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Abstract: During the mandatory acidification process in the oil and gas industry, carbon steel
unfortunately suffers significant corrosion damage. From this perspective, for the first time a new
ionic liquid called 1-(2-(4-bromophenyl)-2-oxoethyl)-4-(tert-butyl)pyridin-1-ium bromide (ILB) has
been used as an effective inhibitor for the carbon steel corrosion in aggressive HCl solution (15%)
at 298 K. The experiments were managed with a number of different chemical and electrochemical
techniques including weight loss, potentiodynamic polarization (PDP), and impedance spectroscopy
(EIS). ILB has good inhibitory performance as an acidizing corrosion inhibitor for carbon steel even at
low dosing levels of 1× 10−3 M. The findings were promising as an inhibition efficiency of about 97%
was achieved when ILB was added at low concentrations to the corrosive media. EIS results showed
a significant rise in charge transfer resistance (Rct) values with increasing doses of ILB. PDP studies
confirmed that ILB is a mixed type and obey Langmuir adsorption isotherm with chemical nature.
The metal surface morphologies were inspected using a Scanning Electron Microscope (SEM) and
an Atomic Force Microscope (AFM). Additionally, Density Functional Theory (DFT) and Molecular
Dynamic Simulation (MDS) indicates that ILB molecules function as inhibitors more successfully.
There is a high degree of concordance between practical and theoretical studies.

Keywords: carbon steel; oil well acidization; acid corrosion; ionic liquid inhibitor; DFT; surface
morphology; SEM; AFM; EIS

1. Introduction

The oil and gas sector are growing as a result of increased oil and gas extraction, which
makes it necessary to rebuild both new and old oil wells [1–4]. In petroleum wells, chloride
salts can be found dissolved in formation water or dispersed in crude oil. Formation water is
subsurface water created as a byproduct of crude oil production. Most oil and gas fields often
inject producing wells with high concentrations of acid solutions (40−60% vol), a procedure
known as acidizing. This acidifying process dissolves rocky soil, minerals, and foreign material
in the well’s soil, producing channels and enhancing oil and gas productivity. Acid inclusion
raises reservoir permeability by eroding mineral rocks [5]. On the other hand, integrated acid
results in severe monetary loss and tubular steel corrosion [6–8]. The corrosion inhibitors are
certain molecules composed of lone pairs of electrons, a high electron cloud of aromatic rings,
double and triple bond conjugations, and additional adsorption centers [9]. These adsorption
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centers generate both an adsorbed layer and a metal orbital coordinating bond [10]. According
to a literature review, the oil and gas industry frequently seeks corrosion inhibitors such as
Schiff base, quaternary ammonium salts, and other inhibitors [11,12]. However, educating
about the importance of protecting the environment from long-present dangerous inhibitors
is only partially effective [13,14]. A further study was conducted in order to create non-toxic,
environmentally friendly corrosion inhibitors, such as surfactant, biological extract, ionic
liquid, and others [15–22]. Ionic liquids (ILs) have attracted the attention of scientists in recent
years as potential corrosion inhibitors for specific metals and alloys. Ionic liquids are usually
salts of organic anions (such as pyrrolidinium, imidazolium, or pyridinium) and inorganic
cations (such as chloride, bromide, or iodide). Ionic liquids’ remarkable qualities as long-
lasting, environmentally benign chemicals with the ability to dissolve a variety of inorganic
and organic components are the reason for their expanding application. Ionic solutions based
on imidazolium have become popular in recent years as corrosion inhibitors in acidic settings.
ILs are utilized widely due to their non-toxicity, low m.p., and liquid condition at ambient
temperature [23]. Due to their capacities to form micelles and lower interfacial tension of
aqueous wetting, which enables simple adsorption of corrosion-inhibitors molecules, ILs
have recently emerged as a significant grade of corrosion mitigation [24,25]. Furthermore,
intermolecular synergy and inhibitor adhesion on the metal surface are made possible by
cation and anionic groups [26]. However, acidification is the most efficient way to increase
production and explore for oil, but it is very corrosive to the metal. Therefore, in the current
study we present for the first time a novel, potent and non-toxic corrosion inhibitor of ionic
liquid based pyridinium (ILB) in a very strong acidic environment (15% HCl), i.e., in real
conditions. The choice of ILB in particular is based on many advantages, the most important of
which is that it is an environmentally friendly corrosion inhibitor, and its chemical composition
is unique. In addition, it is effective in lowering acidic media concentrations. The results of
this work confirm the high efficiency of this type of material in resisting corrosion of steel,
which may open the way for real practical application.

