationship between the machining variables and responses

after performing experiments.
(v) To optimize the machining variables of the EDM process using RSM–COPRAS.

2. Material Development
2.1. Aluminum-Based Metal Matrix Composite (AMC)

The fabrication of an AMC with a uniform distribution of particulate is the greatest
challenge for material scientists. The applications of AMC (Al alloys with graphite and SiC)
are found in cylinder liners and inertial guidance systems, lightweight optical assemblies,
drones, aerospace structures, etc.

These AMCs present a high value of strength with a low weight density. An EDS
plot of the developed Al/composite is depicted in Figure 1. These composites may be
developed with spray co-deposition, squeeze casting, powder metallurgy, and stir casting.
Table 1 shows the composition of the Al composite used in the current work. The AMC was
developed using stir casting due to economic factors and availability in the present work.
The reinforcements (SiC and Gr) were initially preheated to evaporate moisture. After
that, they were mixed with the molten aluminum in a graphite crucible. A graphite stirrer
was used to mix the particulates in the molten matrix. Another benefit of preheating the
reinforcements was the development of an oxidation layer, which eliminated the chances
of forming the Al4C3 brittle phase. This oxidation layer prevents direct contact between
the aluminum (molten) and SiC; thus, the formation of a brittle phase does not occur. At
the same time, due to a high degree of graphitization, Gr cannot react with the molten
aluminum. The volume fraction, reinforcement size, and shape play pivotal roles in the
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mechanical characteristics of AMC. These developed composites exhibit two phases: one is
Al with SiC and the other is Al with Gr. The bonding of Al and SiC is stronger than the
bonding between Al and Gr.
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Table 1. Composition of Al composite used in current research.

Element Percentage

Cr 0.2

Cu 0.28

Si 0.6

Mg 0.74

Zn 0.14

C 0.17

Al Balance

2.2. Experimentations

In the current work, experiments were performed on the developed AMC using the
Die-Sinking EDM (Oscar Max, Taichung, Taiwan). The EDM process is shown in Figure 2
with a schematic. Hydrocarbon-based dielectric oil with a density value of 0.76 was used
as a dielectric in the current work. There were several process parameters, and out of those,
five input parameters at three levels each were selected for the research purpose after a
preliminary study. The machining variables used in the current research were pulse on
time (Ton), pulse off time (Toff), voltage (V), current (I), and tool material. The machining
parameters, along with their symbols, units, and levels, are provided in Table 2.

Table 2. Machining parameters and their levels in actual and coded form.

Machining Parameters Symbols (Units)
Level/Code

−1 0 1

Tool Steel-304 Brass Copper

Current I (A) 10 12 14

Voltage V (V) 6 7 8

Pulse off time Toff (µs) 30 60 90

Pulse on time Ton (µs) 30 60 90
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Figure 2. Schematic of EDM process.

In the current work, three tool electrodes made of different materials (copper, brass,
and steel-304), each with a 12 mm diameter, were used. During the machining (EDM), the
workpiece and the tool were submerged in the dielectric. The MRR and TWR were the
response variables that were investigated in the current work.

In the EDM, a potential difference was set up between the tool and workpiece; there-
fore, discrete sparks were generated in the gap. These sparks were sufficient to generate
a temperature that melted the material. A hole with a depth of 1 mm was created, and
the duration of this was noted. Figure 3 shows the process flow diagram used in the
current work.
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2.3. Evaluation of Responses

In the current research, the response variables were TWR and MRR. The weight of the
tool and workpiece were calculated before and after machining and the time (machining)
was also noted down. Equations (1) and (2) were used for the computation of MRR
and TWR:

MRR
(g

s

)
=

(Wo −w)

tm
(1)

where Wo—initial workpiece weight (g); W—weight of the workpiece after processing (g);
tm—machining time in s for each run;

TWR
(g

s

)
=

(To − T)
tm

(2)

where To–weight (initial) of the electrode (g); T—weight of the electrode after processing (g).
tm—machining time in s for each run.

To compute the weight of the workpieces, a weighing machine with a maximum
capacity of 200 g and a lowest count of 0.001 g was used.

