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Abstract: Solid-state batteries (SSBs) are promising next-generation batteries due to their potential for
achieving high energy densities and improved safety compared to conventional lithium-ion batteries
(LIBs) with a flammable liquid electrolyte. Despite their huge market potential, very few studies have
investigated SSB recycling processes to recover and reuse critical raw metals for a circular economy.
For conventional LIBs, hydrometallurgical recycling has been proven to be able to produce high-
quality products, with leaching being the first unit operation. Therefore, it is essential to establish
a fundamental understanding of the leaching behavior of solid electrolytes as the key component
of SSBs with different lixiviants. This work investigates the leaching of the most promising Al- and
Ta-substituted Li7La3Zr2O12 (LLZO) solid electrolytes in mineral acids (H2SO4 and HCl), organic
acids (formic, acetic, oxalic, and citric acid), and water. The leaching experiments were conducted
using actual LLZO production waste in 1 M of acid at 1:20 S/L ratio at 25 ◦C for 24 h. The results
showed that strong acids, such as H2SO4, almost completely dissolved LLZO. Encouraging selective
leaching properties were observed with oxalic acid and water. This fundamental knowledge of
LLZO leaching behavior will provide the basis for future optimization studies to develop innovative
hydrometallurgical SSB recycling processes.

Keywords: lithium-ion batteries; solid-state batteries; critical raw materials; leaching; hydrometallurgy;
recycling; circular economy

1. Introduction

Electrochemical energy conversion and storage technologies are critical for energy
transition to combat climate change [1,2]. Since the commercialization of lithium-ion
batteries (LIBs), they have proven to be highly reliable and efficient in terms of lifetime
as well as energy and power density [3,4]. Conventional LIBs with a liquid electrolyte
dominate the current battery market for consumer electronics, power electronics, electric
vehicles, and stationary energy storage [5,6]. However, the liquid electrolyte, consisting of
lithium salts dissolved in flammable organic solvents, poses a safety risk not only during
use but also during recycling due to potential thermal runaway and HF emissions [7–9]. In
addition, the e-mobility industry, in particular, is striving for higher battery performance. To
meet industry demands while improving safety, researchers are working on next-generation
batteries, such as solid-state lithium batteries (SSBs) with solid electrolytes (SEs). SSBs offer
the possibility of a significant increase in energy density with improved safety features due
to the absence of a flammable liquid electrolyte.

The SE is the key component of SSBs. A promising oxide-based SE is garnet-type
Li7La3Zr2O12 (LLZO) [10]. The advantages of LLZO are its high ionic conductivity at room
temperature from 10–4 to 10–3 S cm–1, its wide electrochemical window from 0 to 5 V, and
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its good chemical stability against Li metal [11]. The challenges of LLZO are its limited
compatibility with high-capacity NMC-class cathode active materials, the use of expensive
raw materials, and the use of energy-intensive processing techniques [12]. Nevertheless, the
strategic advantages outweigh the disadvantages, and the use of LLZO is being intensively
researched [11,13].

In a circular economy, science-based recycling strategies for SSBs should be in place
prior to their industrial implementation, ideally enabling a design-for-recycling strategy.
However, SSB technologies currently under investigation present new and specific chal-
lenges for recycling. First, the cell design of oxide-based SSBs is expected to change
significantly compared to conventional LIBs with a liquid electrolyte [14]. Second, oxide-
based SSBs introduce new elements, such as La, Ta, and Zr, into the recycling process that
are not present in current battery generations. The European Union classifies La and Ta
as critical raw materials (CRMs) [15]. Therefore, the recovery and reuse of CRMs should
be given a high priority. Although Zr is not yet classified as a CRM, it has been included
for the first time in the 2020 assessment [15]. In addition, Li, a CRM, is not only present
in conventional LIBs but also in SSBs at much higher levels [15]. For SSBs, it is, therefore,
necessary to investigate whether the existing recycling concepts for conventional LIBs can
remain unchanged, whether they need to be adapted, or whether new processes need to
be developed.

Recycling concepts for conventional LIBs combine various process technologies, such
as pyrometallurgy, mechanical processing, thermal treatment, and hydrometallurgy [16–18].
Most recycling concepts include hydrometallurgical extraction processes. This is because
hydrometallurgy allows flexible and high-quality product recovery from a complex and
diverse input stream, such as waste LIBs, with low energy consumption [19,20]. Leaching
is the first unit operation in a hydrometallurgical process. Mineral acids are highly effective
lixiviants for conventional LIBs. Sulfuric acid and hydrochloric acid are the most studied
lixiviants, and high leaching efficiencies of >99% are possible when applied under optimal
conditions [21–23]. In addition, organic acids are increasingly being investigated as they
are considered environmentally friendly [24–26].

