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Abstract: Heusler alloys are subject of considerable interest because they exhibit a martensitic trans-
formation (MT), a shape-memory effect and a giant magnetocaloric effect. As it is commonly believed,
the pronounced magnetoelastic coupling plays a crucial role; however, the effect of alloy composition
on MT is still under discussion. To describe the features of MT in Ni0.75−xMnxGa0.25 Heusler alloys,
the phenomenological model that consistently considers the magnetic and lattice degrees of freedom
and their mutual interplay has been developed. The magnetic entropy contribution was estimated
within the framework of the microscopic approach. The proposed model allows us to describe the
dependence of the martensitic transformation start temperature Ms(x) on the Mn concentration x in
reasonable agreement with the experiment.

Keywords: Heusler alloys; martensitic transformation; magnetoelastic coupling; Bain transformation
path; free energy density; ab initio parametrization

1. Introduction

The martensitic transformations (MT) are distinguished among the structural phase
transition in solids since realized by a shear (diffusion-free) mechanism carried out by
cooperative displacements of atoms [1–4]. Typically, the MT occurs during the overcooling
of alloy due to lattice instability and can develop athermally at high speed. However,
the MT can also be thermally activated and develop gradually, be reversible or irreversible,
and lead to the formation of morphologically varied structures (see [4–7]).

MT was first discovered in iron alloys and steels as shear structural transformations
from a high-temperature fcc phase (γ-phase, austenite) to a low-temperature bcc phase
(α-phase, martensite). Later it was found that similar transformations are observed in
various solids, including non-magnetic shape memory alloys (NiTi, Cu-Zn-Al, Cu-Al-
Ni) [3,8,9], alloys exhibiting the giant magnetocaloric effect (Gd(SiGe), (MnFe)(PAs), La-Fe-
Si) [10], Heusler alloys Ni0.75−xMnxZ0.25 (Z = Al, Ga, In, Sn, Sb) [4,11,12] and so one.

Despite extensive studies [1,13–18], the physical origin of MT and its microscopic
mechanisms are still under discussion as they are the result of the interplay of many factors.
So, while in non-magnetic Hume–Rothery alloys [19] lattice instability is provided by elec-
tronic mechanisms [20], in iron and steel, apparently, the role of magnetism is key [21–23],
and in Heusler alloys [4,24,25] both electronic and magnetic as well magnetoelastic contri-
butions are important. In Hume–Rothery alloys below temperature Ms, a nearly second
kind transformation is realized due to phonon ”softening”. MT of this type can be pre-
ceded by special pretransition phenomena (”tweed structures”), the appearance of which
is usually explained by the competition between elastic stresses and lattice softening [26].

In many solids, for example, in Li, Na and Cs [27], as well as in iron and steel [1], the
start of martensitic transformation is possible above the temperature of absolute lattice
instability, i.e., Ms < Tm < T0, where Tm is the transition temperature, T0 is the temperature
of paraequilibrium of initial and final phases. In this case, MT show features of a first-order
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phase transformation; no significant “lattice softening” is observed, and the fraction of
precipitated martensite during isothermal exposure can increase with time. Wherein the
nucleation of a martensitic phase requires overcoming some energy barrier whose value is
comparable to kT [1,13,28].

Iron alloys belong to a special group of materials in which the high-temperature γ-
phase is close-packed, in contrast to the low-temperature α-phase. It is commonly believed
that magnetism plays a decisive role in phase equilibria in iron and its alloys. Ab initio
calculations [22,23] showed that the magnetic and lattice degrees of freedom are strongly
coupled in γ-Fe, and an athermal MT scenario can be expected upon cooling below a certain
critical temperature. Based on the results of these calculations and combining them with
existing models [16–18], a consistent approach to describing phase transformations in iron
and steel has been proposed in Refs. [23,29].

Another significant group of compounds includes Heusler alloys Ni0.75−xMnxZ0.25
(Z = Al, Ga, In, Sn, Sb). Due to pronounced magnetoelastic coupling, these alloys ex-
hibit a martensitic transformation, a shape-memory effect, a giant magnetocaloric effect
(up to 100 J/(kg K) [12]) and magnetic field induced structural reorientation phenom-
ena [24,25,30–32]. A feature of these alloys is that both lattice and magnetic degrees of
freedom contribute to structural instability. As a result, depending on the concentration
of manganese, MT can be realized both above and below the Curie temperature [24,25],
and when Ms ≈ Tc, the lattice and magnetic contributions in MT are comparable [33,34].
This makes it possible to control the martensitic transformation by means of an external
magnetic field, which is of great practical interest [11,24]. Under a magnetic field, the alloy
is reversibly deformed by displacement of the boundaries of martensitic domains (which
have their magnetic moments interacting with the external field), and a giant deformation
(up to 10%) is achieved. When the field is turned off, elastic stresses are accommodated by
restoring the original shape of the sample.

