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Abstract: W-Si-C composites with high relative densities and good mechanical and wear properties
were successfully prepared by spark plasma sintering. The influence of SiC content on the relative
density, microstructure, mechanical properties and wear characteristics was investigated. The results
indicated that the reaction between SiC and W at their interface produced W2C and W5Si3. SiC
also reacted with oxygen impurities at the W grain boundary to form SiO2. The purification of
the grain boundaries of W was carried out by SiO2 synthesis. Reactive sintering reduces the free
energy of the system and facilitates the densification process of W-Si-C composites. This results in
a significant increase in the relative density of W-Si-C composites, which reaches a maximum of
98.12%, higher than the 94.32% of pure tungsten. The hardness significantly increases from 4.33 GPa
to 8.40 GPa when the SiC content is 2 wt% compared to pure tungsten due to the generation of
the hard ceramic phase and the increase in relative density. The wear resistance of the W-Si-C
composites was significantly improved with little SiC addition. The wear rate significantly decreased
from 313.27 × 10−3 mm3/N·m of pure tungsten to 5.71 × 10−3 mm3/N·m of W-0.5 wt% SiC. SEM
analyses revealed that the dominant wear mechanism of pure tungsten was attributed to fatigue
wear, while that of W-Si-C composites was due to abrasive wear.

Keywords: W-Si-C composites; spark plasma sintering; interface reaction; mechanical properties;
wear characteristics

1. Introduction

Tungsten(W) and its composites have the advantages of a high melting point [1], high
thermal conductivity [2], low thermal expansion coefficient [3], low vapor pressure [4]
and low tritium retention [5], which give them have important applications in aerospace,
the electronics industry and the nuclear industry, such as for rocket nozzles, electronic
packaging materials in computer chips and plasma-facing materials (PFMs) in fusion reac-
tors [4,6–8]. These are the most common applications for W-based composites. Tungsten
and composite materials are also often used in welding applications. Friction Stir Welding
(FSW) is a popular solid-state joining method because it gets around many of the issues that
fusion welding frequently encounters. The technology has been successfully applied to the
welding of low-melting-point materials such as aluminum alloys. For the welding of hard
alloys such as steel and titanium alloys, stir friction welding tools are subjected to extreme
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stresses and temperatures. Pulsed laser welding is commonly used for welding between
NiTi alloys and stainless steel. However, brittle intermetallic compounds are produced
in the NiTi alloys and stainless steel welding layers by this welding method [9–11]. The
formation of these brittle intermetallic compounds can seriously damage the mechanical
properties of the material [12]. Therefore, it is necessary to study FSW for welding between
hard materials. As a result of its exceptional strength and hardness under extreme tem-
peratures, W-based composites are a potential tool material for the stirring and friction
machining of hard alloys. However, in actual situations, the application of W-based com-
posites is restricted by low temperature brittleness and wear rapidly when used as a tool
material for FSW of hard material [13–15].

There are two main factors of brittleness in tungsten. First, tungsten with a body-
centered cubic structure (BCC) has a very high Peierls stress result when the dislocation core
of tungsten diffuses into the slip system [16,17]. Tungsten’s brittleness at room temperature
is mainly caused by this reason. Second, the low-temperature brittleness of W is mainly
due to interstitial impurity elements such as O, N and P (especially O) along the grain
boundaries distribution [18]. To alleviate these problems, the addition of metals [19] and
uniformly dispersed nanoparticles significantly improves the mechanical properties of W-
based composites [20]. The addition of the rare metal rhenium (Re) significantly improves
the ductility of W-Re alloys. The reduction of the tough–brittle transition temperature
(DBTT) of W-Re alloys can happen by influencing the Peierls stress for the motion of the
dislocations. It has been reported that the addition of carbides such as ZrC [21], HfC [22]
and SiC [23] can absorb the impurity O elements at the W grain boundaries to form
oxide particles, eliminating the influence of impurity oxygen and improving the grain
boundary bonding.