In contrast to conventional LIBs, there are few studies on the hydrometallurgical recy-
cling of SSBs, especially for LLZO. According to Schwich et al., elevated temperatures and
strong acids are required to leach sintered LLZO [27]. Ali Nowroozi et al. studied the leach-
ing of LiFePO4/LLZO/Li4Ti5O12 cells using hydrochloric acid at different concentrations
(5 g/L of solids, T = 80 ◦C, and 6 h) [28]. LLZO is leached with a low acid concentration at
pH = 2. Maximum La and Zr recoveries are reported to be 82% and 87%, respectively [28].
Although this study provides valuable insights, further research is needed to understand
LLZO leaching in different lixiviants.

Since leaching is the first step in a hydrometallurgical process, a holistic acid screening
study is required to subsequently develop a separation and purification process. The
objective is to investigate the leaching of LLZO in water compared to the most common
mineral and organic acids used in conventional LIB recycling processes. In this study, the
following lixiviants were selected for this purpose: sulfuric acid (H2SO4) and hydrochloric
acid (HCl) as the mineral acids, and formic acid (HCOOH), acetic acid (CH3COOH),
oxalic acid (C2H2O4), and citric acid (C6H8O7) as the organic acids. These lixiviants
were studied to develop flexible recycling routes with options for complete and selective
LLZO dissolution.

2. Materials and Methods
2.1. Materials
2.1.1. LLZO Samples

Three Al- and Ta-substituted LLZO samples were provided by Forschungszentrum
Jülich (Jülich, Germany) for the leaching experiments: two batches of calcined LLZO and
one batch of sintered LLZO. The samples were obtained from a separator production
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process of SSBs (see Supplementary Material S1) and were used to investigate whether
calcined and sintered LLZO exhibit a different leaching behavior.

The first sample, calcined LLZO #1, was an aged material due to its temporary storage
outside of a glove box. To restore its original properties, calcined LLZO #1 was thermally
treated prior to leaching (see Supplementary Material S2). The second sample, calcined
LLZO #2, was used immediately after collection and, therefore, did not undergo additional
thermal treatment. The third sample, sintered LLZO #2, was also used immediately after
collection, as was the calcined LLZO #2 sample. Both calcined LLZO samples were powders,
whereas sintered LLZO #2 consisted of cylindrical pellets approximately 1 cm in diameter
and of variable height (Figure S2).

2.1.2. Chemicals

Deionized water, two mineral acids, and four organic acids were evaluated for
the leaching of LLZO. Deionized water was used to establish a baseline. Sulfuric acid
(95–97% H2SO4 p.a., Honeywell Fluka, Morristown, NJ, USA), hydrochloric acid (fuming
HCl ≥ 37%, p.a., Honeywell Fluka), acetic acid (100% p.a., Carl Roth, Karlsruhe, Germany),
and formic acid (98–100% p.a., Merck, Darmstadt, Germany) were diluted with deionized
water to the target concentration of 1 M. The solutions of 1 M oxalic acid and 1 M citric acid
were prepared by mixing anhydrous oxalic acid (≥99.0% p.a., Sigma Aldrich, St. Louis,
MO, USA) and anhydrous citric acid (≥99.5% p.a., Carl Roth, Karlsruhe, Germany) with
the required amount of deionized water.

2.2. Methods
2.2.1. Characterization of the LLZO Samples

All three samples were characterized in terms of chemical composition, initial phase
composition, and particle size distribution. The calcined LLZO samples were already
available in powder form. The sintered LLZO #2 sample was dry milled in a vibratory disk
mill to obtain a powder. Each sample was split using a rotary sample splitter to produce
representative samples.

The chemical composition was analyzed using inductively coupled plasma optical
emission spectroscopy (ICP-OES) with an Agilent 5100 ICP-OES system (Agilent Technolo-
gies Inc., Santa Clara, CA, USA). Solutions of the solid samples were prepared by microwave
digestion with ammonium sulfate and concentrated sulfuric acid using a turboWAVE®

system (MLS-MWS Laboratory Solutions, Leutkirch, Germany).
The initial phase composition was determined using powder X-ray diffraction (XRD)

with a PANalytical X-Pert Pro diffractometer equipped with a Co X-ray tube (Malvern
Panalytical, Malvern, UK).