3. Methodology

The experiments were designed according to RSM-based BBD, and five process pa-
rameters with three levels each were used. A total of 46 experiments were designed and
executed as per the run order. The experiments were executed as per the run order to
check the stability of the machine tool. RSM was used to combine both the statistical
and mathematical approaches. It was also beneficial for the investigation of the empirical
model and the interaction of the process parameters. There were four steps involved in the
implementation of RSM, which were (i) the planning of experiments; (ii) the analysis of
the empirical model; (iii) parametric optimization (iv); and the predicted solutions after
analysis. RSM also provided the empirical model for the objective function. Equation (3)
gives the regression model:

Y = f (X1, X2, X3, X4, X5) (3)

Here, ‘Y’ is the response, and ‘f ’ is a function of variables (independent). To study
the effect of the control factors on the performance characteristic, an empirical model was
developed, which may be linear, two-factor interaction, or quadratic. The general equation
of RSM is presented as Equation (4):

Y = βo + ∑k
i=1 βixi + ∑k

i=1 βiix2
i + ∑ ∑i<j βijxixj + ε (4)

The solution obtained after the implementation of RSM was further solved by the
COPRAS method, which is described in the paragraph below. The COPRAS method,
also known as the complex proportional assessment of alternatives, is a multi-criteria
decision-making (MCDM) approach that provides a systematic and structured framework
for evaluating and ranking alternatives; it is based on multiple criteria developed by
Zavadskas and Turskis in 2002 [32]. COPRAS has gained popularity in various fields,
including engineering, management, finance, and environmental sciences.

The COPRAS method aims to address decision-making problems in which multiple
criteria need to be considered simultaneously and the alternatives being evaluated have
both quantitative and qualitative characteristics. It provides a comprehensive and robust
analysis by considering the interdependencies and interactions among the criteria, which is
often crucial in complex decision-making scenarios. In this method, the stepwise ranking
of experiments was carried out in terms of the utility degree. The benefits of COPRAS are
given below [33]:

• In COPRAS, fewer calculations are used compared with TOPSIS and AHP.
• Easy to use compared with TOPSIS.
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• It has unique characteristics for maximizing and minimizing the output, which is
missing in the maximum technique.

• It can calculate both quantitative and qualitative responses.
• It presents the utility degree, which is the primary benefit compared with other

available methods.

The COPRAS method has seven steps, which are described below [34]:
Step 1: In the MCDM-type problem, the first step is to develop the decision matrix as

per Equation (5):

P =

A1
A2
A3
.

Am



P11 P12 P13 . P1n
P21 P22 P23 . P2n
P31 P32 P33 . P3n

. . . . .
Pm1 Pm2 Pm3 . Pmn


(5)

Step 2: In the second step, normalization was performed, in which all the responses
(either in the form of thousands or in the form of decimals) were converted between 0 and
1 using Equation (6):

P̌ij =
Pij

∑m
i=1 Pij

(6)

Here, Pij is the performance corresponding to the ith alternative with respect to the jth
criterion, n is the number of attributes, and m is the total alternative numbers.

Step 3: In the next step, the weighted normalization was calculated using Equation (7):

P′ = P∗ij ×Wj (7)

Here, the Wj is decided according to the importance of the response variables. If
response 1 is given more importance, then its value is kept at 0.7, and the other response
is 0.3. Similarly, if response one is given less importance, then its weight should be equal
to 0.3, and the other should be 0.7. If both responses are given equal importance, then the
weight should be equal to 0.5.

Step 4: Investigation of the minimized and maximized index of all the alternatives.

Si+ =
k

∑
j=1

Pij(j = 1, 2, 3, . . . . . . .., k) maximizing index (8)

Si− =
n

∑
j=k+1

Pij(j = k + 1, k + 2, . . . . . . . . . ., n) minimizing index (9)

Step 5: Computation of the relative weight of each response using Equation (10):

Qi = S+i +
minS−i∑m

i=1 S−i

S−i∑m
i=1

minS−i
S−i

(10)

Step 6: Calculation of the ranking of alternatives by comparing their relative weights
(Equation (11)). The alternative exhibiting a higher relative weight is given a higher
rank (priority)

A∗ = {Ai|maxQi} (11)

Step 7: Investigation of the performance index for each alternative. A value equal to
100 degrees is the best one.

