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Abstract: Inverse problems can be challenging and interesting to study in the context of metallurgical
processes. This work aims to carry out a method for inverse modeling for simultaneous double-
frequency induction hardening process. In this investigation, the experimental measured hardness
profiles were considered as input data, while the output data were the process parameters. For this
purpose experiments were carried out on C45 steel spur-gear. The method is based on machine
learning algorithms and data treatment for dealing with inverse approach issues. In addition to
the inverse modeling, a forward problem-based verification completes the study. It was found that
according to promising results that this method is suitable and applicable for inverse problem of
hardness modeling.
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1. Introduction

Induction hardening (IH) is a heat surface treatment process that is widely employed in
various industries, such as aerospace and automotive, to improve the mechanical properties
of workpieces [1,2]. The process begins with a powerful induction heating, followed by
a rapid quenching step. It has the advantage of providing rapid and localized surface
heating of the desired areas without affecting the metallurgy of the bulk material, as
well as good reproducibility [3]. As a result, a fine-grained martensite phase [4–6] and a
compressive residual stress field [7–9] are induced in the surface layer, which enhances
the fatigue life behavior of engineering components [10,11]. However, high temperatures
coupled with longer heat time could lead to grain growth (causing a degradation in fatigue
strength), data scatter, and excessive gear distortion [12,13]. Accordingly, the control of the
process parameters is highly important to validate the effectiveness of this heat treatment
process [14]. This type of investigation is known as the forward approach.

In the inverse approach, the goal is to determine the cause of a given effect, or to
reconstruct an unknown quantity from observations or measurements [15]. This approach
is often regarded as a critical and challenging issue for physics, science, and engineer-
ing. In fact, it requires making assumptions and using mathematical models to estimate
the unknown parameters that are responsible for the observed data. Moreover, it often
involves non-unique solutions and high computational power demands. Inverse prob-
lems can be found in many fields such as computer vision and imaging [16–20], vibration
mechanics [21], electromagnetic [22] medicine [23,24], groundwater modeling [25], and
machine learning [26,27]. When the solution to such problems is not unique or sensitive to
small perturbations in the data, they represent ill-posed problems. These problems are usu-
ally more difficult to solve than well-posed problems and require additional assumptions
or regularization to obtain a unique and stable solution.

Concerning the forward problem, a significant amount of research works has been
conducted to study the IH process [28–34]. While experimental approaches can provide
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valuable insights [35], they can be time-consuming and have limitations in terms of the
range of validation. A more efficient method for guiding and optimizing processes is the
use of numerical techniques, such as finite element modeling (FEM), which has proven to be
relevant in dealing with multiphysics-based parametrized problems [36]. As a result, many
studies have focused on using FEM to analyze hardness with relevant accuracy [37–43].
However, this approach is restricted by the computational cost. Hence, machine learning
algorithms have been recently employed. They tend to reduce computational time while
maintaining accuracy in the modeling of parameters of interest such as hardness and
residual stress [38,44–46].

In the context of an inverse problem, fewer studies have been conducted for IH. They
are related to the estimation of the power levels using the temperature as input in steel
cylinders [47] and the heat transfer coefficient using the surface temperature in a steel
billet [48]. In industry, solving the inverse problem for IH can have a number of benefits.
Some of the main goals include improving efficiency by determining the optimal input
parameters to meet the technical specifications for a given workpiece, reducing the amount
of time and resources required to produce a desired output, and improving efficiency and
precision. Moreover, it allows more flexibility in the hardening process, making it possible
to treat different workpieces or geometries.

This work proposes to study the induction hardening process with inverse problem
approach. The inverse problem can be defined as follows: Let A and B be two spaces and
f : A→ B an operator. Consider the equation

f (p) = h (1)

where h ∈ B is the exact datum. Finding the function f satisfying the above equation, given
f and h, is the inverse problem associated to Equation (1). In the present case, A and B
should be the space of the induction process parameters and the space of hardness, respec-
tively. Inverse problems can be solved using a variety of mathematical techniques such
as optimization [49,50], regularization [51–53], Bayesian inference [54–56] and machine
learning algorithms [57,58]. In this work, a simple method based on machine learning is
presented to solve the problem expressed by Equation (1). Section 2 presents the exper-
iments from which the data are collected. Section 3 is dedicated to the definition of the
inverse problem in the context of induction hardening. Section 4 shows the results and the
validation through the forward problem.