FSW of hard alloys places high demands on tool materials, such as adequate strength,
toughness at welding temperatures and high wear resistance. The microstructure and
mechanical properties of the tool material influence the wear performance of FSW tools.
Polycrystalline cubic boron nitride (PCBN) and WC-Co tool materials are currently used
due to their high hardness and strength at high temperatures. It has been reported that FSW
of steels using PCBN involves boron and nitrogen diffusion, which could result in pitting
corrosion of the steel [24]. Wang et al. showed that the WC-Co stirrer head is susceptible to
fracture during the welding process [25]. These limitations make the W-based composites a
suitable candidate for FSW tools materials of hard alloys, such as steel and titanium alloys.
Among the family of tungsten alloys, the W-25 wt% Re alloy is the most popular FSW
tool material of hard alloys. However, the use of Re is costly, so the development of other
W-based materials is therefore necessary.

The addition of uniformly dispersed nanoparticles such as carbides or oxides can sig-
nificantly improve the mechanical properties of W-based composites. Among these carbide
and oxide particles, SiC possesses a range of advantages including high hardness, excellent
high-temperature strength, good oxidation resistance, and excellent wear resistance [23].
The mechanical properties of W-Si-C composites prepared by a melting method were
investigated by Kang et al. [26]. With the addition of 1 wt% SiC, the ultimate compressive
strength was significantly raised from 850 MPa to 1670 MPa, and the highest UCS strain
(21.9%) was three times that of pure W (7.4%). Lee et al. [27] created W-based composites
enhanced with SiC nanowire. There was an increase in the flexural strength of W-Si-C
composites from 706 MPa to 924 MPa. At high temperatures, the ablation resistance was
also improved. Selim et al. [28] prepared W-Si-C composites with high SiC concentrations
by spark plasma sintering. The addition of SiC significantly increased the hardness of the
W-Si-C composites, according to the results. However, the wear characteristics have not
been investigated in detail. It has been reported that the introduction of ceramic phases can
improve the hardness and wear resistance of metallic materials [29].

Due to W-based composites having a high melting point, the powder metallurgy
method is usually used to prepare them. However, high sintering temperatures and
prolonged holding times are typically needed for the traditional powder process to sinter
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W, which results in significant grain growth. In order to decrease the sintering temperature
and duration, a more efficient sintering process is used to solidify the W-based composites.
In recent years, spark plasma sintering has come forward as a new sintering method.
Pulsed direct current and vertical pressure can densify sintered powder more quickly than
traditional sintering methods, while also accelerating heating rate and reducing sintering
temperature. Grain coarsening is significantly suppressed. Additionally, this has been
widely used in the sintering of various materials.

In this study, spark plasma sintering was used to prepare the W-Si-C composites that
were doped with various SiC contents. A thorough analysis of the W-Si-C composites’
microstructure, mechanical characteristics, and wear characteristics was conducted.

2. Experimental Details
2.1. Powder and Consolidation

Pure commercial W powder (Aladdin, Shanghai, China) and β-SiC powder (Aladdin,
Shanghai, China) were used as the raw powders in this study. The purity of the two raw
powders was both 99.9 wt%. The average diameters of W powder and β-SiC powder were
1 µm and 0.15 µm, respectively. The scanning electron microscopy (SEM) morphologies of
pure tungsten (PW) powder and SiC powder are shown in Figure 1. The mixed powders
(W + 0.5 wt% SiC, W + 1 wt% SiC, W + 2 wt% SiC, abbreviated as WS05, WS1 and WS2,
respectively) were milled at a speed of 300 rpm for 10 h using a planetary ball mill with
a weight ratio of 10:1 for ball to powder, and ethanol was applied for the process control
agent. After mixing, the powders were dried at 80 ◦C in a vacuum oven for 12 h and
then placed into a graphite mold with an inner diameter of 15 mm. The composites were
prepared by sintering via the SPS system (ED-PASIII, ELENIX Ltd., Kanagawa, Japan).
During the sintering, by focusing the optical infrared device on the hole (about 2 mm in
diameter) on the surface of the SPS die, the temperature was detected. The samples were
heated to 600 ◦C within 1 min, then ramped up to 1700 ◦C at a heating rate of 100 ◦C/min
and held at 1700 ◦C for 5 min. Heating and holding stages were at constant mechanical
pressure (50 MPa). The specific experimental process and sintering procedure are shown in
Figures 2 and 3, respectively.
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Figure 1. SEM images of the (a) PW powder and (b) SiC powder. Figure 1. SEM images of the (a) PW powder and (b) SiC powder.

