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Abstract: The effect of a high magnetic field up to 12 T and a high hydrostatic pressure up to
12 kbar on the stability of the metamagnetic isostructural phase transition and the multicaloric effect
of Fe49Rh51 alloy has been studied. The phase transition temperature shifts under the magnetic field
and the hydrostatic pressure on with the rates of dTm/µ0dH = −9.2 K/T and dTm/dP = 3.4 K/kbar,
respectively. The magnetocaloric and multicaloric (under two external fields) effects were studied
via indirect method using Maxwell relations. The maximum of the entropy change is increasing
toward the high temperature region from ∆S~2.5 J/(kg K) at 305 K to ∆S~2.7 J/(kg K) at 344 K under
simultaneously applied magnetic field of 0.97 T and hydrostatic pressure of 12 kbar. The obtained
results were explained using the first-principle calculations of Gibbs energies and the phonon spectra
of the ferromagnetic and the antiferromagnetic phases. Taking into account the low concentration of
antisite defects in the calculation cells allows us to reproduce the experimental dTm/dP coefficient.

Keywords: FeRh alloys; metamagnetic phase transition; magnetocaloric effect; multicaloric effect;
high pressure; high magnetic fields; ab initio calculations

1. Introduction

The FeRh alloys with the near-equiatomic composition are characterized by a CsCl-
type crystal structure with a first-order magnetic phase transition from the antiferromag-
netic (AFM) state to the ferromagnetic (FM) at the same average temperature Tm, which
depends strongly on the chemical composition [1–3]. These alloys exhibit significant
changes in the magnetization and lattice parameter without the change in the crystal
symmetry in the vicinity of the Tm [4], which can be called the magnetovolume effect at
the metamagnetic isostructural phase transition (MIPT). The FeRh alloys are convenient
model objects for studying the nature of the MIPT, due to their simple crystal structure
and the bright effects observed near Tm. There are several methods to control the MIPT
temperature in FeRh alloys such as a magnetic field [5], a hydrostatic pressure [6], an
electric field-induced strain [7–9], a heat treatment [10,11], a chemical substitution [12], and
an ion irradiation [13]. The first studies of the temperature dependences of magnetiza-
tion, Young’s modulus, and the crystal lattice parameter were carried out via dilatometric
method on the equiatomic alloy Fe50Rh50 [2], and the rates of MIPT temperature shift
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dTm/dP and dTm/µ0dH in the hydrostatic pressure p and the magnetic field µ0H were esti-
mated. The FeRh alloys exhibit high magnetization saturation up to 130 Am2/kg in the
FM phase [14], and the MIPT is accompanied by a strong anomaly of the specific heat
capacity [15] and an isotropic volume increase of ~1% [2]. The magnetostriction of the
Fe50Rh50 alloy was firstly measured in the temperature range 290–400 K in magnetic fields
up to 15 T [16]. The published phase diagrams for near-equatomic FeRh alloys as a function
of a magnetic field and a pressure present the collected data of the theoretical calculations
and the experimental results obtained from the samples with different compositions and
fabrication protocols [17–19]. For example, the P–T and the µ0H–T diagrams obtained from
experimental data for Fe49Rh51 alloy are limited by the hydrostatic pressure of 5 kbar [19]
and the magnetic fields of 6 T [20].

The FeRh alloys have a number of unique functional properties in the external mag-
netic and mechanical fields known as “giant” caloric and multicaloric effects [17,19–23] due
to the phenomena near Tm described above. The large magnetocaloric effect (MCE) [21], the
elastocaloric effect [22] and the barocaloric effect (BCE) [20] were observed in FeRh alloys
near the MIPT temperatures. For the first time, the MCE in the Fe48Rh52 alloy was reported
in [24], where the dependence of the critical magnetic field on the MIPT temperature was
established and the observed inverse MCE (the decreasing of the sample temperature
under increasing of the external magnetic field) was described as a negative factor for
constructing the critical magnetic field diagram. The near-equiatomic FeRh alloys were
proposed as promising materials for the magnetic cooling at the room temperatures due
to record values of MCE, where the values of the adiabatic temperature changes were
as follows: ∆Tad = −12.9 K at µ0∆H = 1.95 T in the Fe49Rh51 [21,25]; ∆Tad = −20.2 K at
µ0∆H = 8 T in the Fe48Rh52 [26]. In addition, the MCE was studied via the direct method
in pulsed fields µ0∆H = 50 T in the Fe49Rh51 alloy [27]. The BCE in Fe49Rh51 alloys was
studied under hydrostatic pressure up to 2.5 kbar [20,28]. The effect of the magnetic field
and the hydrostatic pressure on the MIPT trough the electrical resistance measurements
were demonstrated in (Fe1−xNix)49Rh51 alloys at the hydrostatic pressure up to 13 kbar [29],
as well as in the Fe48Rh52 alloy at the applied magnetic field up to 8 T [30].

