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Abstract: This paper aims to improve planar shape prediction accuracy in the rolling process of
medium and thick plates. We present a model based on the strip method that addresses limitations
in predicting planar shape variations at the head and tail ends of rolled pieces. By analysing the
rolling process, we introduce the concept of an imaginary strip longitudinal length difference to
represent planar shape characteristics effectively. By analysing the change in metal shape in the rolling
deformation zone, the calculation formula for metal volume in the deformation zone is derived. This
establishes a relationship between the longitudinal length difference at the rolled piece ends and the
metal volume in the deformation zone. The prediction of plane shape difference between the end and
the head of medium and medium-thickness plate is realized. The experimental results confirm the
feasibility and effectiveness of the proposed method.

Keywords: rolling; medium-thick plate; planar shape; prediction accuracy

1. Introduction

The metallurgical industry is constantly evolving, with a focus on improving efficiency,
reducing consumption, and promoting environmental sustainability [1,2]. One crucial
aspect of this industry is the production of medium and heavy plates, which heavily
rely on planar shape control technology during the rolling process. This technology
enables manufacturers to increase product yield, minimize waste, and improve economic
benefits [3]. Planar shape control technology involves the use of variable thickness rolling
methods during production to reduce irregular shapes in rolled products. The ultimate goal
is to achieve a more uniform and rectangular plane [4]. The key to this technology is the
development of an accurate predictive model for the planar shape of rolled products [5–7].

2. Overview of Planar Shape Prediction Models

Scholars worldwide have conducted extensive research on predicting the planar shape
of rolled products during the rolling process, leading to significant achievements [8]. For
example, a planar shape prediction model has been developed using regression algorithms
that determine the functional relationship between rolling parameters and the planar shape
of rolled products based on a large volume of experimental data [9–11]. Additionally, recent
advances in artificial intelligence technology have enabled the use of intelligent techniques
in rolling technology development. Intelligent algorithms have been utilized to predict end
shapes and width extension data of rolled products, providing further technical means for
creating prediction models [12–15].

Although the prediction accuracy of the aforementioned models meets the demands of
practical engineering applications [16], they require a large volume of experimental data for
model construction, resulting in high modelling costs [17,18]. Currently, the planar shape
prediction models employed in practical engineering are predominantly based on the strip
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method [2,19]. The core concept involves establishing multiple hypothetical strips along the
longitudinal direction of the rolled product [20], as illustrated in Figure 1a. According to
the characteristics of metals, during the rolling process, metals undergo three-dimensional
deformation. The lateral width extension of metal is greater at the edge of the rolled product
than in the middle, while the longitudinal extension is greater in the middle than at the
edges [21], as depicted in Figure 1b.
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Figure 1. Schematic diagram of hypothetical strips’ planar shapes: (a) hypothetical strips’ planar
shapes before rolling; (b)hypothetical strips’ planar shapes after rolling.

By applying the metal width extension calculation formula, the lateral width extension
of each strip can be computed. Assuming that the longitudinal extension of each strip
is uniform, based on the principle of constant metal volume and combining the known
thickness variations, the longitudinal extension of each strip can be determined [22]. Subse-
quently, the endpoint positions of each strip can be used to fit an end-plane shape curve,
thereby predicting the planar shape of the rolled product’s head and tail ends [23].

3. Analysis of the Differences in Head and Tail End Planar Shape
3.1. Differences in Head and Tail End Planar Shape

The key to predicting the planar shape of the head and tail ends of rolled products
lies in the calculation of the width extension data for each hypothetical strip, as well as in
determining the longitudinal lengths of each strip based on width extensions and thickness
variations. Then, by fitting the length of each strip, the shape curves of the head and tail
ends of the rolled product can be determined. Existing planar shape prediction models do
not differentiate between the shape of the head and tail ends of the rolled product during
this process. The calculated results do not consider the distribution ratio of each strip length
for the two ends of the rolled product, resulting in identical predictions for the shape of the
head and tail ends.