The particle size distribution was measured using laser diffraction with a HELOS/KR
system equipped with a RODOS dry dispenser (Sympatec GmbH, Clausthal-Zellerfeld, Ger-
many). Three replicate measurements were performed, and the mean value was determined.

2.2.2. Leaching Experiments

All three samples were leached in deionized water, two mineral acids (sulfuric acid
and hydrochloric acid), and four organic acids (acetic, formic, oxalic, and citric acid). The
samples were weighed and vacuum-packed in bags at the beginning of the test series to
avoid inhomogeneities during the experiments due to side reactions with air.

The leaching experiments were performed in a double-jacketed glass reactor (Rettberg
GmbH, Göttingen, Germany). A total of 150 mL of lixiviant was added to the reactor for
thermal equilibration. The reaction temperature was kept constant at 25 ◦C using a thermo-
stat (N6 Circulator, Thermo HaakeTM, Thermo Fisher Scientific Inc., Waltham, MA, USA)
with a PTFE-coated PT 100 temperature probe (Bohlender GmbH, Grünsfeld, Germany)
immersed in the leach solution. The experiments were conducted under constant gentle
stirring conditions at 400 rpm using a magnetic stirrer (Hei-Connect, Heidolph Instruments,
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Schwabach, Germany). A total of 7.5 g of each sample was added to obtain a solid/liquid
(S/L) ratio of 50 g/L. The reaction time was started after complete sample addition.

For chemical analysis, liquid samples were collected with an Eppendorf pipette after
3 and 24 h of leaching. The samples were diluted with deionized water and filtered with
a 0.45 µm cellulose acetate syringe filter. Chemical composition was analyzed using ICP-
OES with an Agilent 5100 ICP-OES system (Agilent Technologies Inc., Santa Clara, CA,
USA). The elemental concentrations of the pregnant leach solutions after 24 h leaching
are provided in Table S1 (see Supplementary Material S4). The leaching efficiency, Yi,j,t,
was calculated for each element i in sample j present in the leach solution after t hours
according to the following equation:

Yi,j,t =
Ci,j,t·VL

x0,i,j·m f eed
·100% (1)

where Ci,j,t is the concentration of element i in the leach solution of sample j after t hours (in
g/L); VL is the total volume of the leach solution (in L); x0,i,j is the concentration of element
i in the input material of sample j (in wt%); and mfeed is the weight of the input material (in
g). The results were verified based on an analysis of the solid leaching residues. Due to the
heterogeneous nature of the samples, leaching efficiencies sometimes exceeded 100% by a
maximum of 5.8%.

Leaching was performed for a total of 24 h. At the end of the leaching process, the
pH (pH electrode Inlab Micro, Mettler-Toledo GmbH, Columbus, OH, USA) and the redox
potential (ORP electrode InLab Redox Micro, Mettler-Toledo GmbH, Columbus, OH, USA)
were measured. The samples were filtered using vacuum filtration. The residues were
washed with deionized water and dried in an oven at 105 ◦C until a constant weight
was reached. A Bruker D4 Endeavor equipped with a 1D Detector LYNXEY (Bruker
Corporation, Billerica, MA, USA) using monochromatized Cu Kα radiation was used for
phase analysis of the leaching residues.

3. Results and Discussion
3.1. Characterization of the LLZO Samples

Two samples of calcined LLZO and one sample of sintered LLZO were used in this
study. In addition to leaching LLZO with different lixiviants, it was investigated whether
calcined and sintered LLZO exhibit different leaching characteristics.

The three LLZO samples had a similar chemical composition with a maximum stan-
dard deviation of 1.54 wt% for La (Table 1). As expected, the samples consisted mainly of
La, Zr, Ta, and Li with less than 1 wt% Al as a dopant. The quantitative analysis of light
elements in a heavy matrix is often difficult [29]. Therefore, the composition of stoichio-
metric Al-/Ta-substituted LLZO (Li6.45Al0.05La3Zr1.6Ta0.4O12) was calculated to determine
whether the measured values agreed with the theoretical values (last column in Table 1).
The measured and theoretical elemental contents were within a similar range, and no trend
toward over- or underestimation was observed. The Al content showed the largest relative
variation of all the elements measured, which could be due to Al uptake from the Al2O3
crucible used in the material processing [30,31]. In addition, this study was conducted
using actual production waste, rather than commercially purchased LLZO. Small variations
in chemical composition were, therefore, expected.

