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Abstract: TC17 titanium alloy is widely used in the aerospace industry, but its combustion behavior
and microstructure after combustion are rarely investigated. Herein, the ignition critical oxygen
pressure, combustion velocity, and microstructure after the combustion of TC17 titanium alloy
were investigated by promoted ignition combustion tests under an oxygen-enriched environment.
The results indicated that there were three stages, ignition, splash, and flame propagation, for the
combustion process of the TC17 alloy. As compared to TC11 titanium alloy, the TC17 titanium alloy
exhibited a similar ignition critical oxygen pressure with the same size, but an obviously faster
burning rate, which followed a power law relationship with the oxygen pressure. The segregation
of Cr, Mo, and Al was observed in the interdendritic phase of the melting zone and the interface
between the melting zone and the heat-affected zone. The segregation of Cr at the liquid/solid
interface can be responsible for accelerating the burning kinetic of the TC17 alloy by decreasing the
interfacial temperature.

Keywords: TC17 alloy; combustion behavior; combustion microstructure; combustion velocity

1. Introduction

Titanium alloys are regarded as promising structural materials in the aero industry
due to their superior properties, such as low density, high specific strength, and high
corrosion resistance, etc., [1]. However, they also suffer from risk of combustion in harsh
conditions, such as oxygen-rich atmosphere or friction at elevated temperatures [2,3]. Due
to the high combustion heat and low thermal conductivity of titanium, once these alloys are
ignited, the combustion reaction can scarcely be extinguished and it spreads to the whole
component in less than 30 s, which is known as “titanium fire” [4]. A number of accidents
have resulted from the “titanium fire” ever since titanium alloys have been employed
extensively in aeroengines.

The combustion behavior and mechanisms of titanium alloys have been examined
in numerous studies. Littmen et al. [5] studied the combustion behavior of pure titanium;
they found that the critical oxygen pressures for ignition decreased with the temperature
increasing. Since titanium alloys have extremely high combustion temperatures, it has been
reported that their combustion process involves a liquid-phase combustion reaction [6–8],
meaning that the alloys are melted into liquid phase during combustion. The peak tem-
perature of flame for titanium alloys has been reported to be 3000~3400 K, following an
explosion and bright light phenomenon [9,10]. The combustion mechanism of titanium
alloys has also been reported to be related to the transformation of surface oxides. Accord-
ing to Schutz [11], the surface oxides were fractured or even melted due to the reaction
heat accelerating the oxidation reaction and raising temperatures in the reaction zones.
Bolobov [12,13] also suggested that the combustion was related to the fracture of surface
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oxides, owing to the volume contract during the transformation of different oxides. As
surface oxides are fractured and peeled off, the oxidation process will become more active.
The morphology and structures of the surface oxides also have an impact on combustion
behaviors. Some have also suggested that a succession of oxidation processes between a
high valent oxide, such as TiO2, and sub-oxides, such as TiO and Ti2O3, may result in the
combustion [10,14].