Based on extensive experimental results, the planar shapes of the head and tail ends
of rolled products obtained after multiple passes in unidirectional and conventional rolling
processes are shown in Figure 2. The curvature of the tail end shape (Figure 2b) is greater
than that of the head end shape (Figure 2a), and the irregular shape of the two ends exhibits
noticeable differences [24]. There is a certain discrepancy between the existing planar
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shape prediction models for the head and tail end shapes of rolled products and the actual
results [25]. To address such situations, optimization and improvement of the existing
planar shape prediction models are required to reflect the differences in the shape of the
head and tail ends, satisfying the demands for higher prediction accuracy.
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Figure 2. Schematic diagram of the plane shapes of the head and tail ends of the rolled product:
(a) plane shape of the head end of the rolled product; (b) plane shape of the tail end of the rolled product.

3.2. Determination of End Planar Shape Feature Parameters

According to the strip modelling approach, we hypothetically divide the rolled product
into n strips along the longitudinal direction, as shown in Figure 3a. After rolling, the
planar shape of the head and tail ends of the rolled product changes, as illustrated in
Figure 3b. Based on rolling characteristics, strip n is at the center of the rolled product,
with the minimum width extension and maximum longitudinal extension after rolling.
Strips 1 and 2n−1 are located at the edges of the rolled product, with the maximum width
extension and minimum longitudinal extension after rolling.
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The difference between the longitudinal length of any hypothetical strip and the
strip edge’s longitudinal length is referred to as the longitudinal length difference of the
hypothetical strip. As shown in Figure 3, the longitudinal length difference of each strip
can be represented by the sum of the longitudinal length differences of the head and tail
ends, with the expression as follows:{

Li − L1 = Li − L2n−1 = ∆Li
∆Li f + ∆Lib = ∆Li

(2 ≤ i ≤ 2n − 2) (1)
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where Li is the longitudinal length of the hypothetical strip i, ∆Li is the longitudinal length
difference of the hypothetical strip i, ∆Li f is the longitudinal length difference of the head
end of the hypothetical strip i, and ∆Lib is the longitudinal length difference of the tail end
of the hypothetical strip i.

Since the longitudinal extension of strip n is the largest, it is referred to as the maxi-
mum longitudinal length difference, denoted by ∆L. The head and tail end portions of the
maximum longitudinal length difference are called the maximum head-end length differ-
ence and the maximum tail-end length difference, denoted by ∆L f and ∆Lb, respectively.
The distribution ratios of the longitudinal length differences of other hypothetical strips
for the head and tail ends can be approximated by the distribution ratios of the maximum
longitudinal length difference for the head and tail ends. Based on this, the maximum
longitudinal length differences of the head and tail ends can serve as feature parameters to
describe the planar shape of the rolled product’s ends, and the ratio of the maximum end
length difference to the overall longitudinal length difference can indicate the differences
between the head end and tail end of the workpiece.

4. Predicting Differences in Head and Tail End Plane Shapes
4.1. Modelling Approach for Predicting Differences in Head and Tail End Plane Shapes

The rolling process involves complex three-dimensional deformation of the workpiece
between the rolls. The deformation occurs within the rolling deformation zone between the
bite section and the rolling outlet section, where the irregular plane shapes of both ends of
the workpiece are formed. According to the rolling theory, the rolling deformation zone can
be divided into forward slip and backward slip zones. In the forward slip zone, the metal
moves in the rolling direction relative to the rotation direction of the rolls, while in the
backward slip zone, the metal moves in the opposite direction. The geometric relationship
between the rolls and the workpiece indicates that the metal volume in the backward slip
zone is larger than that in the forward slip zone, and the deformation amount of the metal
in the backward slip zone is greater. Because the deformation of the workpiece follows the
principle of volume invariance, the plane shape change of the workpiece is the result of
volume change. Therefore, the irregular area of the tail end of the workpiece is larger than
that of the head end, which is consistent with the experimental results.

Based on existing plane shape prediction models, a functional relationship between the
metal volume in each slip zone within the deformation zone and the maximum longitudinal
length difference at the ends representing the plane shape characteristics of the workpiece
ends can be established to predict the differences in head and tail end plane shapes. The
process is illustrated in Figure 4.