The calcined and sintered LLZO samples were prepared via solid-state synthesis with
multiple calcination steps to synthesize cubic LLZO phases (see Supplementary Material
S1). The XRD pattern in Figure 1 confirms that cubic LLZO is the main phase in all three
samples. The phase purity of the sintered LLZO #2 sample was confirmed, while the
calcined LLZO samples also contained secondary phases. For calcined LLZO #1, the main
reflex of the secondary phase La2Zr2O7 was determined. For calcined LLZO #2, there are
more secondary phases present. Due to the number of reflexes in LLZO and the limitations
of the XRD measurements, about 5%, the reflexes cannot be assigned to specific phases.
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The possible secondary phases include the precursors La2O3, Ta2O5, and ZrO2, as well as
LiZrO2 and La(AlO3).

Table 1. The chemical composition of the three samples was measured using inductively cou-
pled plasma optical emission spectroscopy (ICP-OES). The mean value and sample standard de-
viation were calculated. The theoretical composition of stoichiometric Al-/Ta-substituted LLZO
(Li6.45Al0.05La3Zr1.6Ta0.4O12) is displayed in the last column. All elements are reported in weight
percentage.

Element Calcined
LLZO #1

Calcined
LLZO #2

Sintered
LLZO #2

Mean
Value

Sample Standard
Deviation

Theoretical
Composition

Li 5.76 5.19 5.42 5.46 0.29 5.13
Al 0.66 0.51 0.66 0.61 0.09 0.15
La 42.72 40.17 42.95 41.95 1.54 47.72
Zr 15.35 14.56 14.40 14.77 0.51 16.72
Ta 6.69 6.57 7.10 6.79 0.28 8.29
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Figure 1. X-ray diffraction (XRD) patterns of calcined LLZO #1, calcined LLZO #2, and sintered LLZO
#2. The present phases are cubic LLZO (ICSD: 182312) and La2Zr2O7 (ICSD: 015165).

The particle size distribution of the samples was determined using laser diffraction.
Calcined LLZO #1 had a homogeneous particle size distribution with an x50 value of
11 µm (Figure 2a). Calcined LLZO #2 had an inhomogeneous particle size distribution
with two maxima (Figure 2b). In the calcined LLZO #2 sample, approximately 10% of the
particles were larger than 100 µm. These particles were probably agglomerates formed
by reaction with the Li precursor since the melting point of LiOH is 473 ◦C and, therefore,
below the calcination temperature [32]. The results of the calcined LLZO samples were in
agreement with the literature since as-synthesized LLZO powders typically range from 1 to
10 µm with particles up to 200 µm [33]. Due to their small particle size, the calcined LLZO
samples were used for the leaching experiments without further comminution. Sintered
LLZO #2 consisted of cylindrical pellets approximately 1 cm in diameter with varying
heights (Figure S2). To ensure good sample comparability during leaching, the sintered
LLZO #2 sample was dry milled in a vibratory disk mill to obtain a fine powder with
particles less than 100 µm (Figure 2c).
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3.2. Leaching in Water

The most readily available and inexpensive lixiviant is water, and it must be tested
before other lixiviants due to the possible presence of readily soluble metals in the LLZO
samples. When LLZO was leached in deionized water, only Li and Al were detected in the
leach solutions (Figure 3). As expected, the elements La, Ta, and Zr were not leached as
they form more stable oxidic structures.

The Li leaching efficiency was up to 56% after 3 h, with an average increase of 6% after
24 h (Figure 3). Garnets are known to be unstable in the presence of moisture from the
processing of LLZO components [33]. This instability is attributed to the Li+/H+ exchange
reaction between garnets and water, which causes Li loss from the garnet structure and the
formation of LiOH [34–37]:

Li7La3Zr2O12 + x H2O 
 Li7−xHxLa3La2O12 + x LiOH (2)

The reaction kinetics of Equation (2) are fast as the pH of the solution rises rapidly
from a neutral pH to 11–13 in a few minutes [38–40]. The increased pH indicates the
formation of a basic LiOH solution. A proton-enriched surface layer is formed, which then
inhibits further reaction of water with the inner of the particles. Therefore, a complete
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Li+/H+ exchange does not occur. In addition, LLZO powders are expected to have higher
Li leaching efficiencies than crushed LLZO pellets due to the increased surface area exposed
to water [34].
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Al was leached only from calcined LLZO #2 and sintered LLZO #2 (Figure 3). No
difference in leaching efficiency was observed between 3 and 24 h. It is generally accepted
that Al replaces Li sites in the LLZO structure to stabilize the cubic LLZO phase [41].
However, inhomogeneous Al distribution on the surface of LLZO particles has been
reported by Geiger et al. [30]. Differences in the way in which Al is incorporated into
the LLZO structure or is retained in the intergranular space as a secondary phase may lead
to variations in leaching behavior. The results of this study indicate that this difference in Al
incorporation has a greater effect on leaching than the material being calcined or sintered.
It is assumed that calcined LLZO #1 contained only Al-substituted LLZO while the other
two samples contained additional intergranular Al. However, high-resolution transmission
electron microscopy measurements of LLZO are challenging and beyond the scope of this
study. Nevertheless, a detailed crystal structure analysis could be an interesting aspect for
future research.