2.2. Microscopic and Phase Analysis

The phase composition of the sintered samples was analyzed by X-ray diffraction
(XRD, X’Pert PRO, PANalytical, Almelo, The Netherlands). Before testing, the specimens
were sandpapered and smoothed to remove the surface layer of impurities, then cleaned
with ultrasonic waves. The test conditions were Cu Kα with a wavelength of 1.5406 Å,
scanning step was 0.02◦, scanning speed was 4◦/min, measurement range (2θ) was between
10◦ to 90◦, operating voltage and current of 40 kV and 40 mA, respectively. The elemental
distribution of the W-Si-C composite was determined by electron probe microanalysis
(EPMA-8050G, Shimadzu, Kyoto, Japan). SEM (FESEM, FEI Quanta FEG250, Thermo
Fisher Scientific, Waltham, MA, USA) with Energy Dispersive X-ray spectrometry was used
to examine the morphology and microstructure of the raw powders and sintered samples.
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2.3. Density Measurements

The sintered sample was subjected to a grinder to strip the carbide from its surface.
The Archimedes method was used to calculate the density of pure W and the W-Si-C
composites. The polished samples were soaked in deionized water for 12 h. The samples
were then weighed for their floating weight (m1) in deionized water and their wet weight
(m2) in air. After measurement, the samples were dried for 24 h in an oven. The oven
temperature was set to 80 ◦C. The samples were then weighed in the air for their dry
weight (m0). To ensure the accuracy of experimental data, each sample was weighed three
times. The measured density (ρ1) and the relative density (ρ2) of the sintered samples were
calculated using Formulas (1) and (2).

ρ1 =
m0ρw

m2 −m1
(1)

ρ2 =
ρ1

ρth
× 100% (2)

where ρw is the density of deionized water and ρth is the theoretical density of the W-Si-C
composites.
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2.4. Micro-Hardness Tests

In this paper, Vickers micro-hardness testers (Wilson Tukon 1202, Buehler, Lake Bluff,
IL, USA) were used to measure the hardness of the pure W and the W-Si-C composites
under a load of 300 gf and a hold time of 15 s. To minimize errors, each sample was
measured in at least 5 different positions and then the average value was taken.

2.5. Wear Characteristics Tests

Dry sliding friction tests were performed using a reciprocating wear tester (MDW-02G,
Jinan Yihua Tribological Testing Technology Co., Ltd., Jinan, China). Figure 4 shows the
friction test. After grinding and polishing, the surfaces of the specimens were rubbed with
a GCr15 ball of Φ2 mm. Additionally, the specimens were rubbed with a loading force of
80 N for 60 min. The one-way sliding distance was 5 mm, and the frequency was 3 Hz.
All tests were performed at room temperature. The volume wear rate kv was calculated
as follows:

kv =
V

P·S (3)

where V is the wear volume in mm3, S is the sliding distance in m, and F is the applied
load in N. The surfaces’ morphologies of W-Si-C composites after wear were observed with
FE-SEM, and the wear mechanism of the material was determined from the morphological
characteristics of the worn surface. The width and depth of wear cracks was established
using a three-dimensional profilometer (ST400, NANOVEA, California, CA, USA).
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3. Results and Discussion
3.1. Microstructure and Phase Composition of W-Si-C Composites

Figure 5 displays the XRD patterns of pure W and W-Si-C composites. Compared to
the XRD pattern of the pure W, the W2C phase and W5Si3 phase were detected on XRD
patterns of the WS1 and the WS2, and only W was detected in the WS05. The intensities of
the W peaks of the WS2 were reduced, while that of W5Si3 increased compared to the other
samples. The reaction of W and SiC to form W2C and W5Si3 led to a reduction in the W
amount, which may account for the reduction in the W peaks.