Pi =
Qi

Qmax
× 100% (12)

4. Results and Discussion

The experimental layout was developed by RSM, and the experiments were executed
as per the layout provided in Table 3.
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Table 3. Experimental results using RSM.

Run X1: Ton (µs) X2: Toff (µs) X3: SV (V) X4: I (A) X5: Tool MRR (g/s) TWR (g/s)

1 0 0 0 0 0 1.22 5.84 × 10−5

2 0 0 1 0 −1 1.58 0.000157

3 0 −1 1 0 0 1.59 0.00029

4 0 0 0 −1 1 1.24 6.19 × 10−5

5 0 1 −1 0 0 1.61 0.00019

6 −1 0 0 0 −1 1.62 0.000288

7 0 0 0 1 −1 1.75 0.000661

8 −1 0 1 0 0 1.26 7.51 × 10−5

9 0 1 0 0 −1 1.45 0.000106

10 0 0 0 −1 −1 1.51 0.000121

11 −1 0 −1 0 0 0.95 2.94 × 10−5

12 1 0 0 1 0 1.79 0.000661

13 0 0 1 −1 0 1.08 4.30 × 10−5

14 0 0 0 1 1 2.13 0.000951

15 0 0 −1 −1 0 0.99 4.00 × 10−5

16 −1 0 0 0 1 1.77 0.000661

17 1 0 0 0 −1 2.02 0.00074

18 0 1 0 −1 0 0.91 2.50 × 10−5

19 1 0 1 0 0 1.58 0.000151

20 −1 0 0 −1 0 0.96 3.40 × 10−5

21 0 0 0 0 0 1.11 1.14 × 10−5

22 0 1 0 0 1 1.51 0.000117

23 0 0 0 0 0 1.1 4.63 × 10−5

24 1 0 −1 0 0 1.59 0.000161

25 1 −1 0 0 0 2.04 0.000794

26 0 1 0 1 0 1.24 6.45 × 10−5

27 0 0 1 0 1 1.84 0.000715

28 0 0 −1 0 −1 1.47 0.000111

29 0 0 1 1 0 1.32 8.72 × 10−5

30 1 0 0 0 1 2.18 0.001039

31 0 −1 −1 0 0 1.65 0.000313

32 0 0 −1 1 0 1.43 0.000105

33 −1 −1 0 0 0 1.26 8.47 × 10−5

34 −1 0 0 1 0 1.54 0.000143

35 0 0 0 0 0 1.36 0.000356

36 0 0 0 0 0 1.19 4.76 × 10−5

37 0 −1 0 1 0 1.68 0.000652

38 0 −1 0 −1 0 0.81 2.14 × 10−5

39 −1 1 0 0 0 0.85 2.34 × 10−5

40 0 0 −1 0 1 1.32 9.38 × 10−5
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Table 3. Cont.

Run X1: Ton (µs) X2: Toff (µs) X3: SV (V) X4: I (A) X5: Tool MRR (g/s) TWR (g/s)