The XRD patterns of the leaching residues obtained after water leaching show mainly
cubic LLZO and Li2CO3 impurities (Figure 4). For sintered LLZO #2, protonated LLZO was
also found (indicated by an arrow). For the calcined LLZO #1 sample, minimal secondary
phases of La2Zr2O7 as well as La(AlO3) phase are present. For the calcined LLZO #2
sample, more secondary phases are present. Due to the number of reflexes in LLZO and
the limitations of the XRD measurements, the reflexes cannot be assigned to specific phases.
Here, a mixture of precursors, such as La2O3, Ta2O5, and ZrO2, could be among them but
also LiZrO2 and La(AlO3). In summary, the cubic LLZO structure is present in all samples
after water leaching.

In summary, water offers the opportunity to selectively leach up to 57% Li and 44%
Al from LLZO. The Al leaching efficiency may vary between different LLZO samples.
However, this finding is of less importance since Al is only a minor component in LLZO. In
addition, Al is a common impurity in leach solutions of conventional LIBs, and various
separation options, such as precipitation and ion exchange, have already been investi-
gated [42,43].

3.3. Leaching with Mineral Acids

Mineral acids, such as sulfuric acid and hydrochloric acid, are commonly used for the
leaching of black mass from conventional LIBs with a liquid electrolyte. The best leaching
results have been obtained at acid concentrations of 1.2–2.6 M for sulfuric acid and of
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2.8–4.0 M for hydrochloric acid, S/L ratios of 50–150 g/L, temperatures of 60–80 ◦C, and
leaching times of 1–2 h [21–23].
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Figure 4. XRD patterns of leaching residues after 24 h leaching in water for calcined LLZO #1, calcined
LLZO #2, and sintered LLZO #2. The present phases are cubic LLZO (ICSD: 182312), La2Zr2O7 (ICSD:
015165), Li2CO3 (ICSD: 066941), and La(AlO3) (ICSD: 090538).

Theoretical considerations suggest that strong acids at elevated temperatures are
required to leach sintered LLZO [27]. The first experimental investigations with garnet-
type Li5La3Nb2O12 [38] and Li6.25Al0.25La3Zr2O12 [28] confirmed that hydrochloric acid is a
suitable leaching agent. Therefore, this study explored these commonly used mineral acids
as lixiviants for the leaching of LLZO solid electrolyte. The following chemical reactions
are proposed for the leaching of stoichiometric Al- and Ta-substituted LLZO in sulfuric
acid (Equation (3)) and hydrochloric acid (Equation (4)):

Li6.45Al0.05La3Zr1.6Ta0.4O12 + 12H2SO4 
 3.225Li2SO4 + 0.025Al2(SO4)3 + 1.5La2(SO4)3 + 1.6Zr(SO4)2 + 0.2Ta2(SO4)5 + 12H2O (3)
Li6.45Al0.05La3Zr1.6Ta0.4O12 + 24HCl 
 6.45LiCl + 0.05AlCl3 + 3LaCl3 + 1.6ZrCl4 + 0.4TaCl5 + 12H2O (4)

In our study, almost complete dissolution of LLZO is achieved with 1 M sulfuric acid
and 1 M hydrochloric acid at room temperature, as shown in Figure 5. Leaching efficiencies
do not change significantly between 3 and 24 h for sulfuric acid but increase by up to 10%
for hydrochloric acid. In general, the calcined and sintered LLZO samples show similar
leaching behavior. The largest deviation was observed for Al, which could be due to the
variation in Al incorporation (see Section 3.2). Due to the almost complete leaching of
LLZO in the mineral acids, the leaching residues were not subjected to phase analysis.

Our results are in agreement with previously published studies [28,38]. Strong mineral
acids are effective lixiviants for the complete dissolution of LLZO. Furthermore, it was
shown that high leaching efficiencies can be achieved at low acid concentrations within 3 h
at room temperature.