One of the promising approaches of the solid-state cooling based on the caloric effects
is the multicaloric approach, which is based on the combination of the different external
fields (magnetic, mechanical, electric) [31,32]. The multicaloric approach based on the
combination of the MCE and the BCE under the external magnetic field up to 5 T and
the hydrostatic pressure up to 5 kbar was experimentally used for the Fe49Rh51 alloy [19].
Moreover, the uniaxial mechanical force can be used to improve the efficiency of systems
operating on MCEs in magnetic materials with the first-order phase transitions [23,33]. The
uniaxial compression in combination with the magnetic field can be used to control hys-
teresis effects that negatively contribute to the efficiency of magnetic cooling systems [34].

The present work is aimed to investigate the two interrelated phenomena in FeRh
alloys within the framework of a single study: (1) the effect of the combination of the
magnetic field and the hydrostatic pressure on the temperature of the phase transition;
and (2) the measurements of the multicaloric effect in magnetic field combined with the
hydrostatical pressure. The FeRh samples with the same Fe49Rh51 composition but with
two different heat treatment protocols were used as an object. The ab initio approach,
which includes the total energy and the phonons calculations, was employed in order to
describe the experimental P–T diagram.

2. Materials and Methods

The ingot of Fe49Rh51 alloy was obtained via induction melting in an argon atmosphere.
The samples in shape of the disks with a diameter of 5 mm and thickness of 1 mm were cut
out of the ingot. The samples were annealed in the pre-pumped quartz ampoules (~1 Pa)
at a temperature of 1273 K. The first series of Fe49Rh51 samples was annealed for 72 h
and quenched in ice water following this—the FR72h samples—and the second series was
annealed for 48 h and cooled in the furnace—the FR48h samples. The structure and the
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elemental composition of the samples were confirmed via energy dispersion spectroscopy
(EDS) and X-ray diffraction analysis (XRD) and presented in earlier work [35]. The MIPT
temperatures of FR72h and FR48h samples were determined using two different methods:
(1) the differential scanning calorimetry (DSC) on the calorimeter Netzsch DSC 204F1
Phoenix in zero magnetic field; and (2) the temperature magnetometry on the vibration
magnetometer Versa Lab Quantum Design in a low magnetic field of 1 mT. The rate of the
temperature change in these experiments was 10 K/min.

The magnetic field dependences of the magnetization of FR72h sample at the different
temperatures in vicinity of the MIPT (300–328 K) were measured using the vibration
magnetometer Quantum Design PPMS-14T in the magnetic field up to 8 T. The temperature
dependences of the electrical resistance of FR72h sample at the different magnetic fields
(0–12 T) were measured using the four-point method on Quantum Design PPMS-14T with
the insert for the transport properties measurements. The experiments for studies of the
multicaloric effects near the MIPT of FR48h sample at simultaneously applied magnetic
field (0.155 T or 0.97 T) and hydrostatic pressure (up to 12 kbar) were carried out using
the Domenicali-type pendulum magnetometer [36]. The mass of the FR48h sample was
approximately 12.5 mg. The non-magnetic high-pressure cells with the sample were
mounted at the end of the pendulum. This cell was made of the beryllium bronze, and pure
indium (In) was used as the pressure transmitting medium. The pressure in the cell was
determined based on the calibration of this system on chromium telluride (CrTe), which has
the well-known phase transition temperatures shift on the applied pressure of −6 K/kbar.
The MCE and the multicaloric effect were estimated via indirect method with the help of
the well-known Maxwell relations.