Here, we focus on the Ni0.75−xMnxGa0.25, one of the most studied Heusler alloys [11,12,35].
In these cases, austenitic γ-phase has structure L21, which undergoes upon cooling a phase
transformation into a martensitic tetragonal α phase. The transformation temperature
Ms depends on the Mn content (Figure 1), and several regions are distinguished on the
Ms(x) dependence. According to ab initio calculations [36,37], the energy barrier on the
γ → α MT path depends on magnetic ordering and is close to zero in the ferromagnetic
state. Observable variation as the value of the hysteresis and morphology of the emerging
microstructure [24,25,36] indicates a change in the shape of the transformation path with
Mn concentration.

If the parent and new phases are paramagnetic ones (Mn concentration 16–18 at.%),
MT occurs as a type I transformation; the martensitic phase is not modulated, and the loss
mechanism is most likely related to the mobility of interfaces under applied stress [25]. In
the opposite case, when both phases are ferromagnetic (Mn concentration above 21 at.%),
the martensitic transformation is preceded by a “tweed structure” that undergoes a soft-
mode type II martensitic transformation; the long-period M5 or M7 structure formed in
the latter case appears [24,25,38]. At intermediate Mn concentration 18 < x < 21 at.% MT
is complex since it is determined by the competition of various contributions (lattice and
magnetic) to the free energy [24,25]. In this case, a characteristic plateau appears on the
Ms(x) dependence (see Figure 1). This feature indicates that the magnetic ordering in the
α-phase promotes the martensitic transformation, while the lattice contribution determined
by the features of the electronic structure remains practically the same.

There is no doubt by now that magnetism affects the MT scenario and the microstruc-
ture formation; however, the mechanism of this phenomenon remains insufficiently studied.
The effect of the interaction between different order parameters (lattice, chemical, mag-
netic) on the MT in Heusler alloys was discussed in [25,39] using experimental data and
results of first-principles calculations. Previously proposed theories of the MT in Heusler
alloys [24,36,39,40] considered the elastic, magnetic and magnetoelastic contributions, as
well as magnetic anisotropy and magnetostriction and lattice modulation based on Lan-
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dau’s phenomenological approach. As a result, a key role of magnetoelastic coupling
has been revealed. However, this approach does not separate the contributions of en-
thalpy and entropy in the free energy, and the physical meaning of some used parameters
remains undefined.
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Figure 1. Curie temperature Tα
C(x) (curve 1), Tγ

C (x) (curve 2) and martensitic transition temperature
Ms obtained by cooling (curve 3) of the Heusler alloys Ni0.75−xMnxGa0.25 (symbols is adopted
from [4]). Regions PM and PA and FM and FA correspond to paramagnetic martensite and austenite
and ferromagnetic martensite and austenite, respectively.

In this paper, we generalize the existing approach for describing MT [14,15,22–24,36]
to obtain the dependence Ms(x) of Ni0.75−xMnxGa0.25 alloys in a wide range of Mn con-
centrations. We show that variation in the shape of the curve Ms(x) when moving from
region PM to region FA is due to the change in the magnetic state of the alloy. Moreover, as
it follows from our calculations, the magnetoelastic contribution is insufficient to explain
the plateau-like behaviour of the Ms(x) curve in the region of intermediate concentrations,
and a change in the type of martensite formed should be taken into account.

2. Approach and Methods
2.1. Free Energy Density

We follow previous approaches [24,36,39,40] and consider the local density of free
energy of Heusler alloy f (φ, m) as a function of order parameters φ and m = {mα, mγ} that
describe a lattice deformation upon γ → α transformation and magnetization variation,
respectively. Free energy is usually written taking into account the lattice fφ(φ, x, T) and
magnetic fm(m(x), T) terms as well the magnetoelastic contribution fφm(φ, m(x), T)

f (φ, m, x, T) = f PM
γ (mγ, x, T) + fφ(φ, x, T) + fm(m, x, T) + fφm(φ, m, x, T) (1)

where f PM
γ (m, x, T) is the free energy of the parent (γ) phase in the paramagnetic state; x is

