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Abstract: This research investigates the tribological behavior of advanced open-cell porous AlSi10Mg-
SiC composites fabricated using the novel replication method of NaCl space holders. These composite
materials have potential applications in lightweight and high-strength structures that require high
resistance to friction and wear. The composites were tested using a pin-on-disk method under dry
sliding-friction conditions at ambient temperature, with a sliding velocity of 1.0 m·s−1 and an applied
load of 50 N. The resulting wear parameters, including the coefficient of friction (COF) and mass
wear, provided quantitative measures of the tribological behavior. Microstructural observations of
the worn composite surfaces were carried out using scanning-electron microscopy (SEM) to study
the wear mechanisms, and an elemental analysis was performed using X-ray energy-dispersive
spectroscopy (EDS) to examine the elemental composition. The results showed that the AlSi10Mg-SiC
composites had lower mass wear and COF than the open-cell porous AlSi10Mg material under the
same experimental conditions. Three different machine learning (ML) models were employed to
predict the COF of the composites, and their performances were evaluated using the R2, MSE, RMSE,
and MAE metrics on the validation and test sets.

Keywords: AlSi10Mg-SiC; aluminum-metal-matrix composites; wear behavior; mass wear; coefficient
of friction; machine-learning models

1. Introduction

Due to their distinctive characteristics and versatile applications across different
domains, composite materials have attracted considerable interest and attention. In this
regard, researchers have explored different methods with which to fabricate advanced
composite materials with enhanced properties. One of these methods is the replication of
NaCl space holders, which allows precise control over the porosity and morphology of the
resulting composite material [1–3].

Researchers have conducted extensive studies on open-cell aluminum-metal-matrix
composites (AMMCs) due to their remarkable properties, which have found widespread
applications in various functional and structural engineering applications. For instance,
AMMCs that are reinforced with graphite are used to develop wear-resistant and lightweight
cylinder liners for internal combustion engines [4]. Furthermore, AMMCs that are rein-
forced with SiC are employed in the manufacturing of energy-saving brake rotors used in
automobiles due to their high thermal conductivity and wear resistance [5].

The replication method is one of the most commonly employed processes for produc-
ing AMMCs due to its simplicity in the experimental part and the high level of control
it offers over the size, form, and pore distribution of the final porous AMMC structure
(AMMC skeleton) [6]. This method involves the fabrication of a preform, which may be
composed of various space holders, such as carbamide [7], NaCl [8–13], magnesium [14],
Acrowax [15], ammonium bicarbonate [16], saccharose [17], and potassium carbonate [18].
Among these space holders, NaCl is one of the most prominent; it has been extensively
studied and used in the fabrication of porous metal structures.

Metals 2023, 13, 814. https://doi.org/10.3390/met13040814 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met13040814
https://doi.org/10.3390/met13040814
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-5226-4759
https://orcid.org/0000-0003-3543-0636
https://doi.org/10.3390/met13040814
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met13040814?type=check_update&version=1


Metals 2023, 13, 814 2 of 14

Various types of reinforcing phase (RP) are incorporated to enhance the hardness
and wear resistance of the softer matrix in AMMCs. Ceramic materials, such as silicon
carbide (SiC) [19–22], alumina (Al2O3) [19,23–25], boron carbide (B4C) [26], titanium carbide
(TiC) [27,28], and graphite (Gr) [29,30] are some of the most commonly used RP materials
due to their excellent tribological behavior. In particular, SiC is an appropriate option for
reinforcing AMMCs due to its high tensile and compressive strength, hardness, stiffness,
and thermal stability, as well as its excellent wear resistance.

Liquid-state processing is a widely used method for the production of AMMCs due to
its cost-effectiveness and the ability it offers to distribute reinforcement effectively. This
method involves mixing the metal matrix and reinforcement material in a liquid state,
which allows the uniform distribution of the reinforcement material throughout the matrix.
Additionally, this process enables the use of a wide range of reinforcement materials with
varying properties, shapes, and sizes, which provides flexibility in the design of composites.
By using the liquid-state-processing technique, it is possible to manufacture intricate
geometries and near-net-shaped components, resulting in decreased material wastage and
machining expenses. These advantages make liquid-state processing a popular and efficient
method for the fabrication of AMMCs [31–33].