41 0 −1 0 0 1 2.29 0.001405

42 1 1 0 0 0 1.28 8.53 × 10−5

43 1 0 0 −1 0 1.36 9.06 × 10−5

44 0 1 1 0 0 1.19 6.73 × 10−5

45 0 0 0 0 0 1.15 5.61 × 10−5

46 0 −1 0 0 −1 1.66 0.000494

4.1. Analysis of the Responses

Table 4 presents the ANOVA of MRR and TWR. It is clear from the ANOVA of MRR
that the quadratic terms of Ton and tool played an influential role, along with Ton, Toff, and
I. However, tool was added forcefully to the model only because the quadratic term tool was
significant (p-value < 0.05). All terms (except the tool material) presented p-values < 0.05.
The model of MRR was influential, while the lack of fit was not significant. The R-square,
Adj. R-square, Pred. R-square, and adequate prec. were observed in the limits of a good
ANOVA. For a good ANOVA, the value of adequate prec. is more than 4; in the present case,
it was more than 18, thus presenting a good ANOVA and model. The statistical summary
of TWR depicted that the linear terms of Ton, Toff, I, and tool; the interaction terms of Toff
and tool; and the polynomial term of tool played pivotal roles in the investigation of TWR.
All these terms showed p-values of less than 0.05. However, the lack of fit was insignificant,
as desired for a better ANOVA. Other terms, namely R2, adj. R2, pred. R2, and adeq. prev.,
were observed within the limit. From the F-value of process parameters, it was evident that
Toff was the major influencing factor, preceded by I, Ton, and tool.

Figure 4 shows the scatter plots and residual plots for MRR and TWR, respectively.
Figure 4a shows the scatter plot for MRR, and it is shown in the scatter plot that all the
residuals are in a straight line. Thus, it is clear from this plot that the residuals were
normally distributed, which is desired for a good model. Another plot for MRR was the
residual versus run plot, as represented in Figure 4b. For a good ANOVA, all the residuals
must be away from the center line and randomly distributed, which was true in the present
case. The scatter plot (Figure 4c) and residual versus run plot (Figure 4d) satisfied all the
conditions for a good ANOVA and model. Thus, in the present case, the plots of both
responses showed a good ANOVA.

MRR = +1.24108 + 0.22687 ∗ Ton − 0.18375 ∗ Toff + 0.25125 ∗ I + 0.076250 ∗ Tool + 0.15480 ∗Ton2 + 0.42897 ∗ Tool2

TWR = +1.60148 × 10−4 + 1.48909 × 10−4 ∗ Ton−2.10970 × 10−4 ∗ Toff + 1.80431 × 10−4 ∗ I +1.47856 × 10−4 ∗ Tool −
2.25200 × 10−4 ∗ Toff ∗ Tool + 3.22408 × 10−4 ∗ Tool2

4.2. Implementation of COPRAS

The COPRAS method has seven steps, which are described in the methodology sec-
tion [34]. In the first step, a decision matrix was developed. Furthermore, the normalization
step was completed to convert all the responses between 0 and 1. In the next step, equal
importance was given to all the responses, and the weighted normalized value is provided
in Table 5. The computation of the relative weight for each response was made, and the
results are presented in Table 5. The performance index was calculated, along with the
ranking of the process parameter settings.

It is clear from Table 5 that trial run 21 showed the best settings of the process pa-
rameters, giving it rank ‘1′ with a Ui value equal to 100. After that, the experimental run
numbers 38 and 39 presented Ui values of 55.37 (rank 2) and 51.69 (rank 3), respectively.

Validation experiments were conducted with the proposed optimized settings (Ton:
60; Toff: 60; SV: 7 V and I: 12 A) using all three electrodes (brass, SS-304, and Cu). The
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projected values of MRR and TWR are provided in Table 6. With these settings, confirmation
experiments indicated that all the experimental values were in close agreement with
the predicted solutions. Thus, the proposed approach was successfully applied for the
investigation of the optimized settings of EDM while machining the developed Al/SiC/Gr
hybrid composite.

Table 4. ANOVA for response variables.