To predict the differences in head and tail end plane shapes, the initial parameters
of the workpiece must be determined, including initial dimensions, target dimensions,
friction coefficient, neutral angle, reduction rate, rolling pass number, and calculation
results of the existing prediction model. Based on these parameters, the metal volume in
the rolling deformation zone can be determined. A functional relationship between the
metal volume in the deformation zone and the maximum longitudinal length difference at
the workpiece ends can be established using a combination of theoretical and experimental
approaches. Based on this functional relationship, the longitudinal length differences at the
head and tail ends of each strip can be calculated. Fitting plane shape curves through the
end longitudinal length differences of each strip allows for predicting the differences in
head and tail end plane shapes. The prediction results can be used as data input for the
next rolling pass or as the final prediction results.
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4.2. Calculation of the Workpiece Metal Volume in the Rolling Deformation Zone

For ease of calculation, the workpiece is treated as a steel-plastic body, with one-
quarter of the metal in the deformation zone as the research object, and a coordinate
system is established. The research object is divided into four parts according to the rolling
characteristics and spatial position relationship between the workpiece and the roll gap
during the rolling process. In the rolling process, the width change of the workpiece is
small compared with the longitudinal change, which leads to the real three-dimensional
shape of the workpiece in the rolling deformation zone being difficult to express clearly.
Therefore, the metal volume in the rolled deformation zone is properly exaggerated to
draw a diagram, as shown in Figure 5. Volume (V3) and (V4) represent the volume of the
increased part of the width of the rolled deformation zone.

The volume (V) of one-quarter of the metal in the rolling deformation zone can be
represented as:

V = V1 + V2 + V3 + V4 (2)

The expression for the volume of the first part (V1) of the workpiece metal is:

V1 =
1
2

B
∫ l

0
g(x)dx (3)

where l is the deformation zone length, B is the width of workpiece before rolling, and
(g(x)) is the mathematical expression of the contact surface between the roller and the
workpiece on the X plane.
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Without considering the elastic deformation of the roller, the mathematical expression
for a perfect circle (g(x)) can be deduced from the geometric relationship between the
rolled product and the roller.

g(x) = R −
√

R2 − (x − l)2 (4)

where R is the radius of the roller.
By substituting Equation (4) into Equation (3), the expression of V1 is:

V1 =
1
2

B
∫ l

0
[R −

√
R2 − (x − l)2]dx (5)

The volume of the second part (V2) is a rectangular parallelepiped, and it can be
represented as:

V2 =
1
4

lBh (6)

where h is the thickness of the workpiece after rolling.
The expression for the volume of the third part (V3) of the rolled product is:

V3 =
∫ l

0
g(x) f (x)udx (7)

where f (x) represents the functional expression for the lateral displacement of the rolled
product within the deformation zone along the rolling direction, and u represents the lateral
displacement of the rolled product on one side of the exit of the deformation zone.

Based on a significant amount of rolling experiments, the edge shape curve of the
rolled product has been measured, and f (x) can be expressed as [20]:

f (x) = 3(
x
l
)

2
− 2(

x
l
)

3
(8)

By substituting Equations (4) and (8) into Equation (7), the expression for the third
part of the metal volume (V3) can be expressed as:

V3 =
∫ l

0
[R −

√
R2 − (x − l)2] · [3( x

l
)

2
− 2(

x
l
)

3
]udx (9)

The expression for the volume of the fourth part of the metal (V4) in the rolled product is:

V4 =
1
2

uh
∫ l

0
f (x)dx (10)
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By substituting Equation (8) into Equation (10), the expression for the volume of the
fourth part (V4) can be expressed as:

V4 =
1
2

hu
∫ l

0
[3(

x
l
)

2
− 2(

x
l
)

3
]dx (11)

By substituting Equations (5), (6), (9), and (11) into Equation (2), the formula for
calculating the metal volume (V) in 1/4 of the rolling deformation zone can be derived
as follows:

V = 1
2 B
∫ l

0 [R −
√

R2 − (x − l)2]dx + 1
4 lBh

+
∫ l

0 [R −
√

R2 − (x − l)2] · [3( x
l )

2 − 2( x
l )