The authors of [34] investigated the effect of combined squeeze-casting and stir-casting
processes on the microstructural, mechanical, and wear properties of Al5083 reinforced
with 20–30 wt. % SiCp. The experimental findings indicated that the combination of casting
techniques enhanced the dispersion of the SiCp, minimized the porosity, and improved
the mechanical and wear properties in comparison to using only the stir-casting method.
The primary wear mechanism observed in all the composites was the delamination of
the friction layer. Khadijeh M. et al. [35] were successful in synthesizing AMMCs using a
process that involved the pressure-assisted melt infiltration of Al into SiC preforms. The
addition of water to the process led to improved wetting and bonding between the metal
and preform, resulting in AMMCs with higher compressive-strength values compared to
other materials. The composites demonstrated elevated levels of hardness, with the Al-SiC
(75 wt. %) composite displaying the greatest compressive strength. This strength was
attributed to the Orowan strengthening mechanism. Furthermore, the development of a
tribological layer on the surfaces of the Al-SiC (67 wt. %) and the Al-SiC (75 wt. %) resulted
in improved wear resistance in comparison to the Al alloy. According to Jiang W et al. [36]
the addition of 2 wt. % of SiC particles as reinforcements combined with the use of squeeze
casting is an effective way to improve the tensile and yield strength, as well as the hardness,
of 6082 aluminum alloys due to the more uniform distribution of the reinforcement. Du
Yuan and Xiong Yang [37] reported the development of high-strength and high-toughness
nano-SiCp/A356 composites using ultrasonic vibration and squeeze-casting techniques,
demonstrating that the addition of 2 wt. % nano-sized SiC particles significantly improves
the mechanical properties of composite materials. The study by V. Chakkravarthy et al. [38]
revealed that the addition of TiN, SiC, and Nb particles improves the microhardness and
wear resistance of composite materials. Their study concludes that the microstructural
changes induced by the addition of these particles are responsible for improvements in the
mechanical properties and wear resistance of composite materials. The authors Navya Kota
et al. [39] reviewed the current status and applications of interpenetrating phase composites
(IPCs), discussed various processing routes for fabricating open porous ceramic preforms,
and evaluated different melt-infiltration techniques based on the results presented by
other authors. They summarized that Al-Si/SiC IPCs can be fabricated by infiltrating
SiC foams obtained via the replication method using Al-Si alloys through the squeeze-
casting method. The composites showed significant improvements in hardness compared
to the unreinforced Al-Si alloy, with the finer-pore-size foam composite demonstrating
the greatest hardness. The SEM analysis confirmed a well-bonded interface with no
intermediate reaction products.

Machine learning (ML) is an area of artificial intelligence that helps computer systems
to enhance their performances through experience and without the requirement of explicit
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programming. It involves the development of algorithms and statistical models that
can analyze and draw insights from data to make predictions or decisions. Machine
learning has been widely applied in different fields for over two decades, and these
applications have expanded beyond computer science. In particular, the integration of
ML and material science has enabled the prediction of output measurements, such as
hardness [40], tensile strength [41], the volume loss of AA7075-Al2O3 composites [23],
and the additive manufacturing of AlSi10Mg-TiCN composites with tailorable mechanical
behavior [42]. By utilizing machine-learning techniques, scientists and engineers can
analyze complex data sets to make predictions about the behavior of materials, improving
the efficiency and effectiveness of materials research. Furthermore, ML methods can
produce encouraging outcomes with relatively small datasets, even though they necessitate
substantial amounts of data. However, further elaborations on the specific applications and
benefits of machine learning in various fields could help to provide a more comprehensive
understanding of its utility.

The aim of this study was to investigate the tribological behavior of open-cell AlSi10Mg-
SiC composites that were produced using a novel fabrication technique. The pin-on-disk
method was employed to evaluate the wear parameters, including the mass wear and
coefficient of friction (COF), under dry sliding-friction conditions at ambient temperature.
Scanning-electron microscopy (SEM) was also conducted to investigate the wear mech-
anisms, while the elemental composition of the composites was examined using X-ray
energy-dispersive spectroscopy (EDS). The results of this study provide valuable insights
into the potential applications of AlSi10Mg-SiC composites and their tribological behavior
under specific working conditions.

In addition, machine-learning algorithms were utilized to predict the COF of the
AlSi10Mg-SiC composites under dry sliding conditions. Three different ML models, namely
Random Forest, Decision Tree, and Extreme Gradient Boosting, were implemented to
predict the wear behavior of the composites. The performances of these models were
evaluated on the validation and test sets using various metrics, such as the coefficient of
determination (R2), mean squared error (MSE), root mean squared Error (RMSE), and mean
absolute error (MAE).