The theoretical study of the ground-state properties of FeRh alloy was conducted
using the density functional theory (DFT) calculations within the projector augmented
wave method (PAW) method as implemented in the VASP package [37,38]. To describe
the exchange correlation effects, both the generalized-gradient approximation (GGA) in
the form of Perdew–Burke–Ernzerhof (PBE) [39] and the recently developed strongly con-
strained and appropriately normed (SCAN) meta-GGA [40] were used for the exchange
correlation functional. The PAW potentials were selected with the following set of valence
electrons: 3p63d74s1 for Fe and 4p64d85s1 for Rh. The plane wave cut-off parameter was
taken as 700 eV and the Brillouin zone sampling is confined to 8 × 8 × 8 k-mesh generated
by the Monkhorst-Pack scheme. The 16-atom cubic supercell with the space group Fm-3m
and FM, AFM orders of Fe atoms was taken into account in the geometry optimization
calculations. The zero temperature phonon spectrum calculations was performed in the har-
monic approximation considering the small displacement method (0.01 Å) as implemented
in the Phonopy package [41]. The 2 × 2 × 2 (32 atoms) supercell with four basis atoms
in a fcc unit cell for AFM phase and 3 × 3 × 3 (54 atoms) supercell with two basis atoms
in a bcc unit cell for FM phase were chosen. In order to investigate the thermodynamic
properties of the FeRh under temperature and pressure, the quasi-harmonic Debye model
implemented in the GIBBS code [42,43] was applied.

3. Results and Discussion
3.1. Experimental Studies

The DSC thermograms at the heating and cooling protocols for FR72h and FR48h
samples are shown in Figure 1 (left axes). The temperatures of the start (AFS and FS) and
the finish (AFF and FF) of the MIPT for the FR72h sample were determined from the DSC
curves (Figure 1a) as AFS = 317 K, AFF = 308 K at cooling (from FM to AFM state) and
FS = 321 K, FF = 330 K at heating (from AFM to FM state). The latent heat of the MIPT for
FR72h sample was calculated as the area under the DSC peaks: λC = 4300 J/kg at cooling,
and λH = 4400 J/kg at heating (Figure 1a). The corresponding MIPT temperatures for the
FR48h sample were determined to be AFS = 316 K, AFF = 295 K at cooling and FS = 306 K,
FF = 328 K at heating (Figure 1b). The latent heat of the MIPT for FR48h sample was as
follows: λC = 4300 J/kg at cooling, and λH = 3600 J/kg at heating (Figure 1b).
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Figure 1. DSC thermograms in zero magnetic field (left axis) and temperature dependences of the 
magnetization in low magnetic field of 1 mT (right axis) for (a) FR72h and (b) FR48h samples of 
Fe49Rh51 alloy. 
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Figure 1. DSC thermograms in zero magnetic field (left axis) and temperature dependences of the
magnetization in low magnetic field of 1 mT (right axis) for (a) FR72h and (b) FR48h samples of
Fe49Rh51 alloy.

The temperature dependences of the magnetization for FR72h and FR48h samples
at heating and cooling in low magnetic field of 1 mT are shown in Figure 1 (right axes).
These curves show the temperature hysteresis of the first order MIPT between two phases
of Fe49Rh51: AFM at lower temperatures and FM at higher temperatures. The MIPT
temperatures obtained from the DSC analysis are consistent with the temperatures from
magnetometry data with an accuracy of 1 K (Figure 1a,b). In general, the differences in the
heat treatment of the FR72h and FR48h samples greatly affected on AFF and FS temperatures
(lower in FR48h).

Figure 2a demonstrates the magnetic field dependences of the magnetization M(µ0H)
for FR72h sample at different temperatures from the range 300–328 K in magnetic field of
8 T. The magnetic field-induced MIPT is observed in Figure 2a, similar to that were observed
in Fe48Rh52 alloy in [44]. The magnetization hysteresis at the lowest temperature (300 K,
the black curve in Figure 2a) is wide because the sample initially is completely in the
AFM phase (lower than AFF = 308 K). The magnetization hysteresis at highest temperature
(328 K, the yellow curve in Figure 2a) is narrow because, initially, the sample is close to
complete transition to the FM phase (FF = 330 K).
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Figure 2. (a) Magnetization isotherms for FR72h sample of Fe49Rh51 alloy at different temperatures 
in the 300–328 К range in magnetic field of 8 T. (b) Temperature dependences of the electrical resis-
tivity for FR72h sample of Fe49Rh51 alloy at heating and cooling at different magnetic fields in the 0–
12 T range. 

