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Abstract: The 7050 alloy is a kind of Al-Zn-Mg-Cu alloy that is widely used for aircraft structures.
Although the deformation behavior of the solid solution state 7050 aluminum alloy is critical for
engineering and manufacturing design, it has received little attention. In this study, the room and
warm compression behavior of the solid solution-state 7050 alloy was researched, and a modified
model with variable parameters was built for the flow stress and load prediction. The isothermal
compression tests of the solid solution-state 7050 alloy were performed under the conditions of
a deformation temperature of 333–523 K, a strain rate of 10−3–10−1 s−1, and a total reduction of
50%. The strain-stress curves at different temperatures were corrected by considering interface
friction. The flow stress model of aluminum was established using the modified Voce model. For
evaluating the modified Voce model’s prediction accuracy, the flow stresses calculated by the model
were compared with the experimental values. Consequently, for assessing its prediction abilities
in finite element applications, the whole compression process was simulated in the finite element
analysis platform. The results sufficiently illustrated that the modified Voce-type model can precisely
predict the complex flow behaviors during warm compression. This study will guide the prediction
of the warm compression load and the optimization of the heat treatment process of the alloy.

Keywords: solid solution state; 7050 aluminum alloy; warm compression; constitutive model

1. Introduction

The high-strength, age-hardened 7050 alloy is a kind of Al-Zn-Mg-Cu alloy that is
widely used for aircraft structures. After the forging of the 7050 alloy, it will be heated to a
solid solution temperature and kept for some time [1]. Then the alloy will be quenched and
finally artificially aged for improved performance [2,3]. The treatment will induce large
residual stresses on the structures, resulting in severe distortion and even failure in the
subsequent machining stage [4,5].

In previous studies, the warm compression between solid solution and aging treatment
has been proven to have a good residual stress reduction effect on large aluminum alloy
forgings [6,7]. The load of the warm compression process is large due to the high strength
of the solid solution-state 7050 alloy [8]. To predict the load precisely, the deformation
behavior and applicative constitutive model of solid solution-state 7050 aluminum at
medium temperature are essential, but they are little studied. Some constitutive models,
such as Swift, Ludwik, and Voce, have been used to predict flow stresses and loads in
cold or warm forming designs [9–11]. At low temperatures, there is also softening due to
mechanical work converting. However, the indicated constitutive models ignore softening
phenomena in the deformation and are insufficient to predict flow stresses and loads during
warm compression for the alloy.

Therefore, the goal of this research is to build a model of 7050 aluminum alloy in its
solid solution state for flow stress and load prediction during warm compression. Room
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temperature and isothermal warm compress tests from 333 to 523 K were performed. The
flow properties of the aluminum in its solid solution state were studied. By considering
the friction compensation, the modified Voce-type model with parameters variable by the
effects of strain, temperature, and strain rate was established for flow stress prediction. For
evaluating the modified model’s prediction accuracy, the flow stresses calculated by the
model were compared with the experimental values. The model’s prediction abilities in
finite element applications have also been assessed.

2. Materials and Methods

The 7050 aluminum alloy for the research was from Deyang Wanhang Die Forging
Co., Ltd. (Deyang, China). The chemical compositions of the aluminum alloy are listed
in Table 1.

Table 1. Chemical composition of 7050 alloy (wt, %).

Cr Cu Fe Mg Mn Si Ti Zn Al

0.04 2.0 0.16 1.90 0.10 0.126 0.06 5.7 Bal

The solid solution treatment and compressing processes are shown in Figure 1. The
wrought 7050 alloy was heated and solution treated at 750 K for 4 h with 333 K water quench-
ing. The quenched alloys were prepared into some cylinders of Φ8× 12 mm for subsequent
compressive tests. The warm upsetting tests were conducted on a Gleeble−3180 unit
at different temperatures of 333, 423, 473, and 523 K for strain rates of 10−3, 10−2, and
10−1 s−1. The total reduction is 50%, with stress-strain data recorded automatically. Before
upsetting, tantalum with graphite lubricant was applied to the surfaces of both specimens
and dies to minimize the friction effect. The specimens were heated at 10 K/s to deforma-
tion temperatures and then held for some time to eliminate the temperature gradient and
microstructure inhomogeneity. The room-temperature compression tests of forged and
solid solution states were carried out on a WDW-100 universal tester (Beijing Sinofound
Co., Ltd, Beijing, China). The strain-stress curves are recorded by the tester automatically.
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The samples before and after heat treatment were also wire-electrode cut and metallo-
graphically observed for comparison. The samples were ground and polished to eliminate
any trace of cutting. Then they were etched with Graff-Sargent solutions. Optical mi-
crographs of the samples in different states were characterized by an OLYMPUS GX-41
type microscope(Olympus Corporation, Tokyo, Japan). The microstructure was further
examined using a TESCAN VEGA3 LMH scanning electron microscope (TESCAN CHINA
Ltd., Shanghai, China).