The AlSi10Mg alloy has good castability, high strength, and excellent corrosion re-
sistance. On the other hand, SiC is recognized for its exceptional strength, hardness, and
stiffness. The combination of the squeeze-casting process and the incorporation of SiC
particles into the AlSi10Mg matrix produced a porous open-cell-composite test specimen
with enhanced tribological and mechanical properties, making it suitable for a range of
applications, such as the production of slide-contact bearings. This research builds upon
previous studies in which open-cell AMMCs were produced employing the replication
method [43], and their skeletons were infiltrated with tin-based babbitt [12,13,44,45].

2. Materials and Methods
2.1. Production Method and Materials

The production process of open-cell AlSi10Mg-SiC composite (composite skeleton)
is illustrated in Figure 1. The fabrication process involved the replication method for
the preparation of the preliminary preform and squeeze casting for the infiltration of
the obtained preliminary preform with AlSi10Mg alloy. The process of fabricating the
composite skeleton started with the preparation of the preliminary preform with the
desired porosity, via the replication method.

To obtain the preliminary preform, a mixture of 5 wt. % SiC particles, 6 wt. %
water, and NaCl particles used as soluble space holder was homogenized in a 3D powder
blender. The homogenized mixture was then compressed with a pressure of 1.5 MPa into
a steel cylinder. The “green” compacts were first dried in a furnace at 200 ◦C for 2 h to
remove moisture. Subsequently, the green dried compacts were sintered in a furnace at
800 ◦C ± 1 ◦C for 1 h, followed by cooling at room temperature to obtain the salt leachable
preform.
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Figure 1. Production process of open-cell AlSi10Mg-SiC composite.

The process continued with the infiltration of the NaCl preforms with the Al-based
alloy. The salt preforms were preheated and positioned in a die at a temperature of
680 ◦C ± 2 ◦C, following which they were subjected to infiltration by molten AlSi10Mg
alloy using the squeeze-casting method. An applied pressure of 80 MPa for 60 s was used
during the process. The molten alloy filled the voids in the salt preform, resulting in the
formation of the AlSi10Mg-SiC skeleton.

After cooling down to room temperature, the obtained composite material was sub-
jected to removal of the space holder via dissolution in hot distilled water at a temperature
of 70 ◦C using an ultrasonic apparatus. The resulting open-cell AlSi10Mg-SiC composite
exhibited a high strength-to-weight ratio, excellent corrosion and wear resistance, and
good thermal and electrical conductivity. This composite has diverse applications across
multiple industries, including aerospace, automotive, and biomedical, due to its unique
combination of properties.

The AlSi10Mg alloy (refer to Table 1) was chosen based on its desirable characteristics,
including its light weight, flexibility during post-processing, and excellent thermal and
mechanical properties. The reinforcement of the material was achieved by incorporating
SiC particles that ranged in size from 300 to 400 µm. To control the sizes of the pores, NaCl
particles with a size range of 800 to 1000 µm were employed.

Table 1. AlSi10Mg-alloy composition.

Element Si Fe Cu Mn Mg Ni Zn Pb Sn Ti Al

Concentration, wt. % 9.0–11.0 0.55 0.05 0.45 0.2–0.45 0.05 0.10 0.05 0.05 0.15 rest

2.2. Characterization Methods

Ducom Rotary (Pin/Ball-on-Disk) tribometer, TR-20 Ducom model (Ducom Instru-
ments Pvt. Ltd. Ducom, Bangalore, India), was utilized to determine the wear properties
of all test specimens. A pin-on-disk system was employed to carry out dry-wear tests on
test specimens. The specimens were machined by lathe to achieve the desired height and
diameter dimensions for the wear test. The test specimens were prepared with a spherical
tip and machined to the desired dimensions of 20 mm in height and 10 mm in diameter.
The wear-test parameters included a linear velocity of 1.0 m·s−1, a load of 50 N, and sliding
distance of 420 m. The data-acquisition system of the tribological equipment was used to
calculate the coefficient of friction (COF). The wear experiments were conducted using a
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counter disk of EN-31 steel hardened to 62 HRC and with a diameter of 140 mm (surface
roughness: 1.6 Ra) (refer to Table 2).

Table 2. EN-31-steel composition.