Surface BSE-SEM images of pure W and the W-Si-C composites are shown in Figure 6.
There were numerous pores in pure W, and the quantity of pores significantly decreased
with an increase in SiC content in the W-Si-C composites. Black phases (denoted A) and
another grey phase (denoted B) were visible and evenly distributed in the W matrix when
the SiC content reaches 0.5 wt%. The A phase and B phase were also visible as the SiC
content increased further to 1 wt%, and another phase (denoted C) was produced in the
W matrix. The EDS analyses of phase A, phase B and phase C are shown in Figure 7. The
elements of phase A included W, Si, C and O, consisting mainly of the elements Si and O.
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The results show that the atomic ratio of Si:O is about 35.47:55.62. Therefore, it is speculated
that phase A is SiO2 and the speculation is also supported by previous study [23,30]. The
elements of phase B contained W and C, and the contents of W and C were 31.22 At% and
68.78 At%, respectively. The C/W atomic ratio of phase B was about 2.2. Combined with
XRD results, phase B is W2C. Phase C contained mainly the elements W, Si and C, and the
atomic ratio of W:Si:C was about 39.69:14.44:45.87. It is reported that W, Si and C do not
form a ternary compound [31]. The C phase was composed of W2C and W5Si3 combined
with the XRD results and EDS analysis.
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Figure 8 shows the EPMA analysis of the WS2. Figure 8b shows the distribution of W
element in WS2. Yellow areas are enriched with large amounts of element W. The green
area is enriched to some extent by W, but less than the yellow area. The black area indicates
that there is no element W in this area. The W element is almost everywhere, except at
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minor enrichment zone, and the black area has no enrichment for element C. The C element
is mainly distributed between the tungsten particles. Figure 8e shows the distribution of
O element in WS2. Yellow and green areas are the main enrichment areas for element O.
Black areas are not enriched for element O. The O element is mainly found in the black
particles in Figure 8a. In combination with Figure 8b–d, the area between the W particles
is enriched in W element, Si element and C element. Therefore, the phase in this region
is W2C and W5Si3. W2C with a larger particle size was also generated between the W
particles. Combining Figure 8c,e, the black particles in Figure 8a are enriched in elements
Si and O, the black particles can be further identified as SiO2, and the SiO2 particles also
become coarse. SiO2 was not detected on XRD patterns of W-Si-C composites due to the
lower SiO2 production. Similarly, W2C was not detected in WS05 for the same reason.
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The following are the main reactions of W-Si-C composites that are determined to
occur during SPS:

SiC + 8/3W → 1/3W5Si3 + WC (4)

WC + W →W2C (5)

SiC + O2 → SiO2 + C (6)

C + 2W →W2C (7)

To make the phase formation process clear, Table 1 shows the variation of Gibbs free
energy of Reactions (4)–(7) with temperatures, which were calculated by the HSC chemistry
database. When the Gibbs free energy is negative (∆G < 0), the reaction can proceed
spontaneously. Reactions (4)–(7) can all proceed spontaneously under the conditions of this
experiment. SiC reacts preferentially with oxygen due to its better affinity with oxygen [23].
In WS05, only Reactions (6) and (7) occurred due to the low content of SiC. In WS1 and
WS2, Reactions (4)–(7) all took place.

Table 1. Temperature affects the free energy of Reactions (4) to (7).

Temperature/◦C 500 700 900 1100 1300 1500 1700 1900
Reaction ∆G/kJ·mol−1

SiC + 8/3W→ 1/3W5Si3 + WC −22.97 −25.86 −28.81 −31.80 −34.85 −37.96 −41.13 −44.37
WC + W→W2C 15.69 13.19 9.80 5.67 0.90 −4.43 −10.26 −16.55

SiC + O2 → SiO2 + C −704.94 −671.28 −638.21 −605.64 −573.32 −541.24 −509.36 −478.60
C + 2W→W2C −20.81 −22.78 −25.68 −29.34 −33.65 −38.51 −43.85 −49.64

