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Abstract: The effects of alloying elements (Si, Cr, Mo) on the solution and diffusion of oxygen (O)
atoms at the grain boundary of iron (Fe) Σ5(310)/[001] are investigated by the simulations of ab
initio density functional theory (DFT). It is found that Si, Mo and Cr prefer to segregate to the grain
boundary, and further affect the solution and diffusion of O atoms at Fe grain boundaries. The
segregated Cr promotes the solution of O, while Si and Mo inhibit the solution of O at the grain
boundary. Meanwhile, Cr and Si accelerate the diffusion of O, and Mo retards the diffusion of O in
the grain boundary. Further analysis indicates that the effects are closely related to the interactions
between the alloying elements and O atoms, which are determined by the competition between the
distortion of local structure and the charge transfer between local atoms. Finally, the effects of alloying
elements on the O concentration distribution near the grain boundary are explored by employing the
Langmuir–McLean models. This work not only provides insights into the effects of alloying elements
on the solution and diffusion of O at grain boundaries, but also provides parameters of the atomic
interactions for the initial oxidation simulation on a large scale, which relates to the growth of oxide
in polycrystalline systems with various grain sizes at experimental temperatures.

Keywords: iron grain boundary; alloying elements; oxidation corrosion; first-principles calculation;
solution and diffusion

1. Introduction

Oxidation corrosion of steels is a common phenomenon in industry, and attracts more
and more attention in some extreme environments, such as at high temperature and under
irradiation in nuclear reactors. In the development of nuclear reactors, ferritic/martensitic
(F/M) steels with an α-iron (α-Fe) matrix [1–4] are candidates for structural materials
due to their outstanding properties, such as high thermal conductivity, low coefficient of
expansion and excellent radiation resistance [5]. As structural materials, F/M steels are
oxidized as they are exposed to the coolant of air, water or liquid metal containing oxygen
(O) in addition to strong irradiation [6,7]. Oxidation can effectively reduce the continuous
corrosion from the environment, while it would reduce thermal conductivity, and increase
the risk of slag precipitation [8]. Therefore, controlling and estimating the oxidation scale
of steels are crucial for improving the thermal efficiency and safety of nuclear reactors.

Experimental studies indicate that the oxidation of F/M steels in contact with wa-
ter/liquid metal presents a multi-layer structure, including a porous outer layer of mag-
netite, a dense inner layer of spinel and an internal oxidation zone (IOZ) enriched with
alloying elements. The composition of the inner layer and IOZ depends on the type and
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proportion of alloying elements in steels [9]. In 9Cr-T91 steel, the inner oxidation is dom-
inated by (Fe, Cr)3O4 [10], which exhibits good corrosion resistance for steels when in
contact with O-containing coolant. In SIMP steel with 1% Si, the inner oxidation contains
not only (Fe, Cr)3O4, but also a SiO2 band at the interface between two grains [11]. The
tight layer of SiO2 can also significantly improve the corrosion resistance of the material in
contact with liquid lead bismuth eutectic (LBE) [12,13]. Furthermore, Mo presents better
corrosion resistance than Fe [14]. Especially, in the IOZ, alloying elements were found to as-
semble at grain boundaries (GBs), and their oxidization occurs at GBs with priority [15–17].
Therefore, gradient nano- and submicron-structured steel surface layers were produced
to increase the amount of GBs to accelerate the diffusion of alloying atoms and quickly
form dense oxides to retard the corrosion [18–21]. Although some Fe-based alloys with
nanostructure were tested, the mechanism of the interaction between alloying elements and
oxygen at the GB is still not clear, which determines the formation of oxide for improving
their corrosion resistance.

Currently, a general mechanism for the oxidation of steels is the “Space Available
Model”, in which the oxides are formed by the outward migration of Fe and alloying of
atoms, and the inward migration of O atoms [22]. So far, many theoretical studies have
been performed on Fe migration, alloying and O atoms in bulk Fe with body-centered cubic
(bcc) structure [15,23,24]. Based on atomistic calculations, Shang et al. investigated the
diffusivity of interstitial O in bcc-Fe with and without a vacancy, and found that O in the
octahedral interstice is always energetically favorable [25]. By investigating the solution
and diffusion properties of O atoms at different Fe-GBs, Liu found that GBs could attract
interstitial O and hinder O diffusion, and vacancies in GBs could accelerate diffusion of O
atoms [26]. Additionally, the orientation of the surface and the concentration of O could
also affect the adsorption of O atoms on the Fe surface and the oxidation corrosion [27].
However, knowledge of the solution and diffusion properties of O in GBs is still scarce,
especially in GBs with alloying elements.