Element C Si Mn Cr Si Fe

Concentration, wt. % 0.90–1.20 0.10–0.35 0.30–0.75 1.00–1.60 0.20 rest

The worn surfaces of the AlSi10Mg-SiC composites after the wear tests were examined
using scanning-electron microscopy (SEM), SH-5500P model (Hirox Japan Co. Ltd. Hirox,
Tokyo, Japan). The SEM images provided valuable insights into the types of wear that
occurred, such as adhesive wear and abrasive wear. These wear mechanisms complemented
the wear-parameter measurements, such as coefficient of friction and mass wear, and
helped to provide a more comprehensive understanding of the tribological behavior of
the composites. For chemical micro-analysis, an X-ray energy-dispersive spectroscopy
(EDS) system, QUANTAX 100 Advanced model (BRUKER, Kontich, Belgium Bruker), was
used. For the homogenization of the space-holder particles, 3D powder blender—WAB
T2F Turbula Heavy-Duty Shaker-Mixer (Willy A. Bachofen AG, Muttenz, Switzerland) was
employed.

2.3. Approaches for Machine-Learning Models

Machine-learning models are computational algorithms that learn from data to un-
cover patterns, insights, and relationships that can be used to make decisions or predictions.
In supervised learning, a type of machine learning, these models are trained on labeled
data, under conditions in which inputs and the desired outputs are known. One class of
supervised-learning algorithm is regression models, which are used to predict continuous
numerical values, such as the wear of AMMCs. This study utilizes recent advances in
machine learning to predict the coefficient of friction as a function of sliding distance of
the AlSi10Mg-SiC skeleton. The approach we take is inspired by the methods outlined in
a recent manuscript by Fatih A. et al. [46] on predicting wear. Our objective is to create
a ML-based predictive model that can accurately predict the wear behavior of AMMCs
with only a limited dataset. As we develop the model, we will continue to expand our
dataset and establish correlations between the technological and experimental variables
based on the insights we gain from this manuscript, which will be useful for future studies.
In this way, we can refine our predictive model and gain a deeper understanding of the
relationships between various factors that affect the wear behavior of AMMCs.

This study uses three supervised-machine-learning regression models: Decision Tree
(DT) [47], Random Forest (RF) [48], and Extreme Gradient Boosting (XGB) [49]. We compare
the results of these models to determine which is the most effective for our purposes.
Decision Tree is a non-parametric model that splits data into smaller subgroups based on a
set of rules. It works by dividing data into increasingly small subsets based on the input
features, until the subsets contain only one class or the prediction of the target variable.
The resulting tree can be utilized to make predictions for new data points by following
the branches of the tree based on the input feature values. Random Forest is an ensemble
model that consists of multiple decision trees. To arrive at a final prediction, the algorithm
constructs each decision tree using a subset of the available data and subsequently calculates
an average of the predictions made by each tree. This method can help to reduce overfitting
and improve the accuracy of predictions. Extreme Gradient Boosting is another ensemble
model that consists of multiple weak models, such as Decision Trees, which are trained
sequentially. It works by iteratively adding Decision Trees to the model, with each new
tree focusing on data points that are not well predicted by the previous trees. The use of
this method has the potential to enhance prediction accuracy by reducing the presence of
bias and variance in the model. All of these models can be used for prediction of wear of
AMMCs, and each has its strengths and weaknesses. The choice of model is based on the
distinctive attributes of the data and the desired levels of accuracy and interpretability.
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All implementations were coded in the Python programming language. Machine
learning involves a set of steps that typically follow a general block diagram (refer to
Figure 2). We started by collecting relevant data from the actual pin-on-disk experiments.
Once the data were collected, they were preprocessed, which involved cleaning, trans-
forming, and organizing the data before using them for machine learning. The script then
trained the model with the best hyperparameters on the training set and evaluated its
performance on the validation and test sets using various metrics, such as R2, RMSE, MSE,
and MAE. In ML, a model is usually trained on a training set and then evaluated on a
separate set of data, which can be either a validation set or a test set. The validation set
is used during training to tune hyperparameters and to monitor the performance of the
model during the training process. The goal of tuning the hyperparameters is to find the
best combination of settings that produces the best performance on the validation set. After
the model has been trained and the hyperparameters have been optimized, it is evaluated
on a test set to estimate how well it will perform on new, unseen data.
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Figure 2. Overview of the steps involved in machine learning: a general block diagram.