Mn concentration and T is temperature.
Within the phenomenological approach [24,36], each contribution in Equation (1)

is an expansion in powers of the order parameters. Here we use a slightly modified
representation of the free energy and consider variation in the γ→ α transformation path
depending on the magnetic state. As a first step, we write the change in free energy under
lattice deformation of transformation as an expansion in powers of the corresponding order
parameter φ [14,15,23]

f (φ, m, x, T) = fγ(mγ, x, T) + 2
(

∆ f +
λ

6

)(
φ2 − φ4

2

)
+ λ(T)

(
φ6

3
− φ4

2

)
, (2)
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where ∆ f (m, x, T) = fα(mα, x, T)− fγ(mγ, x, T) is the free energy difference of the ground
states of α and γ phases. Parameter φ is proportional to the tetragonal deformation, φ = 4εt,
and varies from 0 (in the γ-phase) to ±1 (in the α-phase). The parameter λ determines the
height of the barrier on the Bain transformation path when the free energies of the α and γ
phases are equal. An important feature of the alloys under consideration is the dependence
of λ on the magnetic state. As noted in the Introduction, the barrier decreases significantly
upon transition to the ferromagnetic state [25,36,37]. Therefore, we accept that

λ(T) = λ0 + λ1(mα(T)) (3)

Figure 2 shows schematically the dependence of ratio ( f − fγ)/ fγ on the order pa-
rameter φ for different values of ∆ f and λ. Equation (2) provide the extrema of the Bain
path at φ = 0 and φ = ±1, and the preferred structural state is switching at ∆ f (x, T) = 0.
In the case of ∆ f > 0, the γ → α transformation is energetically unfavourable (curve 1),
and it develops barrier-free in the opposite case (curve 3) when −∆ f > λ/6. When the free
energies of the γ and α phases are equal, i.e., ∆ f = 0 (curve 2), the final and initial states
are separated by a barrier whose value is 4λ/81.
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Figure 2. Energy variation along the transformation path determined by Equation (2). ∆ f / fγ = 0.35
(curves 1, 1′), 0 (curves 2, 2′) and −0.35 (curves 3, 3′); λ/ f γ = 2 (curves 1–3) and 0 (curves 1′–3′).

The temperature dependence of fα and fγ below Curie temperature is determined
mostly by variation of the magnetisation. We write the free energy of each of the phases as
an expansion in even powers of the magnetization

fγ(x, T)− f PM
γ (x, T) = b(1)γ

(
T − Tγ

C
)
m2

γ + b(2)γ m4
γ + . . . (4)

fα(x, T)− f PM
γ (x, T) = ∆ f PM(x, T) + b(1)α (T − Tα

C)m
2
α + b(2)α m4

α + . . . (5)

where ∆ f PM = f PM
α − f PM

γ , Tα(γ)
C is Curie temperature of α(γ) phase. Substituting

expressions (4) and (5) into Equation (2), we come to Equation (1) with
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fφ(φ, x, T) = 2
(

φ2 − φ4

2

)
∆ f PM(x, T) +

λ0

3

(
φ2 − 2φ4 + φ6

)
(6)

fm(m, x, T) = b(1)γ

(
T − Tγ

C
)
m2

γ(x, T) + b(2)γ m4
γ(x, T) (7)

fφm(φ, m, x, T) = 2
(

φ2 − φ4

2

)(
b(1)α (T − Tα

C)m
2
α + b(2)α m4

α − b(1)γ

(
T − Tγ

C
)
m2

γ − b(2)γ m4
γ

)
+

λ1(mα(T))
3

(
φ2 − 2φ4 + φ6

)
(8)

As seen from Equation (8), in line with the current assumption [24,25,36], the mag-
netoelastic contribution is a linear combination of terms of the form mlφn, where l, n are
even. Equations (6) and (7) give the elastic and magnetic contributions in a form similar to
that used previously in [36,40]. At the same time, the magnetoelastic contribution (which is
usually considered for symmetry reasons) has a specific form here, taking into account the
effect of magnetism on the transformation path. Note that Equation (8) differs significantly
from the previously proposed model [24], where the contributions of even powers of φ were
not taken into account. We believe that our model is more correct; in particular, by virtue of
its construction, it provides the correct positions of the extrema of the Bain transformation
path (see Figure 2).

The free energy density (1), (6)–(8) does not take into account the contribution fel(ev, es)
due to the dilation and trigonal deformation accompanying the transformation, which
we assume here is negligibly small. We also neglect the magnetoelastic contribution like
φ(m2

x −m2
y), which is responsible for the giant deformation in Heusler alloys due to the

reorientation of martensitic variants in a magnetic field [24], which is small compared to
the even-degree contributions mlφn [25].