3.4. Leaching with Organic Acids

Organic acid leaching is gaining increasing attention in battery recycling because
organic acids are biodegradable, can reduce process emissions, and can improve leach-
ing by metal complexation. In general, organic acids with a higher number of carboxyl
groups show better leaching efficiencies due to the higher stability of the metal complexes
formed. In addition, some organic acids have special properties. These include, among
others, formic acid, which can act as a reducing agent, and oxalic acid, which can form
metal precipitates that allow for selective leaching. Due to the large number of organic
acids, the optimal leaching conditions for black mass obtained from conventional LIBs are
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diverse [24–26]. To the best of the authors’ knowledge, there is no study on LLZO leaching
with organic acids available.
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Figure 5. Leaching efficiencies of the calcined and sintered LLZO samples in sulfuric acid after
3 h (a) and 24 h (b) and in hydrochloric acid after 3 h (c) and 24 h (d) (acid concentration = 1 M, S:L
ratio = 50 g/L, and T = 25 ◦C).

For this leaching study, we selected monocarboxylic acetic acid and formic acid,
dicarboxylic oxalic acid, and tricarboxylic citric acid as lixiviants. Many metal complexes
can be formed with the various organic acids studied. Stability constants for the individual
metal complexes can be found in the literature [44–46]. The organic acid leaching results of
the calcined and sintered LLZO samples after 3 h and 24 h are shown in Figure 6. To verify
the phases present after LLZO leaching, XRD analyses were performed on the residues
obtained after leaching for 24 h (Figure 7). The results of the individual acids are presented
and discussed in the following section.
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Figure 6. Leaching efficiencies of the calcined and sintered LLZO samples with organic acids:
acetic acid (a,b), formic acid (c,d), oxalic acid (e,f), and citric acid (g,h) (acid concentration = 1 M,
S:L ratio = 50 g/L, and T = 25 ◦C). The largest deviation in leaching efficiency was observed for Al,
which could be due to an inhomogeneous Al distribution within the samples (see Section 3.2).
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Figure 7. XRD patterns of leaching residues after 24 h of the calcined and sintered LLZO samples
with organic acids: acetic acid (a), formic acid (b), oxalic acid (c), and citric acid (d). the present phases
are cubic LLZO (ICSD: 182312), La2Zr2O7 (ICSD: 015165), Li2CO3 (ICSD: 066941), and La(AlO3)
(ICSD: 090538).

Among the organic acids studied, monocarboxylic acetic and formic acid achieved the
lowest leaching efficiencies (Figure 6a–d). Compared to the other constituents, Li and Al
had the highest leaching efficiencies. Formic acid had slightly higher Li and Al leaching
efficiencies than acetic acid. For example, the average Li leaching efficiencies were 53%
in formic acid and 46% in acetic acid after 24 h of leaching. La, Zr, and Ta achieved low
leaching efficiencies of less than 20%. The measured leaching efficiencies were supported by
the XRD analyses of the leaching residues (Figure 7a,b). Cubic LLZO as the main phase and
Li2CO3 impurities were present in all leaching residues obtained after leaching with acetic
acid and formic acid. A small amount of La(AlO3) was found in the residue of the calcined
LLZO #1 sample leached with acetic acid and in all residues leached with formic acid.
La2Zr2O7 was found in the calcined LLZO residues for both acids. In addition, secondary
phases were found in all residues of formic acid leaching (as described in Section 3.2). For
acetic acid, only the residue of the calcined LLZO #2 sample showed secondary phases, as
did the original sample before leaching. For the residue of the sintered LLZO #1 sample,
a protonated LLZO phase was found when leached in acetic acid, as was the leaching
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residue in water. Black mass leaching studies indicate a correlation between the leaching
efficiencies of organic acids and their physicochemical properties such as acid strength,
complexation ability, and stability of the complexes formed [25,47]. Our results for acetic
acid and formic acid confirmed that these weak organic acids were not able to dissolve
LLZO to a sufficient extent at the process parameters studied.

Dicarboxylic oxalic acid, a strong organic acid, showed high leaching efficiencies
comparable to the mineral acids, except for La (Figure 6e,f). La probably precipitated as
La oxalate, which could not be confirmed by XRD due to the low sample crystallinity
(Figure 7c) [48]. Most of the reflections were assigned to different La-rich phases, indicating
the formation of La oxalate, but this could not be fully determined at this point. Cubic
LLZO was no longer detected, and only minorities of the secondary phase La2Zr2O7 were
present, as shown by the low crystallinity of the residues. However, a calcination step
at 800 ◦C could produce crystalline La2O3 for resynthesis [49]. These results show that a
selective removal of La is possible during the leaching process, which simplifies the further
separation and purification process.