To ensure consistency and comparability with the findings of Fatih et al. [46], we uti-
lized the hyperparameters they specified for the three machine-learning models described
in our study. Specifically, the hyperparameters stated in their manuscript were used to
configure the tuning hyperparameters for each model independently, as we intended to
identify the optimal configuration for each model.

3. Results and Discussion
3.1. Microstructure

The SEM images of the test specimen after the wear tests are presented in Figure 3,
with distinct zones indicated by markers, which were taken after conducting tribological
experiments with a linear speed of 1.0 m·s−1, a load of 50 N, and a sliding distance of 420 m.
The analysis results from the EDS can be found in Tables 3 and 4, as well as in Figure 4.

Table 3. EDS analysis of the wear surface of AlSi10Mg material in selected zones from Figure 3a, at a
load of 50 N and linear speed of 1.0 m·s−1, mass norm., %.

Analysis No. Al Fe Si Other

1 91.28 0.68 5.53 rest

2 50.03 40.94 5.12 rest

Table 4. EDS analysis of the wear surface of AlSi10Mg-SiC skeleton in selected zones from Figure 3b,
at a load of 50 N and linear speed of 1.0 m·s−1, mass norm., %.

Analysis No. Al Si Fe Other

1 27.50 72.50 – –

2 54.17 7.74 37.21 rest
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Figure 3. SEM images of post-tribological tests of two different materials: (a) AlSi10Mg material, low
magnification, at ×87; (b) AlSi10Mg-SiC composite, high magnification, at ×300; (c) AlSi10Mg-SiC
composite, low magnification, at ×81 with wear track and direction indicated.
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Figure 4. EDS spectra of post-tribological tests of two different materials: (a) related to Table 3,
analysis 1, AlSi10Mg material; (b) related to Table 3, analysis 2, AlSi10Mg material; (c) related
to Table 4, analysis 1, AlSi10Mg-SiC composite; (d) related to Table 4, analysis 2, AlSi10Mg-SiC
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After conducting a tribological experiment with a counter-steel body, the test specimen
experienced abrasion and adhesion. The abrasion occurred when the sharp asperities on the
surface of the steel body interacted with the surfaces of the AlSi10Mg material (skeleton)
and AlSi10Mg-SiC (composite skeleton), causing the removal of material from the test
pin surface in the form of wear debris. The primary wear mechanism observed under
the specified load and linear speed was abrasive wear. This was suggested by the wear
direction and wear scar observed on the contact zone indicated with an arrow in Figure 3a,b.
The abrasive wear mechanism was expected to be more dominant due to the presence of
pores in the material, which may have acted as stress concentrators and make the material
more prone to abrasive wear.

Adhesion, on the other hand, occurs when the opposing surfaces come into direct
contact and adhere to each other due to the attractive forces between them. During the
tribological process, the tested pin surface experienced localized plastic deformation, which
caused the surface to become rough and enhance the adhesion mechanism. As a result,
material from the steel body was transferred to the AlSi10Mg material and the composite
surface (refer to Figure 4a,b, and Tables 3 and 4), leading to adhesive and abrasive wear,
shown with an arrow in Figure 3a,b.

The markings in Figure 3a highlight two zones in which the EDS analysis was con-
ducted on a skeleton with pore sizes of 800 ÷ 1000 µm. The EDS-analysis results in Table 3
and the EDS spectra in Figure 4a indicate the presence of aluminum as the dominant peak
in zone 1, followed by small peaks of Fe, Si, Mg, Cu, and Mn. The EDS-analysis results
in Table 3 and the EDS spectra in Figure 4b indicate the presence of a secondary peak of
iron in zone 2, which was caused by the interaction between the steel counterbody and the
composite skeleton, resulting in the removal of material from both surfaces in the form of
wear debris.

The findings from the first EDS analysis in Table 4 and the EDS spectra in Figure 4c
suggest the incorporation of the SiC reinforcement into the pore walls of the composite
skeleton. The second EDS analysis in Table 4 and the EDS spectra in Figure 4d indicate
the presence of iron in the composite skeleton. This was due to the abrasion mechanism,
which occurred when the sharp asperities on the surface of the steel counterbody interacted
with the surface of the composite skeleton, causing the removal of material from the pin
specimen’s surface in the form of wear debris.