We consider some special cases to connect the parameters of the Equations (6)–(8) with
observables. In the paramagnetic state (Mn concentration is less than 18%, see Figure 1),
the enthalpy gα(γ)(x, φ, T) depends on temperature even without magnetic contributions,
due to the features of the electronic structure of alloy [41] leading to soft mode behaviour.
As a reasonable approximation, we put

gα(γ)(x, φ, T) = g̃α(γ)(x, φ)− Tqα(γ)(x, φ) (9)

The free energies difference between the α and γ phases in paramagnetic state can be
represented as

∆ f PM(x, T) = ∆g̃(x)− T(∆S(x) + ∆q(x)) = A(x)(T − TPM
0 (x)), (10)

where A(x) = −(∆S(x) + ∆q(x))/Ω, ∆g̃(x) = g̃α(x)− g̃γ(x), ∆q(x) = qα(x)− qγ(x) and
∆S(x) = Sα(x)− Sγ(x) is entropy difference of α and γ phases, TPM

0 is the temperature of
paraequilibrium at which fα(x, T) = fγ(x, T) and Ω is atomic volume.

In the ferromagnetic case (T < Tγ(α)
C ), the minimum free energy of the phases

(Equations (4) and (5)) is reached with respect to the order parameter m = {mα, mγ}. As a
result, we obtain the temperature dependence of the magnetizations in the γ and α phases

m2
α(γ) =

b(1)
α(γ)

(
Tα(γ)

C − T
)

2b(2)
α(γ)

(11)

Strictly speaking, Equation (11) is valid only in the vicinity of the Curie temperature.
Requiring the asymptotics m2

γ(α)(T = 0) = 1, we can also rewrite this equation in the form

of a reasonable approximation m2
γ(α) =

(
Tγ(α)

C − T
)

/Tγ(α)
C .
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2.2. Transformation Temperature

Realization of the martensitic transformation (MT) in the general case assumes the
fulfilment of both necessary and sufficient conditions. A necessary condition for MT
is the energy advantage of the α-phase, i.e., fα(x, T) < fγ(x, T). The temperature of
paraequilibrium T0 arising from the condition for free energies of the α and γ phases

fα(x, T0) = fγ(x, T0) (12)

A sufficient condition for the MT is the disappearance of the barrier on the transforma-
tion path, i.e.,

∂2 f (φ, m, x, T)
∂φ2

∣∣
φ=0 ≤ 0. (13)

Condition (13) is achieved at T ≤ Ms where Ms is MT start temperature.
By using relation (10) and (11) the Equations (4) and (5) can represent in the form

fγ(x, T)− f PM
γ (x, T) = −b̃(1)γ (T)

(
Tγ

C − T
)2/(2Tγ

C) + . . . (14)

fα(x, T)− f PM
γ (x, T) = A

(
T − TPM

0

)
− b̃(1)α (T)(Tα

C − T)2/(2Tα
C) + . . . (15)

where b̃(1)
α(γ)

(T) = b(1)
α(γ)

θ
(

Tα(γ)
C − T

)
, i.e., equal to zero above Curie temperature. Using

the definitions (12) and (13), we obtain the following equations for temperatures T0 and Ms

T0 = TPM
0 + Bα

(
Tα

C − T0
)2

Tα
C

− Bγ

(
Tγ

C − T0
)2

Tγ
C

(16)

Ms = TPM
0 + Bα

(
Tα

C −Ms
)2

Tα
C

− Bγ

(
Tγ

C −Ms
)2

Tγ
C

− λ

6A
(17)

where Bα(γ) = b̃(1)
α(γ)

/(2A).

3. Results
3.1. Free Energy Parametrization

Within the considered approach, the free energy of Heusler alloys and the characteristic
temperatures T0, Ms are determined by the Curie temperatures Tγ(α)

C of γ and α phases,

the paraequilibrium temperature TPM
0 as well as parameters A, b̃(1)

α(γ)
, λ. We will focus

here on the effect of magnetism on temperatures T0, Ms and consider their behaviour as a
function of Mn concentration x. Therefore, we use the experimental dependence Ms(x) in
the paramagnetic region (x < 18%, see Figure 1) and derive the Ms(x) in the ferromagnetic
one; while we accept that the temperatures Ms(x) and TPM

0 are related by the Equation (20)
in paramagnetic case.