Many studies on the impact of alloyed elements on the combustion behavior have been
conducted to increase the burn-resistance of titanium alloys. Promoted ignition combustion
(PIC) methods with varying oxygen pressure and contents have been used to quantitatively
study the combustion behavior of the TC4 (Ti-6Al-4V), TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si),
and Ti2AlNb alloys [14–16]. The combustion velocity of TC4 is higher than that of TC11,
which is attributed to the enriched distribution alloying elements close to the interface
of the melting zone and matrix, i.e., V for the TC4 alloy and Mo, Zr, and Si for the TC11
alloy [14]. It has also been reported that the Al and V alloying elements in TC4 alloy cannot
prevent the oxygen diffusion into the alloy matrix during the combustion process [17].
The combustion behavior and mechanism of the Ti2AlNb alloy are compared with the
TC11 alloy. Although the ignition temperatures of the two alloys show little difference, the
combustion velocity of Ti2AlNb is faster than that of TC11 alloy. It has been proposed that
this difference is related to the different locations of the enrichments of the Nb and Mo
elements, and the decomposition of the O phase in the heat-affected zone [15]. In addition
to the typical α + β dual-phase titanium alloys, the combustions of the Ti-Cr-V and Ti-Cu
alloys are also studied. The ignition temperatures of Ti40 (Ti25V-15Cr) are higher than
those of TC4 due to the decomposition and volatilization of V2O5, but the combustion
velocity of Ti-25V-15Cr is faster than that of TC4, attributed to the different migration way
of the solid–liquid interface [18]. Studies have also reported that the burn resistance of
titanium alloys is improved by the addition of Cu due to the reduction in heat generation
and the improvement of heat transmission. For instance, it has been reported that the Ti14
(Ti-1Al-13Cu-0.2Si) alloy exhibits a better burn resistant capability with lower combustion
velocity and flame height, and it is related to the suppressed diffusion of oxygen due to
the formation of a multiple-layer structure with a Cu-enrichment in the burn heat-affected
zone [19,20]. Compared with the typical α + β dual-phase titanium alloys such as TC4 and
TC11, TC17 (Ti-5Al-2Sn-2Zr-4Mo-4Cr) is a kind of near β type α + β dual-phase titanium
alloy by the addition of β-phase strengthening elements, such as Cr and Mo, it has been
widely used in high-pressure compressor blades and other parts of aero-engines, which
require high bearing capacity [21,22]. However, the combustion behavior of the TC17
alloy is rarely investigated at present, particularly the ignition conditions and combustion
kinetics compared to the other titanium alloys, which is critical for the safe use of the TC17
alloy in the application of aero industries.

In this work, the combustion behavior of the TC17 alloy (Ti-5Al-2Sn-2Zr-4Mo-4Cr),
including ignition temperature, threshold oxygen pressure, and combustion kinetics, is
investigated by the promoted ignition–combustion (PIC) tests. The microstructure after
extinguishing combustion is further analyzed, and the impact of alloying elements on the
combustion behavior is further discussed.

2. Experimental Materials and Methods
2.1. Experimental Material

The TC17 titanium alloy (Ti-5Al-2Sn-2Zr-4Mo-4Cr, wt.%) bar was prepared by vacuum
melting, hot rolling, and annealing treatment. The chemical composition of the TC17 alloy
bar is listed in Table 1. Then, the alloy bar was machined into rod samples with dimensions
of Φ 3.2 × 70 mm through wire cutting and surface polishing.
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Table 1. Chemical composition of TC17 alloy.

wt.%
Al Mo Zr Sn Cr Fe Ti

4.6 4.1 1.9 2.0 4.0 0.15 Bal.

2.2. Promoted Ignition–Combustion (PIC) Test

The PIC tests that were carried out were wildly used in oxygen-enriched atmosphere,
and the test procedures are described in detail in reference [3]. The variations of temper-
ature during the combustion process were recorded by using thermal imaging (MCS640,
LUMASENSE TECHNOLOGIES, Santa Clara, CA, USA). The experimental atmosphere
was oxygen with high purity (99%). The chamber of the equipment was pumped to a
vacuum of 10−1 to 10−2 Pa, and then the gaseous oxygen was pumped into the equipment
at the oxygen pressure from 0.1 MPa to 0.5 MPa. The quartz tubes with an internal diameter
of 3.2 mm and a length of 20 mm were put on the samples at positions corresponding to
the sample lengths of 10, 20, 30, and 40 mm for the determination of burning velocity in
different stages. The combustion process slowed down and was terminated at the set posi-
tion due to the oxygen being isolated by the ceramic ring and argon gas. The combustion
velocity was obtained at different lengths by recording the remaining length and time. The
equipment of the PIC test and the combustion process are shown in Figure 1. Each test was
repeated three times to ensure the reliability of the experimental date.
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Figure 1. The diagram of promoted ignition–combustion (PIC) device.

2.3. Microstructural Characterization

The burned specimens were cut along long longitudinal sections, polished, and etched
with a mixed solution of 10 vol.% HF, 30 vol.% HNO3, and 10 vol.% H2O. The phase struc-
ture of combustion products was determined by X-ray diffraction (Rigaku TTR3, Tokyo,
Japan), using Cu Kα radiation with a step of 0.02◦ and counting time of 1 s/step. The
microstructure and chemical composition of different combustion reaction zones was ob-
served by the field emission scanning electron microscope (SEM) with an operating voltage
of 20 keV (Supra 55, Zeiss, Oberkochen, Germany), equipped with energy-dispersive spec-
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trometry (EDS). The chemical composition distribution of different combustion reaction
zones was analyzed using an electron probe micro-analyzer (EPMA-1720H, Kyoto, Japan).