3.2. Wear Behavior

The conducted pin-on-disk test of the porous open-cell-composite test specimen of
AlSi10Mg reinforced with SiC particles, compared with the AlSi10Mg material under the
test conditions of a load of 50 N and a linear speed of 1.0 m·s−1 at room temperature,
showed that the composite skeleton had a lower coefficient of friction than the skeleton (as
in Figure 5).
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Specifically, the composite skeleton had a coefficient of friction of 0.493 (SEM = 0.0068),
which was lower than the skeleton’s coefficient of friction of 0.518 (SEM = 0.0096). There-
fore, the composite skeleton showed a 4.82% improvement in terms of the coefficient of
friction compared to the unmodified skeleton under the given testing conditions. This
slight improvement suggests that the measured values for the coefficient of friction of
the composite skeleton and the skeleton fell within the limits of the measurement error
resulting from the scattering of the results.

The pin-on-disk test results showed that the composite skeleton had a mass wear of
2.3 mg (SEM = 0.36), while the skeleton had a mass wear of 6.7 mg (SEM = 0.29). Therefore,
the mass wear of the composite skeleton was 65.7% lower than that of the skeleton under
the given test conditions (refer to Figure 6). This indicates that the incorporation of the
SiC reinforcement into the pore walls of the composite skeleton resulted in improved
wear resistance compared to the unmodified skeleton. The SiC particles in the composite
skeleton may have acted as reinforcements and improved the strength and wear resistance
of the material. The lower mass wear in the composite skeleton may also have been due
to the improved lubrication properties provided by the SiC particles, which may have
reduced the contact and adhesion between the sliding surfaces, thereby reducing the
wear. Overall, the results suggest that the porous open-cell composite test specimen of
AlSi10Mg reinforced with SiC particles had superior tribological properties compared to
the unmodified AlSi10Mg material.
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under dry friction conditions at room temperature.

3.3. Prediction of the Coefficient of Friction

Machine-learning algorithms were utilized to predict the COF of the AlSi10Mg-SiC
composites under dry sliding conditions. The three different ML models, namely RF,
DT, and XGB, were implemented to predict the wear behavior of the composites. The
performances of these models were evaluated on the validation and test sets using various
metrics, such as R2, RMSE, MSE, and MAE [50–52]. Table 5 provides the comparative
performance results of the ML models in terms of their performance metrics on the test set,
while Table 6 provides the comparative performance results of the ML models in terms of
their performance metrics on the validation set.

Table 5. Test-set performance metrics.

Metric Type R2 MSE RMSE MAE

ML Model Score

XGB 0.9951 0.0000 0.0062 0.0045

RF 0.9393 0.0005 0.0219 0.0094

DT 0.7744 0.0018 0.0421 0.0198
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Table 6. Validation-set performance metrics.

Metric Type R2 MSE RMSE MAE

ML Model Score

XGB 0.9907 0.0001 0.0122 0.0058

RF 0.9443 0.0008 0.0274 0.0116

DT 0.6562 0.0046 0.0681 0.0249

The coefficient of determination, or R2, is a statistical measure used to evaluate the
performances of regression models in machine learning. It indicates how well the model
fits the data by measuring the proportion of the variance in the dependent variable that can
be described by the independent variables. The R2 value ranges from 0 to 1, where a value
of 1 indicates that the model perfectly fits the data. The formula for R2 is as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1

(
yi −

−
y
)2 (1)

where:
n is the number of samples in the dataset;
yi is the actual value of the target variable for the i-th sample;
ŷi is the predicted value of the target variable for the i-th sample;
ȳ is the mean value of the target variable.
The MSE is a common metric employed to evaluate the performances of regression

models. This metric calculates the mean of the squared differences between the predicted
and actual values. The formula for the MSE is as follows:

MSE =
1
n∑n

i=1(yi − ŷi)
2 (2)

where n, yi, and ŷi (i = 1, 2, . . . , n) are the same as in (1).
The RMSE is a metric used to evaluate the accuracy of a regression model. It calculates

the square root of the average of the squared differences between the predicted and actual
values, providing a measure of the average distance between the predicted and the actual
values. The formula for the RMSE can be expressed as:

RMSE =

√
1
n∑n

i=1

(
yi,pred − yi,true

)2
(3)

where:
n is the number of samples;
yi,pred is the predicted value for the i-th sample;
yi,true is the actual value for the i-th sample.
The MAE is a metric used in regression analysis to determine the average absolute

difference between the actual and predicted values. The calculation of the MAE can be
expressed as:

MAE =
1
n∑n

i=1 |y i − ŷi| (4)

where n, yi, and ŷi (i = 1, 2, . . . , n) are the same as in (2).
To prevent the positive and negative errors from cancelling each other out, the absolute

difference between the actual and predicted values was computed. The MAE score ranged
from 0 to ∞, with lower values indicating better performance.