3.2. Relative Density and Grain Size of W-Si-C Composites

Figure 9 shows the average grain size and relative density of pure W and the W-Si-C
composites. As the SiC content increased, the relative density of the material first increased
and then tended to remain a constant. The relative densities of pure W and WS05 were
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94.32% and 97.08%, respectively. Increasing the SiC content to 1 wt%, the relative density
of the material rose to 97.99%, and the relative density of the W-Si-C composites barely
increased above 1 wt% SiC content. The relative density of WS2 was 98.12%. The W matrix
reacted with SiC, reduced the free energy of the sintering system and promoted the process
of densification [23]. Pure W had an average grain size of 9.10 µm. The average grain size of
WS05 was 8.02 µm. When the SiC content increased to 1 wt%, the average grain size of the
WS1 decreased to 7.69 µm. However, when the SiC content reached 2%, the average grain
size of W particles increased. The microstructure of the WS2 exhibited the characteristics
of liquid phase sintering, which made the average grain size of WS2 larger. The results
demonstrate that SiC can prevent tungsten from growing into larger grains during the
sintering process. W-TiC [32] and W-HfC [22] composites also showed that the grain size of
W can be effectively reduced by a small amount of ceramic particles. Grain refinement can
produce larger grain volume fractions or sub-grain boundaries, which effectively inhibit
dislocation movement, resulting in higher strengths [33].
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3.3. Mechanical Properties

The content of SiC has a large influence on the hardness of the composites. As shown
in Figure 10, the hardness of W-Si-C composites ranges from 4.33 to 8.40 GPa, which is
significantly higher than the hardness of pure W. (3.48 GPa). The grain diameter and
porosity fraction have an important effect on Vickers hardness, as shown by the following
equations [34]:

Hv = H0exp(−bρ) (8)

Hv = H0 + kHd−1/2 (9)

where H0 is the Vickers hardness value corresponding to a specimen with zero porosity. b
is a material dependence constant. kH is the Hall–Petch coefficient, the influence coefficient
of the grain boundary on hardness. ρ represents the porosity fraction, and d represents
the grain diameter. The reduction in grain size and porosity fraction of the material can
lead to an improvement in hardness. It can be also seen that the hardnesses of WS05 and
WS1 are higher than pure W, which is due to the combined effects of reduced grain size
and reduced porosity fraction. WS2 has a larger grain size than WS1 and almost the same
relative density. However, compared to WS1, the hardness of WS2 significantly increased.
The hardness of a material is determined by its phase composition and microstructure, and
the continuous distribution of W5Si3 and a high content of W2C led to the improvement of
the hardness of the WS2.
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3.4. Wear Characteristics