For numerical analysis of Equations (16) and (17), we use known experimental de-
pendence Curie temperatures on the concentration of Mn, Tγ(α)

C = Tγ(α)
C (x) [25]. When

estimating the parameter A(x) = −(∆S(x) + ∆q(x))/Ω (Ω is atomic volume), we assumed
that the value of q can be neglected and accept the value of the vibrational entropy variation
∆S obtained as a result of first-principles calculations [42], ∆S(x) ≈ −0.24k where k is
Boltzmann’s constant.

Available experimental data (see, in particular, Ref. [25]) indicate that the transforma-
tion hysteresis and, therefore, the barrier on the transformation path decreases significantly
in the ferromagnetic state when Mn concentration x > 21%. This conclusion is also
consistent with the results of ab initio calculations of Bain path energetics of considered
alloys [36,37]. Note, a similar effect of magnetism was discussed earlier [23,29] in connec-
tion with the problem of γ→ α transformation in iron. Such variation in transformation
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barrier corresponds to lowering the parameter λ. To describe this behaviour of λ, we take
the following approximation

λ = λ0/
(

1 + ζm2
α

)
(18)

where λ0 and ζ are some fitting parameters. As follows from Equations (16) and (17),
the parameter λ0 determines the temperature difference T0 −Ms in the paramagnetic state,
and the parameter ζ characterizes the effect of magnetism on magnitude T0−Ms. It should
be noted that the value of T0 − Ms is associated with the hysteresis of transformation
because the reverse transformation during heating cannot occur before the necessary
condition T > T0 is reached. Note, the true value of the hysteresis is determined not
only by T0 −Ms but also by other contributions (see discussion in Ref. [43]) not taken into
account in our model. Such contributions can be related to pinning interface boundaries
and/or accommodation processes due to microstructure reconstruction. Since we are
considering alloys with thermo-elastic transformation, these contributions can be neglected.
We choose the λ0 values to provide the value of T0 − Ms is either 200 K or 30 K in the
paramagnetic state. The first of them is typical for transformations with a large hysteresis
(for example, transformation in steel), while the second is typical for the shape memory
alloys under consideration.

In the framework of the phenomenological approach, the coefficients b̃(1)
α(γ)

are fitting
parameters. To estimate them, we express the magnetic enthalpy regarding exchange
interactions. According to the results of ab initio calculations [36,42], the magnetic moment
in the Ni0.75−xMnxZ0.25 alloy is localized mainly on Mn atoms, and its value is an order of
magnitude greater than on Ni atoms. Therefore, the concentration dependence of the Curie
temperatures Tγ(α)

c (x) is determined primarily by the change in the concentration of Mn,
and the main contribution to the magnetic energy of the alloy comes from ferromagnetic
exchange interactions Mn-Ni.

Here we restrict ourselves to a simple description of magnetic interactions, using
the effective exchange constants Jγ(α)(x), which provide the experimentally known Curie

temperatures Tγ(α)
c (x); wherein it is assumed that the magnetic moments of atoms of all

sorts are the same. Taking into account exchange interactions only in the first coordination
sphere, we write

Jγ(α)(x) = z ∑
i,j

cic
(i)
j J(ij)

γ(α)
(x) (19)

where z is the coordination number, ci is the concentration of atoms of type i, c(i)j is the

concentration of atoms of type j on the first coordination sphere of atoms of type i, J(ij)
γ(α)

is
the exchange energy between i and j type atoms in the γ(α) phase.

Neglecting all exchange interactions except Mn-Ni, we get Jγ(α)(x) = zJ(MnNi)
γ(α)

(x)/2.
Using the approach proposed in [44] and taking into account the values of spins (sMn = 5/2,
sNi = 1), we obtain an estimate of the effective exchange energy in terms of the Curie tem-
perature, Jγ(α)(x) ≈ 0.63kTγ(α)

c (x)/Ω. The free energy of the alloy within the framework of
the microscopic approach in the effective exchange energy Jγ(α) approximation is given in
Appendix A. At T = 0K, in Equations (A1) and (A2) should be take Qα(γ) = 1, which makes

it possible to compare with the Equations (14) and (15), which implies b(1)
α(γ)
≈ 1.26k/Ω,

Bα(γ) = b(1)
α(γ)

/2A ≈ 2.6.
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3.2. Results of Calculations

Let us first consider special cases corresponding to the paramagnetic and ferromagnetic
states of alloy. As follows from the Equations (16) and (17), in the paramagnetic case when
T > Tα(γ)