The results of our study demonstrate that the XGB algorithm outperformed the RF and
DT algorithms in terms of both the test-set and the validation-set performance metrics. On
the test set, the XGB achieved an R2 score of 99.51%, while the RF and the DT achieved R2
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scores of 93.93% and 77.44%, respectively. The XGB also had the lowest MSE (0.0000) and
RMSE (0.0062) values, indicating its superior predictive accuracy. On the validation set, the
XGB and the RF showed similar performance levels, with R2 scores of 99.07% and 94.43%,
respectively. The DT had a significantly lower R2 score, of 65.62%. However, the XGB still
outperformed the RF in terms of MSE (0.0001 vs. 0.0008) and RMSE (0.0122 vs. 0.0274),
while the RF had a slightly lower MAE value (0.0116 vs. 0.0058) compared to the XGB.

Overall, our results suggest that XGB is the best-performing algorithm for predicting
the coefficient of friction based on the sliding distance measured, as it achieved the highest
accuracy and lowest error values on both the test and the validation sets. These findings
could have important implications for improving our understanding of tribological pro-
cesses and may help to guide the development of more efficient lubrication strategies. The
comparison of the performances of three machine-learning models in predicting the COF
for the composite skeleton is presented in Figure 7.
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Figure 7. Comparison of the performances of three machine-learning models in predicting the
coefficient of friction for a composite skeleton under dry sliding conditions at room temperature with
a 50-N load, 1.0-m·s−1 linear speed, and 420-m sliding distance. The figure displays the actual and
predicted output values for each model. The models tested were: (a) Random Forest; (b) Extreme
Gradient Boosting; and (c) Decision Tree.

4. Conclusions

This study investigated the tribological behavior of AlSi10Mg-SiC composites pro-
duced using a novel fabrication technique. The wear parameters, such as the mass wear
and coefficient of friction, were evaluated using the pin-on-disk method under dry sliding-
friction conditions at ambient temperature. The wear mechanisms were investigated using
scanning-electron microscopy, while the elemental composition was examined using X-ray
energy-dispersive spectroscopy. The incorporation of SiC reinforcement particles into
the composite resulted in a 4.82% improvement in the coefficient of friction and a 65.7%
reduction in the mass wear compared to the unmodified skeleton.

Machine-learning algorithms, namely Random Forest, Decision Tree, and Extreme
Gradient Boosting, were utilized to predict the COF of the composites under dry sliding
conditions. The performances of these ML models were evaluated on the validation and
test sets using various metrics, such as R2, MSE, RMSE, and MAE. These results show
that the Extreme Gradient Boosting model had the best performance on both the test set
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and validation set, with the highest R2 and lowest RMSE and MAE values. The Random
Forest model had the second-best performance, with moderately high R2 and RMSE values,
but higher MSE and MAE than the Extreme Gradient Boosting model. The Decision Tree
model had the worst performance on both sets, with the lowest R2 and highest MSE, RMSE,
and MAE values. These results indicate that machine learning can be a valuable tool for
predicting tribological behavior and optimizing composite materials.

In the future, we plan to expand our dataset and explore the correlations between
technological and experimental variables based on the insights gained from this manuscript,
with the goal of refining and improving our predictive model. In this way, we aim to
enhance our understanding of the factors that affect the wear behavior of AMMCs and
achieve more accurate and reliable predictions in the future.

The outcomes of this study have important implications for the development of
high-performance composite materials. By incorporating SiC reinforcement particles, it
is possible to enhance the tribological behavior of AlSi10Mg-SiC composites. The use
of machine-learning algorithms can also provide valuable insights into the behavior of
these materials and facilitate the development of optimized composite structures. Further
research is needed to explore the potential of AlSi10Mg-SiC composites with different
reinforcement-particle contents, as well as the application of machine-learning algorithms
for predicting the tribological behavior of other composite materials. These efforts could
lead to the development of new, high-performance materials with a wide range of industrial
applications, including, but not limited to, the machinery and automotive industries.
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