3. Results and Discussion
3.1. Flow Behavior

The stress-strain curves of the 7050 alloy at room temperature in three states (forged
state, solid solution state, and annealed state after forging) were obtained and depicted
in Figure 2. From the comparison, it can be concluded that the solid solution-stated alloy
has greater strength, plasticity, and fracture toughness. Firstly, as shown in Figure 3a–c,
the grains in the wrought state were fibrous. After quenching, the grain is equiaxial
(shown in Figure 3d–f), indicating that the treatment enhances recrystallization grain gen-
eration [12–14]. The volume fraction of recrystallized grains of 7050 alloy before and after
solid solution treatment is measured by the software Image-Pro-Plus 6.0 (Media Cybernet-
ics Inc., Rockville, MD, USA). The values are 18.9% and 52.6%, respectively. The volume
fraction of recrystallized grains of 7050 alloy measured in other experiments is shown in
Figure 4 [15–17]. The treatment can enhance the recrystallization of the 7050 aluminum.
The recrystallization reduces intragranular dislocation density and intragranular-grain
boundary strength differences, which will decrease work-hardening and increase plasticity.
Secondly, the supersaturated solid solution generated in the treatment will finally transfer
to the strengthening phase (the white region of the SEM image in Figure 5b), which will pin
dislocation and improve the alloy strength [18]. Thirdly, the coarse second-phase particles
of the alloy (the black part in Figure 5a) lessened during the treatment [19]. The coarse par-
ticles (above 2 nm) of 7050 alloy decreased by about 70% after solid solution treatment [20].
The refined particles hinder void generation and crack propagation to enhance the fracture
toughness of the 7050 alloy.
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Figure 2. Stress-strain curve for room temperature compression of 7050 alloys in different states.
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The true stress-strain curves of aluminum in the solid solution state at elevated tem-
peratures from 333 K to 523 K at different strain rates are shown in Figure 6a–c. All curves
could be divided into three distinct stages. In the first stage, the flow stress increases
linearly with strain, and only elastic deformation predominates. In the second stage, plastic
deformation happens and flow stress slowly increases. In the third stage, the flow stress
will approach saturation and weave. Furthermore, it is seen that flow stress is negatively
correlated with deformation temperature. The microstructure evolution (precipitation or re-
crystallization), deform-mechanism conversion (shear mechanism to Orowan mechanism),
and reduction of dislocation movement resistance occurring at warmer temperatures can
all alter the flow characteristics and decrease flow stress [21–23]. At lower temperatures,
only the strain-hardening tendency exhibits itself in the curve. When the deformation
temperature is approximately 423 K, the work hardening occurs first, and then the 7050
alloy begins to soften at a higher plastic strain. The tendency for flow softening becomes
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more obvious at warmer deformation temperatures. Moreover, the flow stress of solid
solution-state 7050 alloys has a positive correlation with strain rate. At high strain rates,
dislocation density and dislocation slip velocity increase, resulting in a magnification of
dislocation interaction and deformation resistance [24,25]. Additionally, at the same com-
pression temperature, the amplification of flow stress with increasing strain rate is roughly
the same. It is due to the balance of work hardening and deformation thermal softening at
medium temperatures [26]. The strain rate effect of solid solution 7050 aluminum alloy is
not obvious during the medium-temperature compression process, and the stress-strain
curve is not sensitive to the strain rate [27].
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In compression tests, the friction will change the stress state, leading to heterogeneous
deformation and non-negligible errors in the obtained flow stress, although the necessary
lubricant was applied [28]. Friction correction is necessary for the accurate calculation of
flow stress. The correction method is expressed in Equation (1) [29,30]:

σ =
σ

1 +
(

2
3
√

3

)
m
(

R0
h0

)
exp

( 3ε
2
) (1)

where σ is the corrected stress,
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3.2. Construction and Comparison of Constitutive Models

The flow stress in the room and at medium temperature can be analyzed using
Hollomon [31], Swift [32], Ludwigson [33], and Voce hardening models [34]. All constitutive
models are shown in Equations (2)–(4) below:

Hollomon σ = kHε
nH (2)

Swift σ = kS(ε0 + ε)
nSwift (3)

Ludwigson σ = k1ε
n + ek2en2ε (4)

Voce σ = σ0

(
1−Ae−kε

)
− kε (5)

where σ is the true stress in the compression, ε is the true strain, n is the strain hardening
index, σ0, ε0, k and A are material constants.