C and Bα(γ) = 0

T0 = TPM
0 , Ms = TPM

0 − λ/6A, (20)

i.e., the temperature Ms is shifted relative to T0 by the value λ/6A. In opposite case, when
T � Tα(γ)

C , from the Equations (16) and (17) we have

T0 = TPM
0 + B(Tα

C − Tγ
C ), Ms = TPM

0 + B(Tα
C − Tγ

C )− λ/6A (21)

where B = Bα = Bγ (see Section 3.1) and λ is approaching to zero. Thus, the transition to a
ferromagnetic state will lead to an increase in the magnitude of the T0 and Ms. Note that the
effect of magnetism on the temperatures T0 and Ms is due exclusively to the magnetoelastic
contribution (8). Indeed, if we take fφm = 0, from (1), (6)–(8), (12) and (13) we will obtain
temperatures T0, Ms coinciding with the paramagnetic case (20).

Figure 3a shows the curves T0(x), Ms(x) for Ni0.75−xMnxGa0.25 alloy obtained as
results of numerical calculations by using Equations (16) and (17) with parameters described
in Section 3.1 for the case of a large value of T0−Ms in the paramagnetic case. Curves 1 and
2 show the known from the experiment Curie temperatures Tα

C(x), Tγ
C (x) in dependence

on Mn concentration. Curves 3 and 4 describe dependences T0(x) and Ms(x) in the
paramagnetic state (line 4 was fitted to experiment). It can be seen that the transition to
the ferromagnetic state with increasing Mn concentration leads to a change in the slope
of the curves T0(x) and Ms(x). This behaviour is not surprising and is consistent with the
observed in the experiment (see Figure 1) as well indicates that magnetism contributes
essentially to the martensitic transformation.

The shape of the curve Ms(x) in the ferromagnetic state (6,7,8) is very sensitive to the
choice of the parameter ζ. An increase in the ζ value leads to the appearance of a convex
part on Ms(x) curve in the interval Tγ

C < Ms < Tα
C. Thus, both a decrease in the free energy

and the transformation barrier height in the ferromagnetic state leads to an increase in
Ms(x).

The phenomenological approach discussed here is physically transparent but con-
tains a rough approximations and does not separate enthalpy and entropy contributions.
Moreover, the used temperature dependence of the magnetisation (11) is too rough. More
consistent is the microscopic model used in Refs. [23,29], where the magnetization is cal-
culated using the effective Weiss field, and the magnetic entropy is taken into account
using the Gelman–Feynman theorem. Here we use such an approach for a more consistent
description of the martensitic transformation in the Ni0.75−xMnxGa0.25 alloy. The main
Equations of the microscopic model are given in Appendix A, and the corresponding
results of calculations are shown in Figure 3b. It can be seen that the curves Ms(x), T0(x)
calculated using the microscopic model are similar to those obtained within the phenomeno-
logical approach. For the appearance of a convex region on the curve Ms(x) in the interval
Tγ

C < Ms < Tα
C, the assumption that the parameter λ depends on the magnetization is still

necessary. At the same time, the plateau on the curve Ms(x) is realized at a somewhat
smaller value of ζ than in Figure 3a.

Figure 3a,b describes the MT in an alloy with a large hysteresis, while a small trans-
formation hysteresis is typical for shape memory alloys. The transformation diagram
calculated for this case (λ/(6A) = 30K), is shown in Figure 3c. Within the considered
simple model with one type of martensite, the curves T0(x) and Ms(x) change their slope
practically immediately after crossing the Curie temperature Tα

C(x); it does not correspond
to the typical dependencies Ms(x) presented in Figure 1.
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Figure 3. Calculated diagram of transformations of Ni0.75−xMnxGa0.25 Heusler alloys, obtained
within the framework of the phenomenological model (a,c,d) and using the microscopic approach (b).
Curves 1 and 2 give experimental Curie temperatures Tα

C(x) and Tγ
C (x) in dependence on the

concentration of Mn (dashed lines are extrapolation to the metastable region). Curves 3 and
4 correspond T0(x) and Ms(x) without magnetic contribution for λ/(6A) = 200 K (a,b) and
λ/(6A) = 30 K (c,d). Curves 5, 6, 7 and 8 correspond T0(x) and Ms(x) when magnetism is taken
into account, Bα(0) = Bγ(0) = 2.6. Curves 6, 7 and 8 were obtained for ζ = 0, ζ = 5 and ζ = 25,
respectively. Triangles correspond to experimental data from [4]. Only one type of martensite was
considered in cases (a–c), and the formation of a modulated state was taken into account in case (d);
the parameter P0/A was chosen equal to 180K.