MRR

Source SS df MS F-Value p-Value Remarks

Model 4.43 6 0.74 21.5 <0.0001 significant

X1-Ton 0.82 1 0.82 23.98 <0.0001

X2-Toff 0.54 1 0.54 15.73 0.0003

X4-I 1.01 1 1.01 29.42 <0.0001

X5-Tool 0.093 1 0.093 2.71 0.1078

X12 0.24 1 0.24 7.12 0.0111

X52 1.88 1 1.88 54.66 <0.0001

Residual 1.34 39 0.034

Lack of Fit 1.29 34 0.038 4.14 0.0587 not significant

Error 0.046 5 9.18 × 10−3

Total 5.77 45

R2 0.767846 Pred R2 0.679282

Adj R2 0.73213 Adeq Precision 18.28723

TWR

Source SS df MS F-Value p-Value

Model 3.23 × 10−6 6 5.38 × 10−7 12.7 <0.0001 significant

X1-Ton 3.55 × 10−7 1 3.55 × 10−7 8.38 0.0062

X2-Toff 7.12 × 10−7 1 7.12 × 10−7 16.83 0.0002

X4-I 5.21 × 10−7 1 5.21 × 10−7 12.31 0.0012

X5-Tool 3.50 × 10−7 1 3.50 × 10−7 8.27 0.0065

X2*X5 2.03 × 10−7 1 2.03 × 10−7 4.79 0.0346

X52 1.09 × 10−6 1 1.09 × 10−6 25.63 <0.0001

Residual 1.65 × 10−6 39 4.23 × 10−7

Lack of Fit 1.57 × 10−6 34 4.61 × 10−7 2.79 0.1266 not significant

Error 8.26 × 10−7 5 1.65 × 10−7

Total 4.88 × 10−6 45

R2 0.661495 Pred R2 0.464859

Adj R2 0.609417 Adeq Precision 16.17298
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Figure 4. Plots for MRR and TWR.

Table 5. COPRAS implementation.

Sr No
Data Set Normalized Data Weighted Normalized

Decision Matrix Bi Ci
Min

(Ci)/Ci
Qi Ui Rank

MRR TWR MRR TWR

1 1.22 5.84 × 10−5 0.0184 0.0047 0.00918 0.00233 0.009 0.002 0.1952 0.023 29.1636 12

2 1.58 0.00016 0.0238 0.0125 0.01189 0.00627 0.012 0.006 0.0726 0.017 21.6721 31

3 1.59 0.00029 0.0239 0.0231 0.01197 0.01157 0.012 0.012 0.0393 0.015 18.7933 40

4 1.24 6.19 × 10−5 0.0187 0.0049 0.00933 0.00247 0.009 0.002 0.1842 0.022 28.3698 13

5 1.61 0.00019 0.0242 0.0152 0.01212 0.00758 0.012 0.008 0.0600 0.016 20.8338 35

6 1.62 0.00029 0.0244 0.0230 0.01219 0.01149 0.012 0.011 0.0396 0.015 19.1061 39

7 1.75 0.00066 0.0263 0.0528 0.01317 0.02638 0.013 0.026 0.0172 0.014 18.3601 43

8 1.26 7.51 × 10−5 0.0190 0.0060 0.00948 0.00300 0.009 0.003 0.1518 0.020 25.6703 16

9 1.45 0.00011 0.0218 0.0085 0.01091 0.00423 0.011 0.004 0.1075 0.018 23.5435 22

10 1.51 0.00012 0.0227 0.0097 0.01137 0.00483 0.011 0.005 0.0942 0.018 22.9292 26

11 0.95 2.94 × 10−5 0.0143 0.0023 0.00715 0.00117 0.007 0.001 0.3878 0.034 43.7694 5

12 1.79 0.00066 0.0269 0.0528 0.01347 0.02638 0.013 0.026 0.0172 0.015 18.7446 41

13 1.08 4.30 × 10−5 0.0163 0.0034 0.00813 0.00172 0.008 0.002 0.2651 0.027 34.0633 8

14 2.13 0.00095 0.0321 0.0759 0.01603 0.03795 0.016 0.038 0.0120 0.017 21.5425 33

15 0.99 4.00 × 10−5 0.0149 0.0032 0.00745 0.00160 0.007 0.002 0.2850 0.027 34.9745 7
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Table 5. Cont.