3. Results

Figure 2 shows the in situ observation of the combustion process of TC17 titanium alloy
(Ti-5Al-2Sn-2Zr-4Mo-4Cr) and the corresponding temperature curve. It can be observed in
Figure 2a that there are three steps to the TC17 alloy’s combustion process, i.e., the ignition,
splash (or explosion), and flame propagation processes. It is similar to those of TC4 (Ti-
6Al-4V) and TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) alloys, which were described in detail in
our previous study [14]. The corresponding temperature curve in Figure 2b shows that the
surface temperature increases rapidly from the ignition temperature (855.8 ◦C) to the peak
temperature (2047.5 ◦C) within only 0.5 s when the alloy is ignited. After the splash stage,
the steady propagation of the flame is observed, with the formation of a molting droplet.
Additionally, the threshold oxygen pressure of the TC17 alloy is determined as 0.09 MPa,
which is close to that of 0.07 MPa for the TC11 alloy.
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Figure 2. (a–d) the in situ observation on combustion of TC17 alloy and (e) the corresponding
temperature curve under 0.25 MPa.

The combustion velocity of the TC17 alloy is obtained from the combustion length and
time, and the curves of combustion velocity with oxygen pressure are plotted, as shown in
Figure 3. As a comparison, the combustion velocity of the TC11 alloy is also plotted; the
data were obtained from previous work [14]. It can be seen in Figure 3 that the combustion
velocity of the TC17 samples increases when oxygen pressure rises from 0.1 MPa to 0.5 MPa.
Similar to that of TC11, the combustion velocity rises with the sample length, suggesting
that combustion is a self-accelerating phenomenon. It should be noted that the combustion
velocity of TC17 with the same length is significantly higher than that of TC11, and the
self-accelerating phenomenon is more sensitive in TC17. Additionally, it can be seen that
the combustion velocity v and with oxygen pressure PO2 follows a power law relationship
for both the TC17 and TC11, where the rate constant and exponent of TC17 are larger than
that of TC11.
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Figure 3. The combustion velocity vs. oxygen pressure relationship of TC17 alloy [14].

Combustion products of TC17 include droplet, volatile, and molten pool. The XRD
analysis of combustion products are carried out, as shown in Figure 4. It has been found
that the droplet is mainly composed of Ti2O3, TiO, TiO2, Ti3O5, Al2O3, Sn, and Cr2O3. The
molten pool contains Ti2O3, TiO, TiO2, Ti2O, and ZrO0.35. The volatile consists of Ti3O5,
TiO2, SnO2, and MoO3, which indicates that the combustion temperature is higher than
theses oxides.
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pool.

Figure 5 depicts the microstructure of the TC17 alloy after extinguishing the combus-
tion process. After combustion, the microstructure of the TC17 alloy contains three regions,
including the oxide zone, melting zone, and heat-affected zone. Many cracks and cavities
can be seen in the oxide zone, as shown in Figure 5a. The formation of cracks can be related
to the internal stress caused by the shrinkage during the solidification process. The oxide
zone contains two different phases, i.e., the dark gray oxide matrix phase (Phase 1) and
the white network phase (Phase 2). The chemical compositions of Phase 1 and Phase 2 are
obtained by EDS, as listed in Table 2. Figure 5e further shows the distribution of elements
in oxide zone. It can be observed that the dark gray oxide matrix phase (Phase 1) is mainly
the mixture of titanium oxides. The white network phase (Phase 2), which differs from
Phase 1, which is enriched in Zr, Sn, Mo, and Cr, suggests that Ti was oxidized before these
elements, which is compatible with the XRD results of the molten pool seen in Figure 4.
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Figure 5. Microstructure of TC17 alloy. (a) Overall morphology, (b) heat-affected zone, (c) oxide zone,
(d) melting zone, (e) the EDS mapping of the marked area in (c), (f) the EDS mapping of marked
area in (d). (b-1) is the local magnification in (b). The number from 1–6 represents the positions of
EDS analysis.