Figure 3 demonstrates the temperature dependences of the magnetization of the 
FR48h sample at applied hydrostatic pressure from 0 to 12 kbar in magnetic fields of 0.155 
T (Figure 3a) and 0.97 T (Figure 3b). The temperature hysteresis of the MIPT in the Fe49Rh51 
alloy shifts to the higher temperatures region with the increase in hydrostatic pressure, 
and there is a certain narrowing of the temperature hysteresis at the same time. This is 
explained by the strong magneto-elastic coupling between the magnetic and structural 
subsystems in the solid. The external hydrostatic pressure compresses the crystal lattice 
and thus blocks the origination of the high-temperature FM phase with the larger unit cell 
volume. However, studies in such a range of magnetic fields and pressures for FeRh alloys 
are not known in the literature, and this would certainly expand our knowledge about the 
nature of the MIPT of these alloys. 

Figure 2. (a) Magnetization isotherms for FR72h sample of Fe49Rh51 alloy at different temperatures in
the 300–328 K range in magnetic field of 8 T. (b) Temperature dependences of the electrical resistivity for
FR72h sample of Fe49Rh51 alloy at heating and cooling at different magnetic fields in the 0–12 T range.
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Figure 2b demonstrates the temperature dependences of the electrical resistivity for
the FR72h sample at heating and cooling at different magnetic fields up to 12 T. These
measurements show the shifts in the MIPT temperatures under the high magnetic fields.
The temperature hysteresis of the MIPT in Fe49Rh51 alloy according to the measurements
results shifts to the lower temperature region with the increasing in magnetic fields, which
is explained by the presence of the nuclei of the high-temperature FM phase at the low
temperatures. Additionally, as a result, some broadening of the temperature hysteresis is
observed with the increasing of the external magnetic field (Figure 3b), which is in good
agreement with the results obtained for the Fe48Rh52 alloy [30].
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Figure 3. Temperature dependences of the magnetization for FR48h sample of Fe49Rh51 alloy mea-
sured under combined hydrostatic pressure in the 0–12 kbar range and magnetic field of (a) 0.155 T
and (b) 0.97 T.

Figure 3 demonstrates the temperature dependences of the magnetization of the FR48h
sample at applied hydrostatic pressure from 0 to 12 kbar in magnetic fields of 0.155 T
(Figure 3a) and 0.97 T (Figure 3b). The temperature hysteresis of the MIPT in the Fe49Rh51
alloy shifts to the higher temperatures region with the increase in hydrostatic pressure,
and there is a certain narrowing of the temperature hysteresis at the same time. This is
explained by the strong magneto-elastic coupling between the magnetic and structural
subsystems in the solid. The external hydrostatic pressure compresses the crystal lattice
and thus blocks the origination of the high-temperature FM phase with the larger unit cell
volume. However, studies in such a range of magnetic fields and pressures for FeRh alloys
are not known in the literature, and this would certainly expand our knowledge about the
nature of the MIPT of these alloys.
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If both the magnetization and the entropy are continuous functions of the temperature
and the magnetic field, then an infinitesimal change in isobaric-isothermal entropy can
be associated with the magnetization M, the magnetic field strength H and the absolute
temperature T using one of Maxwell’s relations in integral form [45–47]:

∆Smag = µ0

H∫
0

(
∂M
∂T

)
dH (1)

It is possible to calculate the magnetic entropy change ∆S in FR72h sample of Fe49Rh51
alloy connected with the external magnetic field change via Equation (1) using the data of
the isothermal magnetization in Figure 2a. The calculation results for µ0∆H = 1 and 2 T are
shown in Figure 4a, while the maximum value was ∆S = 5.6 J/(kg K) at µ0∆H = 1 T. This
result correlates well with the calculated data from the heat capacity measurement in [48]:
∆S = 5.5 J/(kg K) at µ0∆H = 1 T for Fe49Rh51 alloy.
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Figure 4. (a) Temperature dependences of the magnetic entropy change ∆S for FR72h sample at mag-
netic field changes µ0∆H = 1 T and 2 T, calculated from Figure 2a using Equation (1). (b) Temperature
dependences of ∆S for FR48h sample at µ0∆H = 0.97 T under applied hydrostatic pressure 0 kbar,
6 kbar, 12 kbar at cooling protocol, calculated from Figure 3b using Equation (1).