Tricarboxylic citric acid, a medium-strong organic acid, had the second-highest leach-
ing efficiency of the four organic acids studied (Figure 6g,h). Unlike acetic acid and formic
acid, citric acid also leached up to 50% of La, Zr, and Ta in 24 h. Cubic LLZO was the
main phase of the remaining leaching residues from both the calcined and sintered LLZO
samples. Small amounts of La2Zr2O7 were identified only in the calcined LLZO residues,
and small amounts of La(AlO3) were identified in the residue of the calcined LLZO #1
sample. In addition, secondary phases were present in the calcined LLZO residues (as
described in Section 3.2). Based on the results, citric acid may be suitable for complete
dissolution of LLZO if leaching conditions are optimized.

For future LLZO leaching studies, oxalic acid offers interesting possibilities for the
selective recovery of La. Citric acid may be an alternative to strong mineral acids for a
complete dissolution of LLZO. Although different secondary phases were observed in
the leaching residues, the cubic LLZO phase was still the main phase. This was true
for all organic acids studied except oxalic acid, where low crystalline La-rich phases
were detected.

3.5. Assessment of Lixiviants

A unique aspect of this investigation was the holistic acid screening approach of
LLZO solid electrolyte, making the study highly relevant for the development of flexible
hydrometallurgical recycling processes for future LIB generations. To evaluate the investi-
gated lixiviants, their technical performance was assessed using the following parameters:

• CRM leaching efficiency YCRM: a measure of Li, La, and Ta leaching efficiencies after
24 h normalized to 100%;

• Li selectivity SLi: a measure of how selectively a lixiviant transfers Li into the leach
solution after 24 h of leaching (≤1 unselective, >1 selective);

• La selectivity SLa: a measure of how selectively a lixiviant transfers La into the leach
solution—or the residue if La is not leached—after 24 h of leaching (≤1 unselective,
>1 selective);

• Increase in leaching efficiency ∆Y: average increase in leaching efficiencies of all
elements analyzed from 3 to 24 h, weighted according to the chemical composition of
the feed (<1—decrease in leaching efficiency, 1—no change in leaching efficiency, and
>1—increase in leaching efficiency);

• Share of residue after leaching wresidue: a measure of the proportion of the solid residue
in relation to the initial sample weight.

The results are shown in Table 2. The values highlighted in red are unfavorable, the
values in yellow are neutral, and the values in green are favorable. The equations used to
calculate the parameters are presented in Supplementary Material S5.
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Table 2. Assessment of the different lixiviants investigated for LLZO leaching shown as a heatmap
(green—favorable, yellow—neutral, and red—unfavorable).

Lixiviant CRM Leaching
Efficiency (%)

Li Selectivity
(-)

La Selectivity
(-)

Increase of Leaching
Efficiency (-)

Share of Residue
after Leaching (wt%)

Water 13.9 2.5 1.2 1 1.0 86.4
Sulfuric acid 95.1 1.1 1.0 1.0 3.4
Hydrochloric acid 93.6 1.0 1.0 1.0 4.7
Acetic acid 22.6 1.7 0.6 5.7 76.7
Formic acid 18.3 2.0 1.3 1 0.8 93.5
Oxalic acid 64.9 1.3 4.4 1 1.0 90.8
Citric acid 47.0 1.3 0.9 2.3 51.8

1 The La selectivity was calculated for the residue because La was not leached with these lixiviants.

Sulfuric acid and hydrochloric acid achieved the highest CRM leaching efficiencies in
this study, resulting in an almost complete dissolution of LLZO. Since leaching with these
two mineral acids is not selective for Li or La, a multi-stage purification and separation
process is required. Sulfuric acid is a cheap and commonly used lixiviant in conventional
LIB recycling processes. Furthermore, sulfuric acid is less corrosive and less fuming
than hydrochloric acid. Therefore, LLZO leaching with sulfuric acid should be further
investigated. The use of sulfuric acid could lead to flexible recycling processes of current
LIB generations being adapted to SSBs.

Despite having the lowest CRM leaching efficiency, water was the most selective
lixiviant for Li. The leaching reaction was considered complete after only 3 h, as no increase
in leaching efficiency was observed during the remainder of the experiment. Water could
be used in the first leaching stage of a hydrometallurgical SSB recycling process. Early in
the process, a significant amount of Li could be transferred to the solution and subsequently
recovered. Additionally, as investigated for conventional LIBs [50], early-stage Li recovery
is of particular interest as Li losses typically occur along the process chain. Moreover,
water is a cheap and non-hazardous lixiviant. The first leaching stage with water could be
followed by a second leaching stage with a strong acid. Based on the results of this study, a
two-staged leaching process using water and sulfuric acid would result in overall leaching
efficiencies of 100% for Li and Al, 95% for La, 94% for Zr, and 91% for Ta.