3]udx

+ 1
2 hu
∫ l

0 [3(
x
l )

2 − 2( x
l )

3]dx

(12)

The calculation approach for the volume of the backward slip zone of the rolled
product (Vb) is consistent with that of the overall deformation zone, and the trailing region
volume is divided into four parts, as illustrated in Figure 6.
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As shown in the diagram, the spatial position of the trailing region of the rolled
product indicates that the expression for the 1/4 metal volume (Vb) in the backward slip
zone is:

Vb = Vb1 + Vb2 + Vb3 + Vb4 (13)

The expression for the volume of the first part of the metal (Vb1) in the backward slip
zone is:

Vb1 =
1
2

B
∫ l2

0
[R −

√
R2 − (x − l)2]dx (14)

where l2 is the longitudinal length of the backward slip zone.
The expression for the volume of the second part of the metal (Vb2) in the backward

slip zone is:

Vb2 =
1
2

Bl2R(1 − cos γ) +
1
4

Bl2h (15)

where γ is a neutral angle.
The expression for the volume of the third part of the metal (Vb3) in the backward slip

zone is:

Vb3 =
∫ l2

0
[R −

√
R2 − (x − l)2] · [3( x

l
)

2
− 2(

x
l
)

3
]udx (16)

The expression for the volume of the fourth part of the metal (Vb4) in the backward
slip zone is:

Vb4 = u
[

R(1 − cos γ) +
1
2

h
]∫ l

0
[3(

x
l
)

2
− 2(

x
l
)

3
]dx (17)
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By substituting Equations (14)–(17) into Equation (13), the formula for calculating the
metal volume (Vb) in 1/4 of the backward slip zone can be derived as follows:

Vb = 1
2 B
∫ l2

0 [R −
√

R2 − (x − l)2]dx + 1
2 Bl2R(1 − cos γ)

+ 1
4 Bl2h +

∫ l2
0 [R −

√
R2 − (x − l)2] · [3( x

l )
2 − 2( x

l )
3]udx

+u
[

R(1 − cos γ) + 1
2 h
]∫ l

0 [3(
x
l )

2 − 2( x
l )

3]dx

(18)

According to the geometric relationship of the rolling deformation zone, the mathe-
matical expression of the volume of the forward slip zone (Vf ) is determined as follows:

Vf = V − Vb (19)

4.3. Establishing the Prediction Model

The functional relationship between the metal volume in the slip zone and the corre-
sponding maximum longitudinal length difference at the workpiece ends was determined.
The important rolling parameters under different numerical conditions were simulated by
the finite element modelling method to determine the correlation between these parameters
and the difference in end plane shapes. According to the simulation results, although some
important rolling parameters are related to the plane shape of the workpiece, they have
little effect on the difference in plane shapes at the head and tail ends of the workpiece,
such as friction coefficient, workpiece length, and rolling speed. The parameters directly
related to the difference in plane shapes at the head and tail ends of the workpiece are the
width-to-thickness ratio and reduction rate.

Based on this law, the rolling experiment is carried out, and the experimental results
are analysed. The dimensions of the specimens and the characteristics of the rolling process
are shown in Table 1.

Table 1. The dimensions of the specimens and the rolling process.

Number of
Workpieces

The Width of
Workpieces (mm)

The Thickness of
Workpieces (mm)

The Length of
Workpieces (mm) The Characteristics of the Rolling Process

1 30 16 70 Rolling experiments can be conducted on
specimens of different dimensions using the

same rolling process, rolling 8 passes.
2 50 16 70
3 90 16 70

The experimental results are collated, and the maximum longitudinal length differ-
ences at the head and tail ends of the workpieces for each rolling pass are calculated. The
proportion of the metal volume in the slip zone within the overall deformation zone is
compared with the proportion of the corresponding maximum end length difference in the
overall length difference, and a line graph is plotted, as shown in Figure 7.