Additionally, it is possible to calculate the magnetic entropy change ∆S in FR48h
sample of Fe49Rh51 alloy connected with the external magnetic field change via Equation (1)
using the data of the magnetization under different external pressures in Figure 3b. The
calculation results for µ0∆H = 0.97 T at cooling protocol are shown in Figure 4b, while the
maximum obtained value was ∆S = 2.7 J/(kg K) under the external pressure p = 12 kbar.
Thus, there is the difference in ∆S more than 2 times for FR72h and FR48h samples at the
magnetic field changes of 1 T, which is explained by the difference in the heat treatment of
the samples.

The magnetic phase µ0H–T diagram based on the data of the temperature dependence
of the electrical resistance for FR72h sample of Fe49Rh51 alloy in high magnetic fields
was presented in Figure 5. The MIPT temperatures in different magnetic fields up to
12 T from Figure 2b were plotted on phase µ0H–T diagram. It was established that the
magnetic field shifts the MIPT to the region of the lower temperatures with the average
rate dTm/µ0dH = −9.2 K/T. The obtained value generally corresponds with known data in
the literature for the Fe49Rh51 alloy [20]: dTm/µ0dH = −9.6 K/T in magnetic field up to 6 T.

The phase P–T diagram based on the data of the temperature dependence of the
magnetization (at 0.97 T) for FR48h sample of Fe49Rh51 alloy under the high hydrostatic
pressure is presented in Figure 5. The MIPT temperatures in different external hydrostatic
pressures up to 12 kbar from Figure 3b were plotted in the P–T. diagram. The restores
stability of the AFM order and shifts the MIPT to the region of higher temperatures with



Metals 2023, 13, 956 7 of 12

the average rate dTm/dP = 3.4 K/kbar. The obtained value is lower than the data presented
in the literature for the Fe49Rh51 alloy [20]: dTm/dP = 6.4 K/kbar in hydrostatic pressure
up to 2.5 kbar—this discrepancy is explained by the difference in the heat treatment of
the samples.

g

Figure 5. µ0H-T phase diagram for FR72h sample is obtained from Figure 2b and P–T phase diagram
for FR48h sample is obtained from Figure 3b.

3.2. DFT Calculations

Since Fe-based alloys belong to strongly correlated electronic systems, there is an
interest in studying the exchange correlation effects on the ground state properties of the
AFM and FM phases of FeRh compound. Figure 6a displays the total energy difference
as a function of lattice constant with respect to the AFM ground state calculated with
PBE and SCAN. To find an optimized lattice parameter, the energy curves are fitted to
the Birch-Murnaghan equation of state. As can be seen that both functionals predict the
AFM order as energetically favorable. However, for both types of magnetic ordering, the
SCAN lattice parameters (2.981 Å and 2.962 Å for FM and AFM) are found to be slightly
smaller than those of the PBE one (3.003 Å and 2.988 Å for FM and AFM). It is worth noting
that additional electron correlation effects beyond the GGA yield a significantly smaller
energy difference ∆E (by approximately an order of magnitude) in comparison to that of
PBE. Thus, the calculated SCAN value is ∆E = 2.3 meV/atom. In regard to the magnetic
moments, the SCAN slightly overestimates them compared to those for the PBE. This is
a known feature of the SCAN functional due to self-interaction corrections, which can be
measured using the Coulomb energy U [49–53].

Next, let us discuss the phonon spectra for the AFM phase, which are calculated in
the harmonic approximation using the SCAN and PBE functionals. It should be noted that
we omit the results for the FM case here, since they show similar behavior without any
sign of instability, as reported in earlier DFT calculations (e.g., Refs. [54–56]). As evident
from Figure 6b, the PBE calculations demonstrate the phonon instability observed at the X
point that contradicts the experimental data. On the other side, the meta-GGA calculations
lead to the degeneracy of the anomaly of the optical phonon spectrum at the X point,
thereby making the AFM phase dynamically stable at 0 K as in a case of FM phase. In
general, a similar phonon spectra can be observed for both FM and AFM phases. The
calculated Debye temperatures ΘD from the phonon dispersion relations are found to be
approximately 370 K and 394 K for FM and AFM phase, respectively.
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Figure 6. (a) Total energy difference versus the lattice parameter for the FM and AFM phases of FeRh
alloy calculated within PBE and SCAN. The partial magnetic moments at corresponding optimized
lattice parameters are also presented. (b) Phonon dispersion relations for AFM phase of FeRh alloy in
the framework of SCAN and PBE calculations.