The CRM leaching efficiencies of the organic acids ranged between those of water and
those of the mineral acids. Acetic acid and formic acid selectively leached Li. However,
these acids are not suitable as selective lixiviants for Li because they also leached a small
amount of the other elements. As a result, Li could not be extracted directly from the leach
solution, and the solution would have to be purified first. The CRM leaching efficiency of
citric acid was 47%, and the leaching efficiency more than doubled from 3 to 24 h. Since the
study was conducted at a low acid concentration and room temperature, there is potential
to optimize the process parameters. Therefore, citric acid could be an alternative to sulfuric
acid for the complete dissolution of LLZO. Oxalic acid had a very high CRM leaching
efficiency of 64.9%, considering that La was almost quantitatively precipitated from the
leach solution. Therefore, oxalic acid offers interesting possibilities for the selective recovery
of La during leaching, which should be further investigated.

The results of this fundamental study on LLZO leaching indicate that sulfuric acid,
and possibly citric acid, could be suitable lixiviants to dissolve LLZO with high leaching
efficiencies in a single leaching step. Oxalic acid could be used as a selective lixiviant to
recover La as oxalate already during leaching. Water could be used as a selective lixiviant
for Li in a two-staged leaching process. These results lead to the two different process
approaches for LLZO leaching shown in Figure 8: either complete LLZO dissolution or
selective two-staged LLZO leaching.
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Figure 8. Process approaches for LLZO leaching based on the results of this study. Leaching with
citric acid is shown with a dashed line, as the process parameters will need to be optimized for
complete dissolution of LLZO.

When transferring the obtained fundamental results to SSB cells, a life-cycle engi-
neering approach will be required, taking into account not only the technical but also the
environmental and economic impacts.

4. Conclusions

This study fills the current knowledge gap on hydrometallurgical recycling of next-
generation SSBs containing Al- and Ta-substituted LLZO. By providing new insights into
the leaching behavior of LLZO, the results will assist in the selection of suitable leaching
strategies for hydrometallurgical recycling. Since SSB production wastes from the ramp-up
of industrial production are the first expected material flows for future recycling processes,
this study presents a holistic acid screening with actual LLZO production wastes. The
results promote the development of flexible recycling routes with options for complete and
selective LLZO dissolution.

The experimental results show that LLZO is almost completely dissolved in strong
acids under the mild process conditions investigated. Sulfuric acid and hydrochloric acid
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almost completely dissolved LLZO with leaching efficiencies above 90%. Since sulfuric acid
is a cheap and commonly used lixiviant in conventional LIB recycling processes, the use
of sulfuric acid could lead to such recycling processes being adapted to SSBs. Oxalic acid
also almost completely dissolved LLZO, but it simultaneously precipitated La as oxalate,
with leaching efficiencies above 92% for the other elements. The use of oxalic acid allows
La to be separated from the other elements early in the process and makes the subsequent
purification process less complex.

A possible selective LLZO leaching approach consisting of a two-staged leaching
process could be pursued with water and a strong acid. It was demonstrated that up to 57%
of Li was selectively leached with water. When LLZO is first leached in water, a significant
amount of Li could be transferred to the solution and subsequently recovered early in
the process. Early-stage Li recovery is of particular interest because Li losses typically
occur along the process chain. According to our results, the proposed two-staged leaching
process using water and sulfuric acid could result in overall leaching efficiencies of 100%
for Li and Al, 95% for La, 94% for Zr, and 91% for Ta.

The experimental results provide vital knowledge for the development of highly
efficient recycling processes for SSBs containing LLZO. After further process insights have
been gained through LLZO leaching optimization experiments, it should be determined
whether the test parameters found for pure LLZO can be transferred to mechanically
processed SSB cells that also contain electrode-active materials.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/met13050834/s1. S1: LLZO powder synthesis; S2: Thermal
treatment of aged calcined LLZO; S3: Sintered LLZO pellets; S4: Elemental concentration of the
pregnant leach solutions; S5: Calculations for the assessment of lixiviants; Figure S1: Thermal
treatment of calcined LLZO #1 at 750 ◦C for 4 h under air atmosphere; Figure S2: Sintered LLZO
#2 before grinding; Table S1: Elemental concentration of the pregnant leach solutions after 24 h
of leaching.
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