Figure 11 shows the three-dimensional topography of the wear tracks of pure W and
the W-Si-C composites. It can be observed that the size of the wear track profile varies for
pure tungsten as well as for W-Si-C composites with different SiC contents. The wear track
of the pure W had the largest depth. The wear depth of the W-Si-C composites significantly
decreased with a low SiC content. The depth of the wear track did not change significantly
after continuing to increase the SiC content. The comparison of the images in Figure 11
clearly show that the addition of SiC results in a reduction in the wear track depth and a
significant improvement in wear resistance. As previously explained and reported by other
researchers, the improvement in wear resistance can be attributed to the increase in density
and hardness, as well as the reduction in porosity [35].
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Figure 12 shows the specific tribological property of the pure W and the W-Si-C
composites. Figure 12a shows the variation in friction coefficient with sliding time for
pure W and the W-Si-C alloy. The coefficient of friction for pure W ranged between 0.26
and 0.34. The SiC content was raised to 0.5 wt%. The coefficient of friction of material
ranged between 0.20 and 0.26. As the SiC content further increased to 1 wt%, the coefficient
of friction of composites slightly increased, and the WS1 had a coefficient of friction that
ranged between 0.24 and 0.29. The coefficient of friction of the WS2 ranged between 0.22
and 0.29. It has been shown that there was no significant difference in the coefficient of
friction of pure W and W-Si-C composites. It can be seen that the coefficient of friction of
pure W and the W-Si-C composites increased at the beginning of the test and gradually
stabilized over the remainder of the test. At the start of the wear process, the contact
between the friction pair and the samples was mostly point contact, with a small amount
of area contact. As a result, the initial friction coefficient was small. As time passed, the
contact area expanded, resulting in an increase in the friction coefficient. It is also clear that
the friction coefficient was not constant, and fluctuates as shown in Figure 12a.
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The addition of SiC significantly increases wear resistance, as seen in Figure 12b. The wear
rates of the pure W and the WS05 were 313.27× 10−3 mm3/N·m and 5.71× 10−3 mm3/N·m,
respectively. The wear rate barely increased with a further increase in SiC content. This was
consistent with the 3D morphologies analysis of the wear profiles discussed earlier. Under the
same experimental conditions of friction, the pure W showed the deepest wear track depth of
2.50 µm, while the WS05 showed only 0.29 µm, with a substantial decrease in wear track depth.
A further increase in the amount of SiC added continued to reduce the wear track depth, but
the change was not significant, as shown in Figure 12c. Compared to the depth of the abrasion
marks, the width of the abrasion marks changed less. The hardness of the material significantly
affected the wear properties of the material [36]. The hardness of W-Si-C composites increased
as the SiC content increased, as shown in Figure 10. W5Si3 and W2C are both highly abrasion
resistant [37,38]. Wear resistance improvements in the W-Si-C composites were primarily due
to the production of in situ ceramic phases and the improved composite hardness as the SiC
content increased.
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To further analyze the wear mechanism of pure W and W-Si-C composites, SEM
was used to investigate wear surfaces. Figure 13a shows the worn surfaces of pure W; a
large number of peeling pits on the wear surface can be observed. The matrix material
was removed from the surface during the friction and wear process. The severe flaking
phenomenon was also seen in other W-based materials during the friction and wear
process [39]. This is probably due to the weak bond between the tungsten particles and the
eventual separation of the tungsten particles from the substrate under shear stress during
prolonged friction and wear, resulting in the formation of peeling pits. The wear of powder
metallurgy materials is determined by the number of pores in the sample [40]. As can be
seen from Figure 6a, the sintered pure tungsten has high porosity and is not dense, which is
one of the reasons why pure tungsten flakes so badly during the friction and wear process.
The shallow plowing grooves were also formed during the wear process of pure W. The
formation of spalling pits was a typical fatigue wear state. Therefore, fatigue wear is the
main wear mechanism of pure W. Lots of plowing grooves were generated during the
wear process of WS05, WS1 and WS2, as shown in Figure 13b–d. During prolonged wear,
the hard particles eventually break away from the substrate under shear stress, forming
abrasive grains that form grooves on the surface. There was a significant reduction in the
number of spalling pits during the friction and wear process of WS05. The addition of
SiC can absorb the impurity O elements at the W grain boundaries and improve the grain
boundary bonding. WS05 has a higher hardness and relative density than pure tungsten.
Therefore, the wear resistance of WS05 was significantly improved. The abrasive wear
is the main wear mechanism of WS05. As the SiC content increases, a few peeling pits
appear. Numerous instances of microcracking in WS1 and WS2 are shown in Figure 13c1,d1.
During the wear process, this leads to local stress concentration due to the formation of
large SiO2 particles of WS1 and WS2, forming microcracks. The wear mechanism of WS1
and WS2 is abrasive wear and fatigue wear. A diagram of the wear mechanism is shown in
Figure 14.
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4. Conclusions

Spark plasma sintering was used to prepare pure W and W-Si-C composites in this
study. The results show that the addition of SiC had a significant effect on the microstruc-
ture, mechanical properties, and wear properties of W-Si-C composites. The following are
the main conclusions:

(1) The SiC reacted with the W matrix to produce in situ W2C and in situ W5Si3. SiO2 can
also be formed when SiC reacts with free oxygen, improving grain boundary bonding.
The content of in situ ceramic phases increased as SiC content increased. The grain
size of SiO2 increases with the addition of SiC.

(2) Reactive sintering promoted the densification process of W-Si-C composites. The
relative density and micro-hardness of W-Si-C composites increased as SiC content
increased, with maximum values of 98.12% and 8.40 GPa, respectively. The increase
in hardness was due to the increase in the relative density and the reduction in grain
size of W-Si-C composites, and the production of ceramic phases.

(3) The wear resistance of W-Si-C composites was significantly improved with little
SiC addition. Pure W and WS05 have wear rates of 313.27 × 10−3 mm3/N·m and
5.71 × 10−3 mm3/N·m, respectively. The improvement of the wear properties of W-
Si-C composites was due to the increase in hardness, the purification and enhancement
of grain boundaries and the generation of ceramic phases. The wear mechanisms of
pure W and W-Si-C composites were attributed to abrasive wear and fatigue wear.
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