Table 2. Chemical concentration of different phases for TC17 alloy.

Region
Composition

Ti Al Sn Zr Mo Cr O

Phase 1 (at %) 39.93 2.87 0.02 0.09 0 0.07 57.02
Phase 2 (at %) 33.4 1.46 3.27 14.92 0.41 1.32 45.23
Phase 3 (at %) 63.07 3.96 0.45 0 0 0.56 31.96
Phase 4 (at %) 50.54 18.92 1.14 0.7 3.29 9.88 15.53
Phase 5 (at %) 64.43 8.09 0.8 1.1 1.58 3.6 20.4
Phase 6 (at %) 51.02 15.2 0.98 1.08 4.47 7.77 19.48

Figure 5b depicts the morphology of the melting zone. Figure 5d is the enlarged view
of Figure 5b. A typical dendritic solidification structure can be observed in the melting
zone. The element mapping of the dendritic phase (Phase 3) and interdendritic phase
(Phase 4) are shown in Figure 5f. As shown in Table 2, a high concentration of oxygen of
approximately 31 at.% is determined by EDS in Phase 3, where the atomic ratio of Ti and O
in Phase 3 is close to 2:1. According to the Ti-O phase diagram, such an increasing solid
solubility of dendritic suggests that a peritectic transformation between liquid titanium
and α solid solution into TiO oxide is involved. As illustrated in Figure 5f, the enrichment
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of Al, Mo, and Cr is seen in the interdendritic phase (Phase 4). The oxygen content in the
interdendritic phase, which is substantially lower than that of the dendritic phase, and can
be attributed to the segregation of elements that shorten the region of the phase, is around
15%, as listed in Table 2. It can be also noted that the relative ratio between interdendrite
and dendrite decreases far away from the liquid/solid interface, suggesting the diffusion
of Al, Mo, and Cr toward the liquid/solid interface in the melting zone.

Because of the high temperature brought on by the heat conduction of the melting
zone, as shown in Figure 5b, coarse grains can be observed in the heat-affected zone. The
boundary between the heat-affected zone and the melting zone is clearly visible, similar
to the TC11 and TC4 alloys, as shown in the enlarged image in Figure 5b, and it may be
related to the peritectic reaction between the liquid and solid phases. An enrichment of
alloying elements is found from the matrix to the interface between the heat-affected zone
and melting zone. The EDS analysis in Table 2 shows that Point 6 in the heat-affected zone
contains 15.2 at % Al, 4.47 at % Mo, and 7.77 at % Cr near the interface, which is about
twice that near the matrix (Point 5). The segregation of Al, Mo, and Cr at the interface is
also shown by the EPMA element mapping in Figure 6, which will be discussed in detail in
the discussion section.
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(b) EPMA mapping.

4. Discussion

Compared to the TC11 alloy, the TC17 alloy is a near β type α + β dual-phase titanium
alloy due to more addition of β-phase stable elements, such as Cr and Mo. It has an impact
on both the combustion behavior and microstructure evolution of the TC17 alloy during
combustion.

According to in situ combustion observations (Figure 2), the combustion of TC17
involves three steps, including ignition, splashing, and flame propagation, which is similar
to the combustion of TC4 and TC11 alloys [14]. The PIC experiments also show that even
though the TC17 alloy’s threshold ignition pressure is similar to that of the TC11 alloy,
it burns with a substantially higher velocity under conditions of equal oxygen pressure
and combustion length (see Figure 3). A very high oxygen content of around 31 at. %
is confirmed in the dendritic phase of the melting zone for the microstructure of the
TC17 alloy after combustion, as shown in Table 2. Such a growing solid solubility of
dendrite implies that a peritectic transformation, i.e., liquid phase + α phase→TiO, can
be engaged in the combustion of the TC17 alloy, which is similar to other typical titanium
alloys that contain the α phase, such as TC4 and TC11 in our previous work [14–16].
Additionally, the self-accelerating combustion behavior of the TC17 has been observed, as
shown in Figure 3. Such a phenomenon has also been observed in TC4, TC11, and Ti14
alloy in references [14,15,20], which can be attributed to the extremely high combustion
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heat of titanium alloys, offering sufficient energy as the driving force for the acceleration of
the reactions.