For a more consistent description of the T0(x) and Ms(x) behaviour in the region
where Mn concentrations above 18 at%, we must take into account that ferromagnetic
martensite is characterized by greater tetragonality c/a [4,33] and accompanied by the
formation of modulated 5M/7M structures [34]. The formation of a modulated state occurs
primarily for electronic instability of the austenite (see Ref. [45]) and results in a decrease in
the free energy of the alloy. To take into account such a change in the energy of martensite,
we make the following substitution in Equation (5)

fα → fα − P0θ(Ts − T), (22)
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where θ(T) is Heaviside function, Ts is temperature corresponding to the intersection point
of the curves Tα

C(x) and Ms(x), P0 is parameter. As follows from Equations (12) and (13),
such a correction of fα leads to the appearance an additional term P0θ(Ts − T)/A on the
right side of Equations (16) and (17)

T0 = TPM
0 + Bα

(
Tα

C − T0
)2

Tα
C

− Bγ

(
Tγ

C − T0
)2

Tγ
C

+
P0θ(Ts − T0)

A
(23)

Ms = TPM
0 + Bα

(
Tα

C −Ms
)2

Tα
C

− Bγ

(
Tγ

C −Ms
)2

Tγ
C

− λ

6A
+

P0θ(Ts −Ms)

A
(24)

As it is seen from Equations (23) and (24), the curves T0(x), Ms(x) for the paramagnetic
state of modulated 5M/7M martensite can be obtained by shifting up the corresponding
curves of unmodulated martensite L10 by P0/A. In this case, the switching of the preferred
state of martensite is realized when cooling to the temperature Ts and is associated with the
appearance of magnetization in α-phase. The numerical solution of Equations (23) and (24)
taking into account magnetic contributions is shown in Figure 3d. Good agreement of the
calculated curve Ms(x) and experimental data are ensured by choosing P0/A = 180 K (i.e.,
P0 ≈ 0.004 eV/at). In this case, the curve Ms(x) shifts to the right by the ∆x∼2 at.%.

Thus, the role of magnetism in the considered phenomenological model turns out
to be dual. On the one hand, when cooled to a temperature Ts, magnetism provokes the
formation of 5M/7M martensite, which leads to the appearance of a plateau on the T0(x),
Ms(x) curves. On the other hand, below the temperature Tα

C(x), the magnetic contribution
leads to a change in the slope of these curves (c.f. curves 5–8 and 3, 4 in Figure 3d).

4. Discussion

A model of martensitic transformation in Ni0.75−xMnxGa0.25 Heusler alloys, which
consistently considers the magnetic and lattice degrees of freedom as well as the magnetoe-
lastic contribution, has been developed. This model generalizes the previously proposed
approaches [24,36,39,40] and considers the effect of magnetism on the transformation path.
The proposed model allows the revealing of the important role of magnetism in marten-
sitic transformation, which leads to a change in the mechanism of transformation and
temperature Ms(x) with an increase in the Mn concentration.

It is shown that magnetism leads to a change in the slope of both paraeqilibrium
curves T0(x) and martensitic start temperatures curves Ms(x) in the ferromagnetic region;
it is due exclusively to the magnetoelastic contribution (8). The effect of magnetism on the
curve T0(x), which is determined by condition (12), is due to a decrease in the free energy
of the ferromagnetic state and is determined by the mismatch of the Curie temperatures, Tα

C
and Tγ

C . At the same time, the effect of magnetism on the Ms(x) curve, which is defined by
condition (13), turns out to be more complicated since it is caused both by the dependence
on the magnetism of the free energy of γ and α phases as well by a change in the height of
the transformation barrier.

The parametrization of the proposed model was carried out using experimental
data and estimates within the microscopic approach. In particular, we used a linear
approximation of experimental data to determine the functions Tα