We now turn to a discussion of the calculated metamagnetic temperature between
the AFM and FM phases as a function of applied pressure and compare these with the
experimental data shown in Figure 7. To calculate the Gibbs energy for both FM and
AFM phases, we consider only a lattice contribution through the quasi-harmonic Debye
model [42,43], which allows us to calculate thermodynamic properties as a function of tem-
perature and pressure from the DFT energy-volume E(V) points and Debye temperatures
taken from the phonon spectra calculations. It should be noted that the free-energy curves
for FM and AFM phases calculated within the PBE E(V) data do not intersect due to a
large energy difference between the two phases that is in agreement with earlier theoretical
works [54,56]. However, the consideration of SCAN E(V) curves in combination with ΘD
as input in the Gibbs energy calculations predict well the transition temperature Tm~310 K
under ambient pressure, which is in good agreement with the experiment. This is mainly
due to the smallest difference in the total energies of FM and AFM phases. However, an
application of hydrostatic pressure up to 12 kbar leads to a sufficient increase in Tm up to
550 K, which contradicts the experimental data. The theoretical rate of change in Tm with
pressure is dTm/dP~20 K/kbar, while the experiment gives ~3.4 K/kbar. It should be noted
a similar effect of pressure has been observed in earlier theoretical calculations [17,18].

In order to resolve this contradiction, we considered the antisite defects in a high-
temperature FM phase, which can occur in an ordered alloy when atoms of different types
exchange their positions. For the investigation of point defects, we considered a periodically
repeated supercell with 32, 64, 128, and 256 atoms, in which only one antisite pair (Fe–Rh)
is embedded. Obviously, the larger the supercell, the lower the concentration of the antisite
defect. As an example, the FM composition (Fe15Rh1)–(Rh15Fe1) formed on a 32-atom
defect supercell has the antisite defect fraction of 1/16. We denote this defect composition
as FeRh@6.25%. In accordance with our calculations, there is no metamagnetic transition for
this composition due to a large energy difference between both phases ∆E ≈ 47 meV/atom,
whereas it takes place for compositions with a smaller defect concentration. As is evident
from the P–T diagram, the transition temperature is only slightly affected by an applied
pressure for FeRh@3.125% (the defect supercell with 64 atoms, ∆E ≈ 23 meV/atom).
However, the further reduction in defect fraction in the FM phase by half reveals a good
agreement between the theory and the experiment for FeRh@1.56% (the defect supercell
with 128 atoms, ∆E ≈ 16 meV/atom). We would like to note that the subsequent change in
the defect concentration results in an increase in the dTm/dP slope, which becomes close to
the case of pure AFM and FM phases, as exemplified by FeRh@0.78% (the defect supercell
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with 256 atoms, ∆E ≈ 3.7 meV/atom). We are reminded that ∆E for compound with a pure
FM and AFM phase is calculated to be 2.3 meV/atom, as shown in Figure 6a. Thus, we can
conclude that the theoretical slope of dTm/dP strongly depends on the defect concentration
due to a change in ∆E and ΘD between a pure AFM phase and a defect FM one.
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Figure 7. Theoretical and experimental Tm–P phase diagram for FeRh alloys. Theoretical Tm(P) curves
are calculated assuming pure AF and FM phases (label “FeRh@0.0%”) and the FM phase with one
antisite pair embedded in the 64- and 128-atom supercell (labels “FeRh@3.125%” and “FeRh@1.56%”,
respectively). The experimental curve Tm(P) is obtained by averaging over the FF, FS, AFS, and AFF

temperatures shown in Figure 5.

4. Conclusions

The effects of the high hydrostatic pressure up to 12 kbar and the high magnetic field
up to 12 T on the stability of the MIPT in Fe49Rh51 alloy samples were studied. As expected,
the strategy of the combination of the external fields leads to opposite contributions: the
magnetic field expands the FM region and shifts the MIPT to the lower temperatures with
the rate dTm/µ0dH = −9.2 K/T, and the hydrostatic pressure restores the stability of the AFM
order and shifts the MIPT to the higher temperatures with the rate dTm/dP = 3.4 K/kbar.
The study of the multicaloric effect demonstrates that the hydrostatic pressure can be used
for the tuning of the maximum of the magnetic entropy change, which has prospective
applications for the upgrading of the magnetic cooling systems. The obtained experimental
P–T diagram is explained by using the DFT calculations within the exchange correla-
tion effects beyond the well-known GGA. The experimental dTm/dP slope is reproduced
theoretically when the antisite defects were considered in the computational supercell.
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