2. Experimental
2.1. Materials

The composition of the carbon steel specimens used in this research is as follows:
10.73% Cr, 7% Ni, 7% Si, 4.55% Al, and the rest is Fe. The carbon steel dimensions for
the weight loss measurements were 7.0 cm × 2.0 cm × 0.2 cm. To get the electrochemical
data, a carbon steel electrode with a surface area of 1 cm2 was used. Prior to the trial,
the steel samples were absorbed, polished, washed with distilled water, and then treated
with a 1:1 combination of ethanol and acetone. The 15% HCl aggressive solution was
produced using analytical grade HCl. The ionic liquid 1-(2-(4-bromophenyl)-2-oxoethyl)-
4-(tert-butyl)pyridin-1-ium bromide (ILB) that was the subject of the investigation was
supplied from Sigma-Aldrich company. Figure 1 shows the molecular structure of ILB.
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2.2. Weight Loss Measurements

The ASTM standard is applied when conducting tests on weight loss [27]. In each weight
loss experiment, steel coupon specimens with dimensions of 7 cm × 2 cm × 0.3 cm were
used. After immersion duration (8 h), the weight loss of steel in aggressive solution (measured
in mg cm2) with and without the presence of various concentrations of ILB inhibitor was
determined. The samples’ surfaces were cleaned by repeatedly washing the corrosion product
in bi-distilled water, followed by drying. The following equations were used to determine the
corrosion rate (CR), surface coverage (θ), and inhibition efficiency (IEWL %) [28]:

CR =
∆W
St

(1)

θ =
CR− CRinh

CR
(2)

IEWL (%) = θ × 100 (3)

where, CR and CRinh are the rates of steel corrosion in the aggressive solution in the absence
and presence of various ILB concentrations, respectively. ∆W, S, and t signify the weight
loss (mg), carbon steel surface area (cm2), and immersion time (h), respectively.

2.3. Electrochemical Investigation

An Origalys potentiostat supported with Origa Master was used to conduct and calculate
the electrochemical outcomes. The employed three-electrode cell arrangement used carbon
steel as the working electrode, calomel as the reference electrode, and Pt-wire as the counter
electrode. The steel electrode was left in the aggressive solution for 30 min to get an equilibrium
potential. The EIS tests used a range of frequencies, from 105 to 10−2 Hz with 10 mV of
potential. Similar to this, potentiodynamic polarization tests were determined by measuring
the steel substrate at a rate of 0.1 mVs−1 between a potential range of ±250 mV.

2.4. Theoretical Calculations

Recent developments in the study of organic molecule-mediated corrosion inhibition
processes have shown the utility of quantum chemical calculations. On the probability of
electron transfer between the molecules that are adsorbed and the Fe surface, they provide
helpful relationships. It is the relationship between the effectiveness of the molecular shapes
under investigation. When analyzing the connection between inhibition effectiveness and
electronic structure, DFT analysis is used because it is simple, quick, and accurate. This
part of the work examines the molecular and electronic structures of the ILB molecule to
show the relationship between the molecular structure of this compound and its inhibitory
effectiveness. As theoretical parameters, it was possible to determine the energies of the
lowest unoccupied and highest occupied molecular orbitals (ELUMO & EHOMO), the energy gap
(∆E = ELUMO − EHOMO), hardness (η), electronegativity (χ), softness (σ), and the fraction of
transferred electrons (∆N). These descriptors are included with the accompanying equations [29].

I = −EHOMO (4)

A = −ELUMO (5)

χ =
I + A

2
(6)

η =
I − A

2
(7)
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σ =
1
η

(8)

∆N =
(χFe − χInh)

2(ηFe − ηInh)
(9)

The DFT/B3LYP method, the 6-311G*(d,p) basis set, and the Gaussian 09 software
package were used to calculate the ILB molecule calculations. The adsorption behavior of the
ILB inhibitor molecule on the Fe(110) surface was examined using molecular dynamic (MD)
models. Using the programme Material Studio 2020, MD simulations were carried out.

2.5. Surface Analysis

The surface image of the film created on carbon steel in the absence and presence of an
optimum concentration of ILB inhibitor in the aggressive solution for an 8-h immersion time
was captured and studied using SEM equipment. For the 3-D image, AFM micrographic
analysis was used to quantify the surface roughness of metal after it was immersed in an
aggressive electrolyte in the presence and absence of ionic liquid for approximately 8 h.