Sr No
Data Set Normalized Data Weighted Normalized

Decision Matrix Bi Ci
Min

(Ci)/Ci
Qi Ui Rank

MRR TWR MRR TWR

16 1.77 0.00066 0.0266 0.0528 0.01332 0.02638 0.013 0.026 0.0172 0.015 18.5523 42

17 2.02 0.00074 0.0304 0.0591 0.01520 0.02953 0.015 0.030 0.0154 0.016 20.7907 36

18 0.91 2.50 × 10−5 0.0137 0.0020 0.00685 0.00100 0.007 0.001 0.4560 0.039 49.4814 4

19 1.58 0.00015 0.0238 0.0121 0.01189 0.00603 0.012 0.006 0.0755 0.017 21.9298 29

20 0.96 3.40 × 10−5 0.0145 0.0027 0.00723 0.00136 0.007 0.001 0.3353 0.031 39.1791 6

21 1.11 1.14 × 10−5 0.0167 0.0009 0.00835 0.00045 0.008 0.000 1.0000 0.078 100.0000 1

22 1.51 0.00012 0.0227 0.0093 0.01137 0.00467 0.011 0.005 0.0974 0.018 23.2169 25

23 1.1 4.63 × 10−5 0.0166 0.0037 0.00828 0.00185 0.008 0.002 0.2462 0.026 32.5675 10

24 1.59 0.00016 0.0239 0.0129 0.01197 0.00643 0.012 0.006 0.0708 0.017 21.6070 32

25 2.04 0.00079 0.0307 0.0634 0.01535 0.03169 0.015 0.032 0.0144 0.016 20.8893 34

26 1.24 6.45 × 10−5 0.0187 0.0051 0.00933 0.00257 0.009 0.003 0.1767 0.022 27.7066 14

27 1.84 0.00072 0.0277 0.0571 0.01385 0.02854 0.014 0.029 0.0159 0.015 19.1088 38

28 1.47 0.00011 0.0221 0.0089 0.01106 0.00443 0.011 0.004 0.1027 0.018 23.3029 24

29 1.32 8.72 × 10−5 0.0199 0.0070 0.00994 0.00348 0.010 0.003 0.1307 0.019 24.3654 17

30 2.18 0.00104 0.0328 0.0829 0.01641 0.04147 0.016 0.041 0.0110 0.017 21.9324 28

31 1.65 0.00031 0.0248 0.0250 0.01242 0.01249 0.012 0.012 0.0364 0.015 19.1120 37

32 1.43 0.00011 0.0215 0.0084 0.01076 0.00419 0.011 0.004 0.1086 0.018 23.4428 23

33 1.26 8.47 × 10−5 0.0190 0.0068 0.00948 0.00338 0.009 0.003 0.1346 0.019 24.1334 20

34 1.54 0.00014 0.0232 0.0114 0.01159 0.00571 0.012 0.006 0.0797 0.017 21.9227 30

35 1.36 0.00036 0.0205 0.0284 0.01024 0.01421 0.010 0.014 0.0320 0.012 15.9317 46

36 1.19 4.76 × 10−5 0.0179 0.0038 0.00896 0.00190 0.009 0.002 0.2395 0.026 32.8318 9

37 1.68 0.00065 0.0253 0.0520 0.01264 0.02602 0.013 0.026 0.0175 0.014 17.7086 45

38 0.81 2.14 × 10−5 0.0122 0.0017 0.00610 0.00085 0.006 0.001 0.5327 0.043 55.3729 2

39 0.85 2.34 × 10−5 0.0128 0.0019 0.00640 0.00093 0.006 0.001 0.4872 0.040 51.6900 3

40 1.32 9.38 × 10−5 0.0199 0.0075 0.00994 0.00374 0.010 0.004 0.1215 0.018 23.5436 21

41 2.29 0.00141 0.0345 0.1121 0.01724 0.05607 0.017 0.056 0.0081 0.018 22.7343 27

42 1.28 8.53 × 10−5 0.0193 0.0068 0.00963 0.00340 0.010 0.003 0.1336 0.019 24.2410 19

43 1.36 9.06 × 10−5 0.0205 0.0072 0.01024 0.00362 0.010 0.004 0.1258 0.019 24.3115 18

44 1.19 6.73 × 10−5 0.0179 0.0054 0.00896 0.00269 0.009 0.003 0.1694 0.021 26.5692 15

45 1.15 5.61 × 10−5 0.0173 0.0045 0.00866 0.00224 0.009 0.002 0.2032 0.023 29.2057 11

46 1.66 0.00049 0.0250 0.0394 0.01249 0.01972 0.012 0.020 0.0231 0.014 18.0160 44

Table 6. Confirmation table for MRR and TWR.