2. Experimental Details

The series of induction hardening experiments under simultaneous double-frequency
is performed on C45 steel spur-gears. The gear data was summarized in Table 1, while
the process parameters were listed in Table 2. During these experiments, gears were
mounted on a rotating chuck. The heating phase was performed by using a rectangular
shape inductor of 12.25 × 20 mm having an air-gap of 2 mm, while the subsequent cooling
shower of a polymer–water mixture was applied by another coaxial ring as shown in
Figure 1. The temperature on the surface at the tooth root was measured using an Optris
pyrometer. Micro-hardness Vickers (HV0.3) profiles were conducted in the normal direction
to the surface of the gear at the tooth tip and root and on a transversal section, according to
ISO 6507 norm [59], to determine the penetration hardening at these two locations.

Table 1. Main characteristics of the treated gear.

Module No. of Teeth Width Addendum
Circle Pitch Circle Root Circle

2.5 22 10 mm 60 mm 55 mm 48.75 mm
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Figure 1. Experimental double-frequency induction hardening setup.

Table 2. Induction heat treatment conditions.

Run # Medium
Frequency

High
Frequency Power of HF Power of MF Time Temperature

MF (kHz) HF (kHz) PHF (kW) PMF (kW) t (s) T (°C)

1 13 256 143 88 0.17 780
2 12 258 225 138 0.17 1080
3 12 258 225 138 0.2 1200
4 12 257 143 113 0.17 835
5 12 258 184 113 0.17 935
6 12 258 225 113 0.17 1005
7 13 257 143 113 0.2 ×
8 13 257 184 88 0.2 917
9 13 257 184 138 0.24 1189

10 13 257 143 138 0.2 1059
11 12 257 184 113 0.2 1025
12 13 257 184 88 0.24 1028
13 12 258 225 88 0.2 999
14 13 257 143 88 0.24 925
15 12 258 225 113 0.24 1167
16 12 258 225 88 0.17 900
17 12 257 184 138 0.17 1005
18 13 257 143 113 0.24 1039
19 13 257 143 138 0.24 1145
20 12 258 225 138 0.24 1217
21 12 258 225 88 0.18 884
22 12 258 198 134 0.17 920
23 × × 238.5 94 0.17 890
24 × × 247.5 98 0.19 958
25 12 257 202 110 0.17 884
26 × × 175.5 102 0.19 889
27 12 257 202.5 118 0.17 887
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Table 2. Cont.

Run # Medium
Frequency

High
Frequency Power of HF Power of MF Time Temperature

MF (kHz) HF (kHz) PHF (kW) PMF (kW) t (s) T (°C)

28 × × 193.5 102 0,19 876
29 × × 238.5 88 0.19 906
30 × × 247.5 88 0.19 905
31 × × 247.5 94 0.17 858

×: missing values.

3. Inverse Problem

An inverse problem is the process of calculating from a set of observations the input
parameters that produced them. Hence, in the present case, the measured hardness profiles
should be set as input in a machine learning algorithm to predict the process parameters.

3.1. Hardness Profile Treatment

Based on the collected experimental data, the space X of available variables can be
defined as:

X = {MF, HF, PMF, PHF, T, d, t, H} (2)

where MF and HF are the medium and high frequency, respectively, PMF and PHF are their
respective generator powers, T is the temperature measured at the surface close to the tooth
root, d is the depth at which the hardness was measured, t is the heating duration, and H is
the measured hardness. Frequencies being almost constant, they can be excluded. Hence,
the studied space of variables reduces to:

X = {PMF, PHF, T, d, t, H} (3)

The process parameters are the time and generator powers PMF and PHF. Hence, the
problem can be described as finding a model f such as :

f (H) = (t, PMF, PMF) (4)

There are 31 runs as listed in Table 2 composed of 60 hardness measurement point
each. Hence, the hardness set as input, there are as many input variables such as:

f (H1, H2, ..., H60) = (t, PMF, PHF) (5)

However, it is preferable to have fewer variables than data points [60,61] to allow the
use of linear algorithms for modeling. It was previously shown that it is efficient to encode
a profile as a few variables [38]. This procedure has the advantage of standardizing the
profile to a fixed number so that any new profile would be treated equally and avoid data
shape problems. Hence, in this work, each hardness profile is encoded as 5 characteristic
points. The first point H0 is at a depth of 3 µm. The second and third ones H1 and H2
correspond to the hardness measurements localized at 1/3 and 2/3 of the total depth,
respectively. Then, H08 is the hardness at the conventional depth such that H08 = 0.8× H0.
The last one H3 is the last measured point of the profile which corresponds to the bulk
hardness. Some profiles with their selected hardness points are illustrated in Figure 2.
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(a) (b)

(c) (d)

Figure 2. Selected hardness points from the measured hardness profiles. (a) Run #2; T = 1080 °C;
(b) Run #12; T = 1028 °C; (c) Run #22; T = 920 °C; (d) Run #30; T = 905 °C.