Besides, some classical viscoplastic models, such as the Arrhenius-type model [35–37]
and the Johnson–Cook model [38], were applied for comparison. The two models are
shown in the equation as follows:

Arrhenius-type model
.
ε = A[sinh(ασ)]n exp

(
− Q

RT

)
(6)

where α, and n are material constants. Q is the activation energy of plastic deformation
(J/mol); R is the gas constant; and T is the temperature.

Johnson–Cook model σ = (A + Bσn)

(
1 + Cln

.
ε
.
εref

)(
1− TD

H

)
(7)

where A, B, and C are material constants.
.
εref is the reference strain rate; TH is the relative

temperature.
In the above equations, all the parameters are obtained by the reference or fitted by

the Levenberg-Marquardt approach. The predictions of the flow stress at 423 K and 0.1 s−1

by the four models are shown and compared in Figure 7. The fitting degrees of the four
models are different, and the order of priority is as follows: Voce > Swift > Ludwigson
> Hollmon > Johnson-Cook > Arrhenius. The Arrhenius-type model uses a hyperbolic
sine function to predict the flow stress of the material, and it cannot accurately predict
the hardening behavior of the alloy at medium temperature. The unsaturated models
(Johnson-Cook, Swift, Ludwigson, and Hollmon) utilize a certain exponent to predict the
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flow stress with strain hardening. The flow stress calculated by the models was greatly less
than the measurement before the peak point. Due to the identical hardening exponent in the
models, flow stress in the middle and late stages of compression will be exaggerated. [39].
However, for the saturation models (Voce model), it can better fit the different hardening
rates at different states with variable exponents, and it can also better predict the saturated
flow stress at stable states. For solid solution-state 7050 alloy during warm compression,
the flow stress has a saturated value after the hardening stage, and the voice-type model is
best for prediction.
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3.2.1. Voce-Type with Softening Coefficient

The original Voce model ignores the softening in high strain and the effects of temper-
ature and strain rate on flow stress. To improve accuracy, a Voce-type with a hardening
and softening coefficient is employed to describe the deformation behaviors with saturated
flow stress at room and medium temperatures as follows [40,41]:{

σ = k
.
ε

m0+m1T

k = (1− kSof)kHar
(8)

{
kHar = K(ε+ ε0)n exp(βT )

KSof = 1− exp(−(r0 + r1T)ε)
(9)

where σ is the flow stress (unit: MPa), T is the absolute temperature (unit: K), kHar is the
strain strengthening index, and KSof stands for the softening index. Besides, β, m0, m1, r0,
and r1 are dimensionless material constants.

Both sides of Equations (8) and (9) are taken as the natural logarithm and changed to
Equation (10);

lnσ = lnk + nln(ε+ ε0) +
β

T
− (r0 + r1)ε+ (m0 + m1T)ln

.
ε (10)
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All the material constants in the Voce model can be determined from the corrected
strain-stress curves. At a given temperature and strain, hardening and softening coefficients
are fixed. Therefore, Equation (8) can be simplified as follows:

lnσ = (m0 + m1T) ln
.
ε+ k2 (11)

Therefore, m0 + m1T is the slope of lnσ-lnέ plot shown in Figure 8a. Then, the slopes
in different conditions are shown in Figure 8b. The m0-value can be determined from the
slope of plots, and the m1-value is obtained from the plots’ intercept in Figure 8b.
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(d) r0 + r1T-T.

At a given temperature, r0+r1T is a constant and is set to k3. lnk + nln (ε + ε0) + (m0 + m1T)
lnε is also a constant at a certain temperature and the strain rate and should be set to K4.
Equation (11) is changed to Equation (12);

lnσ = nln(ε+ ε0)− k3ε+ k4 (12)

Figure 8c shows the relation between lnσ and ε, and Equation (12) is employed to
characterize the relationship. The fitting result reveals the value of the material constants in
different conditions. Besides, k3-T plots are shown in Figure 8d. The slopes and intercepts
of the plots were calculated to determine the r0-value and r1-value in the model. Similarly,
the constants K and β can be obtained from the k4-T plots. All the material constants in the
voce-type model are obtained, and the constitutive model is shown as follows:

σ = 533.0765
(
(ε− 0.02593)0.2842

)
× EXP

(
142.13587

T

)
× EXP(−(0.43411 + 0.000162213T)ε)

.
ε

0.00683+0.0000183178T (13)
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3.2.2. Modified Voce-Type Model with Variable Parameters