c (x), Tγ
c (x) and TPM

0 (x)
in dependence on Mn concentration x. It made possible to calculate the temperatures
T0(x), Ms(x) in reasonable agreement with the experiment (Figure 3). At the same time,
the behaviour in the plateau region significantly depends on the value of the parameter ζ
and P0, the choice of which lies beyond the developed model approach. We believe that
the main reason for the anomalous plateau of the curve Ms(x) in the range of intermediate
Mn concentrations (0.18–0.20 at%) is a change in the type of martensite formed, which is
accompanied by a variation in the free energy by P0. It should be noted that the use of the
microscopic approach (Appendix A) gives a more reliable description T0(x), Ms(x) in the
range of intermediate concentrations (compare Figure 3a and Figure 3b).
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The phenomenological approach used contains a number of rather rough approxi-
mations. In particular, the Bα(γ) parameters were estimated by neglecting all exchange
interactions except for Mn–Ni on the first coordination sphere, dependence Ms(x) in the
absence of magnetism is approximated by a linear function and extrapolated to the region
of high concentrations (curve 4 in Figure 3), the Bain path energetics are taken in a rather
particular form. Nevertheless, the proposed model makes it possible to describe quite
consistently the main features of the observed dependence of the martensitic transforma-
tion temperature Ms(x) on the composition of Ni0.75−xMnxGa0.25 alloys. Although the
proposed model does not take into account the features of microstructure formation, it is
quite general and can be used to describe the role of magnetism in the development of
lattice instability and martensitic transformation in other Heusler alloys.

5. Conclusions

The Landau-type phenomenological model that consistently considers the magnetic
and lattice degrees of freedom, including the magnetoelastic coupling, has been devel-
oped. The considered approach differs from those proposed earlier, considering the effect
of magnetism on the transformation path. The parametrization of the proposed model
was carried out using experimental data and estimates within the microscopic approach.
The considered model allows to describe the concentration dependence of the martensitic
start temperature Ms(x) of Ni0.75−xMnxGa0.25 alloys in reasonable agreement with the ex-
periment. We have shown that (i) the proposed model allows you to correctly describe the
change in the slope of the curves Ms(x) and T0(x) upon the passage to the ferromagnetic
state of alloy and (ii) to explain an anomalous behaviour (plateau) of Ms(x) and T0(x)
curves in the region of intermediate concentrations of Mn (0.19 < x < 0.20), the formation of
modulated martensite with lower energy must be taken into account.
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Appendix A. Microscopic Approach

Within the considered simple model, the magnetic moments of atoms of all sorts are
assuming the same and effective exchange interactions are determined by Equation (19). In
this approximation, the magnetic contribution to the free energy can be presented as the
sum of the contributions associated with the exchange energy and magnetic entropy

fγ(x, T)− f PM
γ (x, T) = −Jγ(x)Qγ(x, T)− TSm

γ (A1)

fα(x, T)− f PM
γ (x, T) = A

(
T − TPM

0

)
− Jα(x)Qα(x, T)− TSm

α (A2)
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where Qα(γ) = < sα(γ)
o sα(γ)

1 >/s2 is correlation function of interacting spins, Sm
γ(α)

is the
magnetic entropy. In the limiting case T = 0K we have Qα(γ) = 1 and

fγ(x, 0)− f PM
γ (x, 0) = −Jγ(x) (A3)

fα(x, 0)− f PM
γ (x, 0) = −ATPM

0 (x)− Jα(x) (A4)

As in the previous paper [23], to calculate the magnetic contribution to the free energy,
we use the Gelman–Feynman theorem. Then the Equations (A1) and (A2) take the form

fγ(x, T)− f PM
γ (x, T) = −

∫ Jγ(x)

0
Qγ(Jγ(x), T)dJγ (A5)

fα(x, T)− f PM
γ (x, T) = A

(
T − TPM

0

)
−
∫ Jα(x)

0
Qα(Jα(x), T)dJα (A6)

Equations (A5) and (A6) take into account both magnetic enthalpy and magnetic
entropy contributions. Using these equations, we obtain (instead of (16) and (17)) the
following expressions for temperatures T0 and Ms:

T0 = TPM
0 + B

(∫ Tα
c

0
Qα(Tα

c , T0)dTα
c −

∫ Tγ
c

0
Qγ

(
Tγ

c , T0
)
dTγ

c

)
(A7)

Ms = TPM
0 + B

(∫ Tα
c

0
Qα(Tα

c , Ms)dTα
c −

∫ Tγ
c

0
Qγ

(
Tγ

c , Ms
)
dTγ

c

)
− λ(Ms)/(6A) (A8)

Within the considered simple model, we do not take into account the differences
between short-range and long-range magnetic order, and the interaction of each magnetic
moment with the rest of the crystal is replaced by the action of the effective Weiss field.
Since the temperature dependence of the magnetization has a similar form for different
values of the spin [46], we use the expression m(T), which is valid for the spin 1/2

mα(γ) = th

mα(γ)T
α(γ)
C

T

 (A9)

The temperatures T0, Ms can be found as a result of the numerical solution of the
integral Equations (A7) and (A8) with the correlation function Qα(γ) = m2

α(γ), defined by
the Equation (A9).
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