Analysing the graph reveals that after several rolling passes, the proportion of the
metal volume in each slip zone within the overall deformation zone converges with the
proportion of the corresponding maximum end length difference in the overall length
difference. When the width-to-thickness ratio and reduction rate of the workpiece are
changed, the two lines remain parallel, but the vertical distance changes. This indicates
that there is a functional relationship between the proportion of the maximum longitudinal
length differences at the head and tail ends and the proportion of the metal volume in the
forward and backward slip zones within the overall deformation zone, as shown:

∆L f
∆L =

Vf
V + a f

∆Lb
∆L = Vb

V + ab
a f = −ab

(20)
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In the above equation, constants a f and ab are the adjustment coefficients for the
proportions of the metal volume in the overall deformation zone and the maximum lon-
gitudinal length differences in the overall length difference, respectively. Based on the
experimental results, the constants are affected by the reduction rate and width-to-thickness
ratio of the workpiece, and they are opposite in value. a f is directly proportional to the re-
duction rate and inversely proportional to the width-to-thickness ratio, while ab is inversely
proportional to the reduction rate and directly proportional to the width-to-thickness ratio.
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Figure 7. Comparison of experimental results of rolling specimens: (a) comparison of experimental
results at the head end of No. 1 specimen; (b) comparison of experimental results at the head end
of No. 2 specimen; (c) comparison of experimental results at the head end of No. 3 specimen;
(d) comparison of experimental results at the tail end of No. 1 specimen; (e) comparison of experi-
mental results at the tail end of No. 2 specimen; (f) comparison of experimental results at the tail end
of No. 3 specimen.

Using the experimental results as a data basis and applying the least squares method,
the functional relationships between the adjustment coefficients and the reduction rate and
width-to-thickness ratio can be determined as follows:

a f = −0.02RH + 1.7ε (RH ≤ 10)
a f = −0.015RH + 1.2ε (RH > 10)
a f = −ab

(21)

where RH is width-to-thickness ratio of the workpiece, and ε is the reduction rate.
In the existing plane shape prediction model, the first and 2n−1th strips are considered

the edges of the workpiece, with a longitudinal length difference of zero. The distribution
ratio of the longitudinal length differences at the head and tail ends for the remaining
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hypothetical strips can be calculated based on the proportions of the maximum longitudinal
length differences at the two ends in the overall length difference, as expressed below:

∆L2 f
∆L3 f
·
·
·

∆L(2n−2) f


=



∆L2
∆L3
·
·
·

∆L2n−2


∆L f

∆L



∆L2b
∆L3b
·
·
·

∆L(2n−2)b

 =



∆L2
∆L3
·
·
·

∆L2n−2


∆Lb
∆L

(22)

Based on the results of Equation (22) and the horizontal expansion of each hypothetical
strip calculated using the existing plane shape prediction model, the coordinates of the
endpoints at the head and tail ends of each strip can be determined. By fitting the plane
shape curves to the endpoint coordinates, the prediction of the differences in head and tail
end plane shapes can be realized.

5. Application Conditions and Interpretation of Prediction Model of End Plane
Shape Difference
5.1. Application Condition for Prediction Model of End Plane Shape Difference

The purpose of predicting the difference in the plane shape of the workpiece head and
tail is to eliminate the defect that the prediction model based on the strip method cannot
distinguish the plane shape at the head and tail end of the workpiece. The relationship
between the prediction model of end plane shape difference and the existing plane shape
prediction model is shown in Figure 8.
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existing plane shape prediction model.

As shown in Figure 8, the application conditions for the prediction model of plane
shape difference at head and tail ends mainly consist of two parts. The first part is to
determine the metal volume of the rolling deformation area and the adjustment factor
of the maximum longitudinal length difference at the end according to the workpiece
geometry size and process parameters. The second part is the application of the existing
plane shape prediction model of the strip method to calculate the longitudinal length of
each hypothetical strip.
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5.2. Interpretation of Prediction Model of End Plane Shape Difference

In this paper, based on the strip method, it is proposed to use the longitudinal max-
imum length difference to represent the plane shape of the workpiece end. Similarly,
the ratio of the maximum longitudinal length difference at the end to the overall length
difference can represent the difference in the plane shape of the head end and the tail
end. Because the plane shape change of the workpiece is the result of volume change, the
functional relationship between the metal volume in the rolling deformation zone and
the maximum length difference at the end can be established to predict the plane shape
difference at the head and tail ends of the workpiece.