3. Result and Discussion
3.1. Electrochemical Impedance Spectroscopy (EIS)

Figure 2a–c depicts the Nyquist plots along with the associated Bode plots, and the
equivalent chemical circuit of carbon steel in the aggressive solution without and with
ILB, respectively. The width of the capacitive loop of the Nyquist plots widens as the
ILB concentration increases, as shown in Figure 2a. As a result, as the ILB concentration
increases, so does the charge transfer resistance (Rct), increasing the effectiveness of the
inhibition [30]. This is because any active reaction sites on the steel surface are covered by
ILB molecules, preventing them from coming into contact with the strong solution. On
the Nyquist graphs, the typical charge transfer-controlled corrosion reaction process is
depicted as a single depressed capacitive semicircle with the center under the real line.
As shown in Figure 2b, increasing ILB concentration results in a wide and broad shift in
the Bode modulus impedance, indicating a delay in the corrosion process. As shown in
Figure 2c, the circuit model Rs (QRct) was fitted to the gathered data set with (Rs) which
stands for solution resistance, (Rct) for charge transfer resistance, and (Q) for constant phase
element (CPE). The non-perfect semi-circle nature of Nyquist plots is caused by a rough
fractal surface, which is associated with the formation of an absorbed inhibitor layer as
well as corrosion products [31]. As a result, the capacitance provided by the constant phase
element (CPE) is denoted by the following relationship [32]:

ZCPE =
1

Yo(jω)n (10)

ZCPE stands for CPE impedance, while Yo, n, and j represent the scale and proponent of
CPE, accordingly (

√
−1). Similar to that, f (Hz) is the frequency, and ω = 2πf.

Table 1 displays the data obtained from EIS experiments at 298 K. In order to determine
the inhibitory efficiency (IEEIS, %) derived from the impedance measurements, the following
expression was used [33]:

ηEIS =
Rct(inh.) − Rct

Rct(inh.)
× 100 (11)

where, Rct and Rct(inh.) are the charge transfer resistances of a carbon steel electrode in the
aggressive acid solution without and with the examined inhibitor. Table 1 demonstrates
that Rct values were greatly increased as the ILB concentration was increased. It is possible
that the protective layer deposition on the steel surface, which creates barriers for charge
transports, is what causes the observed rise in Rct values with rising ILB concentrations.
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Given that the estimates for the n parameter range from 0.79 to 0.89, it is most probable
that the ILB adsorption process has reduced the heterogeneity of the steel surface [34].
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Figure 2. EIS curves for carbon steel in the aggressive solution in the absence and presence of various
concentrations of ILB at 298 K: (a) Nyquist, (b) Bode, and (c) equivalent chemical circuit.
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Table 1. Electrochemical impedance parameters of carbon steel in the aggressive acid solution and in
the presence of different concentration of ILB at 298 K.

ILB Conc. (M) Rs (Ω cm2) Y0 × 10−4 (Ω−1sn cm−2) n Rct (Ω cm2) ηEIS (%)

0 0.8 1.85 0.79 6 –

1 × 10−5 1.3 6.47 0.82 14 57.1

5 × 10−5 1.8 5.66 0.86 36 83.3

1 × 10−4 2.0 3.72 0.87 89 93.3

5 × 10−4 1.9 4.65 0.88 131 95.4

1 × 10−3 2.1 5.32 0.89 280 97.9

3.2. Potentiodynamic Polarization Study

The potentiodynamic polarization (PDP) profiles of carbon steel in the aggressive
solution, without and with varying concentrations of ILB, are shown in Figure 3. The
resulting polarization curves were used to evaluate the values of corrosion potential (Ecorr),
corrosion current densities (icorr), as well as cathodic and anodic Tafel slopes (βc & βa). The
values of inhibition efficiencies (ηPDP) were calculated via the following equation [35]:

ηPDP =
icorr − icorr(inh.)

icorr
× 100 (12)

icorr and icorr(inh.) represent the current densities of steel corrosion without and with ILB,
respectively. Table 2 summarizes these parameters at 298 K. The value of icorr was set to
decrease while ηPDP increased as ILB concentration increased. This demonstrated that
the protective effect of ILB molecules on carbon steel became greater as the inhibitor
concentration increased. At a concentration of 1 × 10−3 M ILB, the highest corrosion
inhibition efficiency was 97.3%.
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Figure 3. Potentiodynamic polarization curves of carbon steel in the aggressive solution in the absence
and presence of various concentrations of ILB at 298 K.