The material parameters in the conventional voce-type model are invariable. However,
they are influenced by temperature and other conditions in the warm deformation due to
microstructure evolution, which decreases simulation accuracy. The modification to the
constitutive model is that the wave of material parameters can be corrected. The modified
constitutive model with variable material parameters includes two parts: the Voce constant
prediction and parameter wave correction. The prediction of the Voce constant (FVoce) is
based on the traditional model in Equations (8) and (9). Then, a corrected function Kc is set
as a compensation for the parameter wave in warm deformation. Therefore, Equation (8)
can be rewritten as follows:

σ = Kc FVoce

FVoce = (ε+ ε0)
n exp(βT ) exp(−(r0 + r1T)ε)

.
ε
(m0+m1T)

Kc = kTKεK .
ε

(14)

where σ is the flow stress (unit: MPa), T is the absolute temperature, and m0, m1, r0, r1,
ε0 are dimensionless material constants. kT, Kε and Kε are the compensation coefficients
that can be used to describe the effects of temperature, strain, and strain rate on flow
stress respectively.

In the isothermal compression process, the deformation heat raises the alloy’s tem-
perature and affects the deformation behavior [42,43]. Therefore, the coupling effect of
strain and deformation temperature on material parameter evolution must be considered.
Meanwhile, the flow stress of 7050 alloy at warm temperatures is not sensitive to the
strain rate due to the balance between work hardening and deformation thermal softening.
The interaction between strain rate and deformation temperature and material parame-
ter evolution could be neglected, and the compensation coefficients Kc can be described
as follows:

Kc = kT,εK .
ε (15)

where kT,ε means interaction effect of strain and deformation temperature with compensa-
tion coefficients.

The aim is to fit the function between deformation conditions and compensation
coefficients. The compensation coefficients in different conditions are calculated and shown
in Figure 9. It could be seen that the compensation coefficients and strain rate are positively
correlated. The parameters n and –(r0+r1T) in the FVoce part are constant, but they are
positively correlated with the strain rate by calculation. When the strain rate is increased,
the value of the FVoce part increases more slowly than the truth, resulting in a larger error
at a higher strain rate. Moreover, as shown in Figure 9, the strain rate increases by 10 times,
k increases by a certain multiple, which means the value of K .

ε and logarithm of strain
rate show an approximately linear relationship, and the K .

ε-value can be predicted by
a logarithmic function. Meanwhile, a polynomial approach as follows was applied for
describing the interaction among kT,ε, strain, and temperature [44]:

kT,ε =
(

A0 + A1T + A2T2 + . . . + AnTn
) (

B0 + B1ε+ B2ε
2 + . . . + Bnε

n
)

(16)

where n is the polynomial order. Fitting the functions in different orders used the correlation
coefficient (R) [45] (shown in Equation (13)) to evaluate the fitting precision, and the results
are shown in Table 2.

R =
∑N

i=1(pEi − pE)√
∑N

i=1(pEi − pE)
2

∑N
i=1(∑

N
i=1(pPi − pP)

2
(17)

where pEi stands for the true value of Kc, pPi is the calculation by a polynomial function,
pE and pP stand for the mean-value of the true value and calculated value, respectively.
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Table 2. The correlation coefficient in different orders.

Polynomial Order 2 3 4 5

R 0.97787 0.99201 0.995424 0.99999

The correlation coefficients in the second to fifth orders are all above 0.95. To avoid
the error of overfitting, a second-order polynomial function may be best for describing the
interaction during the medium temperature range. The second-order polynomial function
is shown in Figure 10b. Ultimately, the modified Voce-type constitutive model for 7050 alloy
in medium-temperature compression is mathematically described below.

σ = Kc FVoce MPa
FVoce = (ε− 0.02593)0.211942 exp

(
142.13587

T

)
exp(−(0.43411 + 0.000162213)ε)

.
ε
(0.00683+0.0000183178T)

KC =

(
0.0275ln

.
ε+ 1.0629)(−0.01252ε2 + 0.01189ε− 0.02068

)(
0.4515T2 − 321.3442T + 23582.594

) (18)
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3.3. Constitutive Model Evaluation and Application

A good constitutive model cannot only fit the modeling data used but also accurately
calculate all the flow stresses during the actual compressive process. Therefore, the data
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used for the model establishment and the load of thermal compression were calculated
and compared. The comparison between the predicted stresses by the conventional and
corrected Voce models and the experimental values is shown in Figure 11a,b. The compari-
son indicates that the predicted stresses by the conventional Voce model have remarkable
deviations from the measurements. However, the calculations by the modified model are
well matched to the measured ones.
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To compare the accuracy of the two models further, two statistical indexes, the cor-
relation coefficient (R) and the average absolute relative error (AARE), were used as the
evaluation criteria in this research [33]. The two indexes are expressed as follows:

R = ∑N
i=1(σEi−σE)√

∑N
i=1(σEi−σE)

2
∑N

i=1(∑
N
i=1(σPi−σP)

2

AARE = 1
N

N
∑

i=1

∣∣∣σEi−σpi
σE

∣∣∣× 100%
(19)

where σEi stands for the measurement, σPi is the calculation by the constitutive model,
and σE and σP stand for the mean value of the flow stress obtained by experiment and
calculation, respectively.

Figure 11c,d show the comparison results for the two models. The R-value of the
conventional Voce model and the AARE-value of the conventional Voce model are 0.9902
and 10.10%, respectively, while they are 0.9988 and 3.26%, respectively, for the modified
model. Hence, the modified Voce model has better fitting ability than the convention for
experimental data in a wide range.

The characterization of the flow behaviors of the 7050 aluminum alloy in its solid
solution state contributes significantly to its warm forge process design. The final purpose
of the modified Voce-type constitutive model is for better practical load prediction. In order
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to verify the prediction abilities of the practical loads of the modified model, the whole
warm compression process was calculated and compared. The accuracy of flow stress
correction and prediction for non-data points can also be evaluated by the FE simulation.
The calculation was done on the Deform-2D 11.0 platform (Scientific Forming Technologies
Corporation, Raleigh, North Carolina, USA). Here, we enrich the stress-strain data of the
alloy utilizing the modified model. Then we simulated two compression processes at 333 K
at different strain rates. The simulation model is shown in Figure 12. Only a representative
plane was used for cylindrical compression. The size of the specimens is Φ8 mm × 12 mm.
The aluminum specimen was assumed to be rigid viscoplastic and meshed with about
32,000 tetrahedral elements. The grid size was calculated by the simulation software from
the curvature of the initial geometry. The deformation solver uses a conjugate gradient
solver. It uses an iterative method to gradually approximate the optimal value. The parts
were re-meshed between every 5 computational steps to avoid simulation errors since the
mesh geometry changes significantly during compression. The heat transfer between the
specimen and the air was neglected, and interface friction was characterized using the
shear friction law with a friction factor of 0.2. Speed of top anvil and the strain rate of
specimen can be converted as Equation (14) [46]:

VT =
HB −HA

εT/
.
ε

(20)

where HB is the height of the specimen before compression, and in this simulation, HB is 12.
HA is the height after compression, namely 6 mm. εT is the true strain after compression,
and it is approximately 0.69. έ is the strain rate of the specimen.
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The simulation results are shown in Figure 13a,b. Due to friction and heterogeneous
deformation, the periphery of the specimen became typical drum-type. At the end of this
compression, the inner region indicates a true strain of 0.69, and the true strain rates are
about 0.1 s−1 and 0.01 s−1, respectively, manifesting the simulated physical quantities
having good agreement with the compression conditions. The upsetting loads, along with
the top die stroke, were calculated and compared. The load trend is basically consistent
with the experimental result. According to Equation (13), the AARE of the two is 5.71% and
4.61%, respectively. Consequently, it shows the positive accuracy of the friction correction,
and the modified Voce model can be effectively applied in the FEM for stress calculation
and load prediction during warm forming of the solid solution-state 7050 aluminum alloy.
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4. Conclusions

In this study, the room and warm compression behaviors of the solid solution-state
7050 alloy were researched. Furthermore, a modified Voce-type constitutive model with
variable parameters was built to enhance the prediction precision of the warm compression
behavior of solid solution-state 7050 alloy. Meanwhile, the prediction accuracy of the
modified Voce is evaluated in two ways. The following conclusions could be obtained:

(1) The Voce-type model has better precision of warm compression behavior for solid
solution-state 7050 alloy than the unsaturated models;

(2) The prediction accuracy of the conventional Voce model with softening coefficient on
solid solution-state alloys during the warm compression process is not very high. In
the conventional Voce model, the material parameters are regarded as independent of
the deformation parameters. However, the parameters are variable due to microstruc-
ture deformation mechanism evolution, which decreases simulation accuracy;

(3) The modified model has good predictability for warm compression behavior for solid
solution-state 7050 alloy. The fitting and FEA results indicate the validity of a modified
Voce-type constitutive model with variable parameters and friction correction in the
warm compression process. The modified Voce-type constitutive model can be applied
to the warm forge process design of the 7050 alloy in its solid solution state.
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