The prediction model of plane shape difference is divided into two parts. First, the
volume of metal in the rolling deformation zone needs to be calculated, which is essentially
a geometric problem. The metal volume in the rolling deformation zone is affected by
rolling process parameters, such as roll radius, plate width, and the rolling reduction.
Equations (2)–(19) in this paper attempt to establish a functional relationship between the
rolling process parameters and metal volume in the rolling deformation zone.

Part two is to establish a functional relationship between the metal volume in the
deformation zone and the difference in the longitudinal length of the workpiece end. The
modelling process involves using the finite element simulation method to determine the
macroscopic law and then implement the rolling experiment. Based on the experimental
data, the least square method is used to determine the function relation.

6. Application Effect of the Head and Tail End Plane Shape Difference Prediction Model

In order to verify the correctness of the prediction model of plane shape differences at
the head and tail ends, finite element simulation and experimental verification are used.

The same rolling process is used in the finite element simulation and experiment. The
rolling process parameters are shown in Table 2.

Table 2. The table of rolling process parameters.

Rolling Pass The Thickness of
Workpieces (mm)

The Rolling
Reduction (mm)

The Rolling
Reduction Ratio

The Width-to-Thickness
Ratio of Workpieces

1 16.0 0.6 0.038 6.00
2 15.4 0.6 0.039 6.24
3 14.8 0.6 0.041 6.49
4 14.2 0.6 0.042 6.77
5 13.6 0.6 0.044 7.08
6 13.0 0.6 0.046 7.41
7 12.4 0.6 0.048 7.77
8 11.8 0.6 0.051 8.17
9 11.2 0.6 0.054 8.61

10 10.6 0.6 0.057 9.11
11 9.4 1.2 0.128 10.28
12 8.2 1.2 0.146 11.80
13 7.0 1.2 0.171 13.84
14 5.8 1.2 0.207 16.72
15 4.6 1.2 0.261 21.11

6.1. Finite Element Simulation

Finite element simulation is carried out using a preset rolling process. The important
rolling presupposition parameters in the finite element simulation are shown in Table 3.

The result after 15 passes of rolling is shown in Figure 9.
The workpiece was divided into 11 hypothetical strips along the transverse direction.

The plane shape prediction model based on the three-dimensional strip element method
was used to calculate the longitudinal length of each strip and predict the plane shape of
the preset workpiece [20]. On this basis, the difference mol of the plane shape at the head
and tail ends of the workpiece was used to make predictions.
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Table 3. The table of rolling presupposition parameters.

Project Parameter

Diameter of roll body (mm) 130
Friction coefficient 0.23

Specimen parameter (mm) 192 × 70 × 16
Number of hypothetical strips 11

The grade and condition of the material Q345/hot roll
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Figure 9. The result of finite element simulation.

The calculated results of the existing plane shape prediction model, the head and
tail end plane shape difference prediction model, and the finite element simulation were
compared, as shown in Figure 10.
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Figure 10. Comparison of the shape characteristics of each pass: (a) comparison of the shape
characteristics of the head end of each pass; (b) comparison of the shape characteristics of the tail end
of each pass.
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As seen in Figure 10, the maximum longitudinal length differences at the workpiece
ends calculated using the head and tail end plane shape difference prediction model
exhibited a high degree of agreement with the simulation result. Based on the data of the
maximum longitudinal length differences at the head and tail ends, the coordinates at the
endpoints of each hypothetical strip were determined, enabling the prediction of the plane
shapes at the workpiece ends. The calculated results of the existing plane shape prediction
model, the head and tail end plane shape difference prediction model, and the simulation
result were compared, as shown in Figure 11.
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Figure 11. Comparison of calculation results and simulation results: (a) comparison of the head end
after the 5th pass; (b) comparison of the tail end after the 5th pass; (c) comparison of the head end
after the 10th pass; (d) comparison of the tail end after the 10th pass; (e) comparison of the head end
after the 15th pass; (f) comparison of the tail end after the 15th pass.
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Figure 11 presents a comparison of the simulation results and the predicted results for
the 5th, 10th, and 15th rolling passes. It can be seen that the calculation result of the model
of the plane shape difference at the head and tail ends is similar to the simulation result.