As shown in Figure 3, the polarization curves of the cathode and anode were dis-
similar in the presence of ILB rather than in the absence. These results showed that the
examined inhibitor prevented not only metal dissolution but also hydrogen evolution.
The polarization curves also revealed that cathode changes were more visible than anode
changes. Furthermore, the corrosion potential (Ecorr) shifted slightly when compared to the
curve obtained in the absence of the inhibitor. ILB is thus classified as a mixed corrosion
inhibitor [36]. Additionally, Table 2 shows that when the ILB was added, the values of
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both βc and βa scarcely changed, indicating that the hydrogen-evolution mechanism did
not change. This could be as a result of the ILB molecule coating the carbon steel surface,
which lowers the area of reactional active sites while remaining unaffected by the charge
transfer process of hydrogen evolution.

Table 2. Potentiodynamic polarization parameters of carbon steel in the aggressive solution in the
absence and presence of various concentrations of ILB at 298 K.

ILB Conc. (M) −Ecorr (mV) icorr (mA.cm−2) βa (mV dec−1) −βc (mV dec−1) ηPDP (%)

0 0.494 3.662 112 135 –

1 × 10−5 0.489 1.524 109 131 58.4

5 × 10−5 0.499 0.641 108 126 82.5

1 × 10−4 0.509 0.253 105 121 93.1

5 × 10−4 0.496 0.176 101 118 95.2

1 × 10−3 0.493 0.099 99 115 97.3

3.3. Weight-Loss Measurements

Table 3 shows the projected CR and ηWL values using the weight loss technique at
various ILB concentrations at 298 K. Table 3 demonstrates that increasing ILB results in a
decrease of the CR value. The weight loss data in Figure 4 is consistent with expectations
because increasing the ILB dosage results in increased molecule adsorption on the carbon
steel surface, reducing corrosion rate [37,38]. Furthermore, as ILB concentration rises, so
does WL%, peaking at 93.5% at 1× 10−3 M. This is caused by ILB adsorption on the surface
of carbon steel. ILB’s ability to be inhibitive in the corrosive HCl solution reflects their
powerful ability to form bonds with steel.

Table 3. Weight loss parameters of carbon steel in the aggressive solution in the absence and presence
of various concentrations of ILB at 298 K.

ILB Conc. (M) CR (mg cm−2 h−1) θ ηWL (%)

0 14.2 – –

1 × 10−5 6.7 0.526 52.6

5 × 10−5 2.2 0.842 84.2

1 × 10−4 1.2 0.914 91.4

5 × 10−4 1.0 0.927 92.7

1 × 10−3 0.9 0.935 93.5
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3.4. Adsorption Isotherms Study

Frumkin, Temkin, Freundlich, and Langmuir adsorption isotherms were used to inves-
tigate ILB adsorption on the carbon steel surface in the aggressive HCl solution. The weight
loss results regarding the values of degree of surface coverage (θ) were used to determine
which isotherm best described the adsorption process. The data were graphically tested by
fitting to the adsorption isotherms listed above, as shown in Figure 5, and the correlation
coefficient (R2) was used to determine the best-fit isotherm. The Langmuir adsorption
isotherm at 298 K fits the regression coefficient R2 very well (Figure 5d), confirming the
validity of the ILB adsorption on the carbon steel surface in the aggressive HCl solution.
The following are the relationships of the studied adsorption isotherms’ models [39]:

Temkin: KadsC = e f θ (13)

Langmuir:
θ

(1− θ)
= KadsC (14)

Frumkin: KadsC =

(
θ

(1− θ)

)
e−2aθ (15)

Freundlich: θ = KadsCn (16)
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Figure 5. Adsorption isotherms’ models: (a) Temkin, (b) Freundlich, (c) Frumkin, (d) Langmuir, for
various ILB concentrations on the surface of carbon steel in the aggressive HCl solution at 298 K.
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All adsorption sites are assumed to be equal and to have the same energetic potential
as the Langmuir adsorption isotherm [15]. Adsorption parameters obtained from Langmuir
isotherms are reported in Figure 5d. The intense adsorption of ILB on the steel surface
in the corrosive HCl solution is confirmed by the high Kads values. This is due to the
presence of π-electrons and heteroatoms such as the quaternary N atom and O atom in ILB
molecules. The standard free energy of adsorption (∆Go

ads) and Kads were determined using
the equations below [40]:

Kads =
1

55.5
exp

(−∆Go
ads

RT

)
(17)

where R is the universal gas constant, T is the absolute temperature, and 55.5 is the water
concentration given in M. A general rule of thumb is that values of ∆Go

ads up to −20 kJ mol−1

suggest physical adsorption, while values below −40 kJ mol−1 indicate chemisorption [41].
Figure 5d shows that the studied ILB had a ∆Go

ads value of −39.7 kJ mol−1 (i.e., between
−20 and −40 kJ mol−1); indicating the adsorption behavior considered mixed between the
physical and chemical adsorption.

3.5. Theoretical Studies
3.5.1. DFT Calculations

A quantum chemical calculation was performed to investigate the effect of electronic
properties and molecular structure on the inhibition effectiveness of the ILB inhibitor
and to confirm the experimental data obtained from gravimetric and electrochemical
experiments [42]. Figure 6 depicts the optimized molecular structure provided by atomic
numbering and the frontier molecular orbital density distributions (HOMO and LUMO)
of ILB inhibitor provided by the B3LYP/6-31*G (d,p) method. The electron density of
the HOMO is distributed at the tertiary butyl pyridinium fragment, while the LUMO is
distributed at the other fragment of bromophenyl-oxoethyl, as shown in Figure 6. Table 4
displays the calculated quantum parameters of the ILB molecule. The EHOMO values
of ILB arehigh (−5.606 eV) while the ELUMO value (−1.930 eV) is low, confirming the
experimentally obtained inhibition efficiency. The presence of a higher electron density of
an aromatic ring and lone pair of heteroatoms (O and N atoms) results in a high value of
EHOMO (−5.606 eV). The energy gap (∆EGAP) is a critical parameter that reveals an inhibitor
molecule’s activity [43]. The low ∆EGAP value (3.676 eV) indicates higher reactivity and
facilitates organic molecule adsorption on the steel surface, resulting in higher inhibition
performance. The reduction of ∆EGAP and ELUMO, as well as the increase of EHOMO,
imply an increase in inhibitor efficiency [44]. Additionally, the softness (σ) is a crucial
characteristic that can reveal the inhibitor compounds’ capacity for adsorption. These can
forecast the inhibitor compounds’ strong affinity for adsorption, which is consistent with
the findings of the experiments [45]. The ability of electrons to transfer from an inhibitor
to a metal is measured by the value of ∆N. The value of ∆N, on the other hand, does not
represent the actual number of electron transfers; rather, it represents a potential. Electrons
are transported from the adsorbent molecules to the Fe atoms on the metallic surface if ∆N
is positive. This happens when two different electronegative systems react. According to
Table 4, the calculated value of ∆N is 0.879, indicating that the inhibitor molecules have a
strong tendency to donate electrons to the metal’s vacuum orbital [46].

The electron density surfaces generate the ESP, which is an important factor in defining
the electrophilic and nucleophilic regions of the molecule [47]. Different colors determine
the ESP of the ILB molecule, as shown in Figure 6. The red region represents the strongest
repulsion, while the blue region represents the partially positive charge and the strongest
attractions, the light blue region represents electron deficiency, the yellow region indi-
cates that this part is slightly electron-rich, and the green region is neutral [48]. This
demonstrates that ILB molecules have a strong affinity for metal surfaces and are resistant
to electrophilic attack in general. This theoretical discovery supports and confirms the
experimental findings.
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Table 4. Quantum chemical parameters calculated for ILB molecule.

Theoretical Parameters ILB

EHOMO (eV) −5.606

ELUMO (eV) −1.930

∆E (eV) 3.676

Ionization (I) (eV) 5.606

Affinity (A) (eV) 1.930

Absolute electronegativity (χ) (eV) 3.768

Global hardness (η) (eV) 1.838

Softness (σ) 0.544

∆N 0.879

3.5.2. Molecular Dynamic Simulation (MDS)

MD simulations were performed to better understand the inhibitory process on the
metal surface and to identify the low adsorption energy (Eads) sites on the ions’ surfaces.
This enabled researchers to identify ILB’s preferential adsorption. These techniques are
frequently used to identify preferred adsorption sites on metal surfaces [49,50]. The simula-
tion results, as well as the ILB molecule adsorption equilibrium configurations on the Fe
surface, are shown in Figure 7. The inhibitor’s adsorption orientation on the Fe surface was
nearly flat, as shown in Figure 7. MD simulations reveal that the adsorption energy (Eads)
of ILB molecules is −13,585.43 kcal mol−1. ILB molecules demonstrate their high efficacy
in preventing corrosion in steel by forming a strong chemical bond between the molecules
and the Fe(1 1 0) surface. They also highlighted the effects of electronic transmission from
the adsorbate to the substrate and dipole interactions [51,52].
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3.6. Surface Characterization
3.6.1. Scanning Electron Microscopy (SEM) Measurements