Ton Toff V I Tool
Predicted Experimental

MRR TWR MRR TWR

60 60 7 12 Brass 1.11 1.14 × 10−5 1.03 0.00103

60 60 7 12 SS-304 1.36 0.000091 1.52 0.000098

60 60 7 12 Cu 1.66 0.000125 1.79 0.000137

5. Morphological Investigations

Discharge energy is generated between the workpiece and the tool, which removes
the material from the work surface. The machining parameter settings play an important
role in the MRR. A high value of Ton and low values of Toff and SV develop a high
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discharge energy, which removes large craters from the surface and increases the MRR
value. Similarly, a low value of Ton and high values of SV and Toff develop a low discharge
energy. The discharge energy is the main factor that eradicates the material from the work
surface. There is always a gap between the workpiece and the tool. A spark is developed
between the tool and the workpiece, and this spark is used to remove the material. The
high temperature between the spark gap causes the material to melt, and at the same time,
the dielectric comes in contact with it, which develops a recast layer and deposits lumps.
The alternate heating and cooling cause the generation of microcracks on the surface. The
machined surface at 1500× magnification is shown in Figure 5. It is clear from this that the
machined surface had sub-surface and deposited lumps, etc.
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Figure 6 represents the SEM micrograph of the SS-304, brass, and copper electrodes
after machining the aluminum composite. Figure 6a shows that the SS-304 tool surface had
a large number of cracks, along with some crater marks. In the case of the brass electrode
(Figure 6b), along with the craters and cracks, some lumps were observed. The presence
of lumps indicates the presence of extra material that was not eliminated by the dielectric
due to less Toff time. Figure 6c shows a large number of craters and cracks. The tool
surface exhibited surface irregularities after machining the composite. The main difference
between the three materials is their melting point; SS-304, Cu, and brass have melting
points of ~1430 ◦C, 1085 ◦C, and 930 ◦C, respectively. A lower melting point leads to more
damage to the tool’s surface. Table 6 shows the surface roughness values at the optimized
settings provided by the proposed approach, RSM–COPRAS, using different tool materials.
It is evident from Table 7 that the surface roughness value for the surface machined by the
SS-304 electrode was the highest, which was also clarified by the SEM image (Figure 6a).
Similarly, the surfaces machined by brass and Cu exhibited surface roughness values of
2.96 µm and 2.69 µm, respectively.
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Table 7. Surface roughness values corresponding to different tool materials.

Tool Material Surface Roughness

SS-304 3.19

Brass 2.96

Copper 2.67

6. Concluding Remarks

In the current research, an Al composite was developed by the stir-casting route, and
after that, it was processed by EDM using three different types of electrodes. The following
conclusions were found by the current research:

1. After the preliminary study, the significant machining parameters of EDM were
investigated; these were Ton, Toff, SV, and I.
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2. ANOVA showed that I played a pivotal role in MRR, followed by Ton, Toff, and I.
Similarly, ANOVA of TWR showed that Toff, I, and Ton had a significant influence.

3. The integrated approach of RSM–COPRAS suggested that the optimized settings for
MRR and TWR are Ton: 60; Toff: 60; V: 7; I: 12; and tool: brass. At these settings, the
MRR and TWR were 1.11 g/s and 0.0114 g/s, respectively.

4. The morphological investigation revealed the presence of cracks, craters, and lumps
on the workpiece and tool. The maximum TWR was observed in the case of brass,
followed by those of Cu and SS-304.

5. From this research, it can be found that the current methodology is a very effective and
powerful technique to tackle the multi-response problems in industrial experiments.

After careful analysis, it was found that the proposed technique can effectively be
applied for the optimization of other conventional and non-conventional processes, such
as WEDM, milling, drilling, USM, AJM, AFM, etc. The proposed approach can be used for
other responses, such as surface quality, geometrical error, dimensional accuracy, etc.
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