6.2. Rolling Experiment

Considering the similarity of the hot rolling states between lead and low-carbon
steel, a series of unidirectional conventional rolling experiments were performed on lead
specimens using an experimental rolling mill. The experimental equipment and specimen
parameters are shown in Table 4.

Table 4. The table of rolling process parameters and parameters of the experimental equipment.

Project Parameter

Type of the rolling mill Two-high rolling mill
Length of roll body (mm) 260

Diameter of roll body (mm) 110
Friction coefficient 0.11

Specimen parameter (mm) 96 × 70 × 16
Number of hypothetical strips 11

The grade and condition of the material Lead metal/normal temperature

The plane shape of the workpiece can be obtained by the rolling experiment with the
preset process, as shown in Figure 12.
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Figure 12. The photographs of the results of the experiment: (a) the photograph of the head end after
the 5th pass; (b) the photograph of the head end after the 10th pass; (c) the photograph of the head
end after the 15th pass; (d) the photograph of the tail end after the 5th pass; (e) the photograph of the
tail end after the 10th pass; (f) the photograph of the tail end after the 15th pass.

The plane shape prediction model based on the three-dimensional strip element
method is still applied to calculate the longitudinal length of each strip and predict the
plane shape of the preset workpiece, and the differences model of plane shape at the head
and tail ends of the workpiece is used to predict.
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The maximum longitudinal length differences at the head and tail ends after each
rolling pass were determined. The calculated results of the existing plane shape prediction
model, the head and tail end plane shape difference prediction model, and the experimental
measurements were compared, as shown in Figure 13.
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Figure 13. Comparison of the shape characteristics of the end parts of each pass: (a) comparison of
the shape characteristics of the head end of each pass; (b) comparison of the shape characteristics of
the tail end of each pass.

As seen in Figure 13, the maximum longitudinal length differences at the workpiece
ends calculated using the head and tail end plane shape difference prediction model exhib-
ited a high degree of agreement with the measured results, and the prediction accuracy
was higher than that of the existing plane shape prediction model. The calculated results
of the existing plane shape prediction model, the head and tail end plane shape differ-
ence prediction model, and the experimental measurements were compared, as shown
in Figure 14.

Figure 14 presents a comparison of the measured and predicted results for the 5th,
10th, and 15th rolling passes. The analysis showed that the plane shape data at the work-
piece ends obtained using the head and tail end plane shape difference prediction model
described in this study exhibited a good degree of agreement with the measured data, and
the prediction accuracy significantly improved compared with the existing plane shape
prediction model.
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Figure 14. Comparison of the plane shapes of the head and tail ends: (a) comparison of the head end
after the 5th pass; (b) comparison of the tail end after the 5th pass; (c) comparison of the head end
after the 10th pass; (d) comparison of the tail end after the 10th pass; (e) comparison of the head end
after the 15th pass; (f) comparison of the tail end after the 15th pass.

7. Conclusions

In this paper, a novel approach for predicting the planar shape differences between
the head and tail ends of rolled products has been proposed. The concept of longitudinal
length difference in the end sections of rolled products was introduced, and the maximum
longitudinal length difference was used as a characteristic representing the planar shape of
the product’s ends.

By selecting one-quarter of the metal within the rolling deformation zone as the subject
of this study, the paper derived a calculation formula for the metal volume within the
forward and backward sliding areas of the rolling deformation zone. This study established
a functional relationship between the metal volume in the sliding areas and the longitu-
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dinal length difference at the rolled product’s ends using theoretical and experimental
research methods.

Using the data on the longitudinal length differences of the end sections of each
hypothetical strip, the planar shape curves of the end sections were determined. This
enabled the prediction of planar shape differences between the head and tail ends of the
rolled products.

The planar shape difference prediction model described in this paper for the head and
tail ends of medium-thickness plates is effective in improving prediction accuracy and offers
simple and reliable computation. The high correlation between the predicted results and
actual measurements makes the model practical and significant for engineering applications.
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