Then, H can be decomposed as:

H = {H0, H1, H08, H2, H3} (6)

The inverse problem can be now written as:

f (H0, H1, H08, H2, H3) = (t, PMF, PHF) (7)

3.2. Experiencing the Ill-Posed Problem

The inverse problem encounters a major issue. A combination of the output param-
eters into one should be a solution. Indeed, hardness depends on temperature history,
it is the product of the power of generators PHF and PMF and the time t. To prove the
non-uniqueness of a solution, considering an artificial neural network (ANN) as f in
Equation (7), known as a universal function approximator, which means that, theoretically,
it can learn any mathematical function, regardless of its complexity [62]. Moreover, as a
global estimator, if a solution exists, a sufficient number of iterations (epochs) during the
training should let the ANN converge to it. An ANN with three hidden layers all composed
of 120 neurons was built, and a dropout layer to ensure avoiding overfitting [63] was added
to the neural architecture. The ANN was trained on several different hyperparameters and
number epochs to reach convergence.

The results of the ANN are almost constant for each target variables as illustrated
in Figure 3. Moreover, the ANN doesn’t converges to a unique solution, as seen in the
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evolution of the training phase shown in Figure 4, which confirms the absence of a
unique solution.

(a)

(b)

(c)

Figure 3. ANN process parameters predictions. (a) time (s); (b) and (c) power generator in medium
and high frequency, respectively.
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Figure 4. Training (train) and validation (val) error with respect to the epoch (iteration of training).

3.3. Physics-Informed Inverse Problem

In this inverse problem, the output parameters are the powers PHF, PMF, and time
t. As mentioned above, the major issue is the difficulty in predicting a unique vector
solution of these 3 parameters. Therefore, it is essential to define a combination of the
output parameters based on physical principles. The physic-based proposed combination
leading to the energy reads:

E = t× (PHF + PMF) (8)

However, it is known that the tooth tip and the tooth root are influenced by the
high and medium frequencies of the process, respectively [64–66]. The generators work
simultaneously under the same heating time; hence, it is possible to consider the problem
based on the specific location in the gear in order to obtain more information about the
different process parameters such as:

EHF = t× PHF

EMF = t× PMF
(9)

Hence, the inverse problem defined in Equation (7) can be expressed as:

f (Ht,0, Ht,08, Ht,1, Ht,2, Ht,3) = EHF

f (Hr,0, Hr,08, Hr,1, Hr,2, Hr,3) = EMF
(10)

where Ht and Hr are the hardness measured at the tooth tip and tooth root, respectively.
Finally, the initial inverse modeling is reduced to a simple regression problem. The

tested algorithms and results are presented in the next section.

4. Inverse Modeling and Results

The modeling was divided into two stages. First, data were used in several machine
learning techniques and tested to evaluate the best algorithm. These algorithms vary from
complex such as XGBoost to multi-linear regression. It is important to use quite simple
algorithms when it is possible to save computational time. Second, the results of the inverse
model were used in the forward problem for validation purpose.

4.1. Inverse Modeling

The dataset was composed of 60 runs (30 runs in both, the tooth root and tooth tip). It
is worth mentioning that 70% of the dataset was considered for training, and 30% for test.
As mentioned above, different models were selected to predict the energy such as XGBoost
regressor [67], Random Forest (RF) [68,69], Multi-linear regression [70], and Support Vector
Regressor (SVR) [71,72].
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The obtained results listed in Table 3 show a satisfying performance for each model as the
error is relatively low (<10%). It suggests that the inverse problem is now properly defined.

Table 3. Test results for inverse modeling.