The most well-known and commonly used surface analytical tool for surface char-
acterization is the scanning electron microscope (SEM). Sharp surface pictures are often
produced as a result of SEM analysis [53]. SEM micrographs of blank carbon steel surface
inhibited with 1 × 10−3 M of ILB after 8 h of immersion are shown in Figure 8. The SEM
image of the blank carbon steel surface (Figure 8a) revealed pits and cracks generated by
an aggressive HCl attack on the metal, as well as extensively corroded and damaged areas.
Despite this, SEM scans indicate that the inhibited carbon steel’s surface (Figure 8b) is quite
smooth. Because of the molecules’ adsorption on the metal surface, the surfaces of steel
specimens are smoother in the presence of ILB molecules [54].
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3.6.2. Atomic Force Microscopy (AFM) Measurements

AFM is a powerful technique that is currently being utilised to investigate how in-
hibitors effect metal corrosion in a variety of electrolytic media [55]. Figure 9 depicts images
taken with an atomic force microscope (AFM) of carbon steel surface before and after it
was exposed to 1 × 10−3 M ILB for 8 h. When the metal surface was carefully examined, it
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was discovered to be completely corroded and destroyed (Figure 9a). This finding suggests
that free aggressive HCl corrosion in the control solution had a substantial impact on the
metal surface. The surface roughness of the blank steel specimen was calculated to be
341 nm on average. However, in the AFM micrographs, the surface contour of the inhibited
specimens seems quite smooth (Figure 9b). For the carbon steel samples inhibited with
ILB molecules, the computed average surface roughness was 112 nm. The morphologies
of the inhibited carbon steel specimens’ surface significantly improved, proving that the
inhibitor molecules under study create a shielding surface layer that protects the metal
from the aggressive HCl solution and prevents corrosion [56].
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3.7. Comparison with Previous Studies

The studied ILB corrosion inhibitor’s efficacy for steel surface was compared to that
of those previously reported. Table 5 details the inhibitor structure, corrosive solution,
optimum inhibitor concentration, and inhibition efficacy as determined by several experi-
mental methodologies [57–59]. ILB has a strong corrosion inhibition efficiency, which is
visible even at low concentrations. This demonstrates that ILB has numerous potential uses
in acid corrosion protection.

Table 5. Comparison the corrosion inhibition efficiency of studied ILB with other ILs obtained for
steel in acidic media.

Inhibitors Medium Conc. (M) η (%) Ref.

1-hexyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl) imide
1 M HCl

3 × 10−4

70.2 [57]

N-triethyl methylammonium acetate 70.4 [58]

1-Vinyl-3-butylimidazolium Bromide

1 M H2SO4

85.4

[59]
1-Vinyl-3-octadecylimidazolium Bromide 90.1

1-Vinyl-3-docosylimidazolium Bromide 83.2

1-Vinyl-3-dodecylimidazolium Bromide 94.4

ILB 15% HCl 97.5
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4. Conclusions

Weight loss, electrochemical (EIS & PDP), and computational techniques were used
to investigate the performance of the ionic liquid ILB as a potential corrosion inhibitor for
carbon steel corrosion in aggressive HCl solution (15%) at 298 K. The inhibition efficien-
cies evaluated from EIS, PDP, and WL tools were found to be: 97.9%, 97.3%, and 93.5%,
respectively. ILB has good inhibitory performance as an acidizing corrosion inhibitor for
carbon steel even at low dosing levels of 1 × 10−3 M. The ILB inhibitory action was set to
be a mixed-type inhibitor. The Langmuir adsorption isotherm model is used to describe
the adsorption of the ILB molecule. DFT can help ILB improve its inhibitory performance.
The adsorption process was spontaneous. The results of both experimental and theoretical
studies were agreed, which concluded that ILB is an effective green corrosion inhibitor for
carbon steel in HCl media.
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