The addition of β-phase stable elements, such as Cr, can be the reason for the rapid
combustion kinetics of the TC17 alloy. Because of the periodic formation of combustion
areas and droplets, as observed in the PIC tests, it is reasonable to consider the flame
propagation of the TC17 and TC11 alloys as a steady process. By equating the heat flux
on the liquid side to that on the solid side, the migration rate v of the interface between
solid and liquid can be expressed as [23] v = Ah(Tb−Tm)

ρ{c(Tm−Ts)+q} , which is based on the energy
conservation law, where A is the parameter corresponding to the configuration of the
interface, h is the heat transfer rate at the interface, Tb is the molten mass temperature,
Tm is the temperature at the interface that is equal to the metal melting temperature, ρ is
the density of titanium alloy, c is the specific heat capacity, Ts is the temperature of solid
alloy, and q is the latent heat of melting process. The combustion velocity of different
titanium alloys can be compared and explained by the equation of the analysis of alloying
characteristics on kinetic parameters.

According to this equation, the interfacial temperature Tm is the primary cause of the
difference of migration rate v between TC17 and TC11. Table 3 compares the major physical
characteristics of TC17 and TC11 alloys, including q, h, c, and ρ, based on references [24–26].
It can be seen that the TC17 and TC11 alloys have similar values for all of these characteris-
tics. However, as illustrated in Figure 6, during the combustion process, the segregation of
the β-phase stable element Cr is seen at the interface between liquid (melting zone) and
solid (heat-impacted zone). This may be explained by the fact that Cr is less soluble in the
α-Ti or TiO phases than in the liquid phase [27], which causes the Cr atoms to be ejected
into the liquid/solid interface during combustion. According to Ti-Cr phase diagrams [28],
the segregation of 7 at.% Cr at the TC17 interface will result in a considerable reduction of
~70 ◦C in the interfacial temperature Tm, whereas the segregation of Mo and Zr in TC11
results in an increase in the interfacial temperature. Tb can also be considered constant
for the TC11 and TC17 alloys since it is determined by the peritectic reaction of the liquid
phase and α-Ti. Ts can also be considered constant, which is dependent on the heat transfer
characteristics of alloys. As a result, the migration rate v in TC17 is larger than TC11 due to
the drop in Tm. This implies that increasing the interfacial temperature by adding alloying
elements is an advantageous strategy for lowering the combustion velocity of titanium
alloys. Further investigation on the detailed combustion characteristics among typical
titanium alloys will be conducted in our next work.

Table 3. Physical properties between TC17 and TC11 alloys [24–26].

ρ, g/m3 c, J/(mol K) q, kJ/mol h, W/(m2 ◦C)

TC17 4680 470
16~20 50TC11 4480 544

5. Conclusions

In this paper, the combustion behavior of the TC17 alloy, including ignition temper-
ature, threshold oxygen pressure, and combustion kinetics, has been investigated by the
promoted ignition–combustion (PIC) tests. The microstructure after extinguishing combus-
tion has been further analyzed, and the impact of alloying elements on the combustion
behavior has been further discussed. The following conclusions are drawn from this work:

• The combustion of the TC17 alloy consists of the ignition, splash, and flame propa-
gation stages. The threshold oxygen pressure for the combustion of the TC17 alloy
is comparable to that of TC11; however, the combustion velocity of the TC17 alloy is
obviously faster. The combustion velocity and oxygen pressure follow a power law
relationship;

• The oxide zone, melting zone, and heat-affected zone are observed in the TC17 alloy
after extinguishing the combustion process. The segregation of Cr, Mo, and Al is



Metals 2023, 13, 1020 9 of 10

observed in the interdendritic phase in the melting zone and the interface between the
melting zone and the heat-affected zone;

• The enhanced combustion velocity of the TC17 alloy may be caused by the segregation
of Cr at the liquid/solid interface, which lowers the interfacial temperature and speeds
up the migration of the liquid/solid interface.
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