Position Error XGBoost Random
Forest

Multi-Linear
Regression SVR

Tooth tip RMSE 1.07 1.42 0.74 1.34
RMSPE 5.78% 7.23% 3.71% 7.99%

Tooth root RMSE 0.84 2.58 0.78 2.27
RMSPE 4.53% 6.78% 3.93% 5.65%

The characteristic hardness measurements chosen for variables are meaningful ac-
cording to the promising obtained results. As the error differs depending on the data
that are randomly put in training and testing during the split, the selection of the data
was optimized with respect to test results. However, cross-validation technique [73] was
used to ensure the robustness of the model but is unstable because of the small number
of samples [74,75]. With this amount of data, the presented models cannot be generalized.
Results from multi-linear regression model were illustrated in Figure 5.

(a) (b)

Figure 5. Predicted versus real energy at the tooth tip and the tooth root. (a) Tooth tip; (b) Tooth root.

It is worth noticing that the data are well predicted within the fixed ranges of energy.
Moreover, these results show that a simple algorithm such as multi-linear regression can
handle the simplified problem.

4.2. Forward Problem Consistency

In order to ensure that it is possible to turn back to the forward problem with the
available variables presented in the previous section, the next step of this work is to predict
the hardness with the previous output parameters i.e., the energy. The problem could be
expressed as:

f (EMF) = (H0, H08, H1, H2, H3)

f (EHF) = (H0, H08, H1, H2, H3)
(11)

Predicting multiple outputs with one variable as input is fairly complex in regression
especially when the variables are dependent on each other. Since the hardness points
(H0, H08, H1, H2, H3) were selected from fixed depth to keep the data homogeneity, it is
possible to divide the hardness and depth into 2 variables. The depth being known, it can
be considered as an input variable.
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Hence the input space of the variables could be written as :

X = {E, loc, d} (12)

where E is the energy of the location of the point, loc is the location, either the root or tip of
the tooth, and d is the depth of the measured hardness. Therefore, the problem is such as:

f (E, d, loc) = H (13)

There are some differences between the inverse and forward approaches. The location
in the gear is now considered as the input variable loc. Contrary to the inverse approach
using one model per location, in the forward problem the locations are encoded and only
one model is needed. In addition, in the inverse problem, one instance represents a hardness
profile, while in the forward problem, an instance is now a single hardness measurement
linked to its depth. Because of this difference and to ensure consistency of the profiles while
splitting for training and testing sets, the data are split according to their respective profile.
Therefore, 24 profiles were considered for training, leaving seven profiles for the testing
phase. The results of the four models for the forward approach show fairly different errors
from misprediction to promising results. They are listed in Table 4.

Table 4. Test results of the hardness prediction.

Error XGBoost Multi-Linear
Regression Random Forest SVR

RMSE 45.55 134.25 47.15 137.59
RMSPE 8.5% 28.75% 9.2% 37.26%

It is clear that the XGBoost and Random Forest algorithms comparatively give a much
better prediction of the hardness. The best models are illustrated in Figure 6. Bulk and
surface hardness (≈300 HV and 700 HV) are well predicted, while both models showed
difficulties when predicting hardness in the transition phase (between surface and core
hardness). This difficulty can be explained by several factors.

Indeed, the problem is already complex, and the number of samples used is fairly low.
Moreover, the variables are limited to those that have already been used in the inverse
problem. However, it is known that the surface and in-depth temperatures [44] or the
austenite ratio [38] can highly increase the accuracy of the hardness prediction in the the
transition zone. Beyond this method, such variables could be used to enhance the efficiency
of the model.

(a) (b)

Figure 6. Predicted versus real hardness for forward problem in both tooth tip and root of the gear.
(a) Random Forest; (b) XGBoost.
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5. Conclusions

This work proposed an inverse approach of the hardness. Data were collected from
induction hardening experiments carried out on C45 spur-gear. In this work, an inverse
modeling based on machine learning was presented. This method consists of predicting
process parameters of induction hardening treatment based on the hardness profiles. The
method proceeded by discretizating the profiles, the combination of the process parameters,
and the forward problem-based verification. The main conclusions were as follows:

• The discretization of hardness profile and the physics-based combination of the output
variables of the data were essential to conduct the inverse modeling.

• It was shown that simple algorithms were efficient to predict the energy.
• The number of available samples was too small to prove the generalization of the model.
• The results of the forward problem verification proved the efficiency of the proposed approach.

It is worth outlining that the inverse approach model has the advantage to be simple
and easy to conduct with no data shape issues. In addition, the developed method have
the advantages of a shorter time response than complex inverse methods which is highly
suitable for process optimization. In the light of the results, the proposed inverse approach
can be used in induction hardening optimization.
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