Herein, atomistic simulations based on first-principles calculations were conducted
to explore the influence of alloying elements on the solution and diffusion of O at GBs in
bcc-Fe based structural materials. Based on our previous work [26], the Fe-GB of Σ5(310),
having a stronger attraction of O than Σ3(111)/[110], was chosen to explore the effects of
three typical alloying elements (Si, Cr, Mo) on the solution and diffusion behaviors of O
in the GB. Firstly, the segregation energies of alloying atoms near the GB were calculated
to find their stable sites at the GB. Then, the alloyed GBs were used to explore the effects
of alloying elements on the solution and diffusion of O near/at the GB by calculating the
solution/segregation energies and migration barriers of O at the alloyed GBs. The effects
were further understood by analyzing the variation in the local structure and charge density
around O and the changes in the diffusion coefficient of O in the GB. Finally, the effects of
alloying elements on the concentration of O near the alloyed GBs were depicted, which
correspond to the initial conditions for the formation of oxide. The energetic and dynamic
results not only exhibit the effects of alloys on the solution and diffusion of O at alloyed
GBs, but also provide necessary parameters for simulating the initial evolution of oxide in
the Fe-based alloys with nanostructure.

2. Methods
2.1. Computational Methods

The reported first-principles total energy calculations were carried out based on the
density functional theory (DFT) using the Vienna ab initio simulation package (VASP) [28–30].
The Perdew–Burke–Ernzerhof (PBE) [31] functional within generalized gradient approxi-
mation (GGA) was used to illustrate the exchange and correlation effects, and the projector
augmented-wave (PAW) [32] method was employed to describe electron–ion interactions.
All calculations were carried out with spin polarization due to the ferromagnetism of Fe.
Ionic relaxations were conducted until the magnitude of the force components on all atoms
was smaller than 0.01 eV Å−1. The lattice constant of bcc-Fe was optimized to be 2.83 Å
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based on a 4 × 4 × 4 supercell containing 128 atoms, which compared well to previous
calculations [33,34].

Based on the relaxed lattice constant, the symmetric tilt GB of Σ5(310) was constructed
according to the coincidence site lattice (CSL) model [35]. As shown in Figure 1a, to
construct the GB model, two grains with the same crystalline orientation of [310] were
aligned parallel to the corresponding GB plane, followed by a 180◦ rotation of grain A
relative to grain B around the direction perpendicular to the GB plane [36,37]. A bi-crystal
model was then constructed by joining the two grains. Meanwhile, to avoid atomic overlap
at the GB plane, an atom deletion process was performed. The supercell contains 120 atoms
and 30 atomic layers along the [310] direction in grain A/B. The directions along [001] and

[1
−
30] are labeled as x and y, respectively. Periodic boundary conditions were applied along

the above three directions. The uniform grids of k-points were 7 × 3 × 1 according to the
Monkhorst–Pack scheme with a complete relaxation of the atomic positions and volume
of the supercell. To obtain the ground-state structure of the GB, an energy minimization
procedure with the conjugate gradient algorithm was employed through a rigid-body
translation of grain A relative to grain B in the two directions parallel to the GB plane
(Figure 1a), followed by the atomic relaxation of all the atoms. As shown in Figure 1b, the
GB structure of Σ5(310) is composed of a polyhedron unit of a cap trigonal prism (CTP) [38].
All the possible substitution positions for alloying atoms were marked as L1, L2, . . . L9
(there were 15 layers in half of the model but only 9 layers are shown in the figure). Here,
the first layer represents the GB plane.
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Figure 1. (a) 3D sketch of the construction of the grain boundary (GB) and (b) atomic structure and
polyhedron structure units (TET, OCT and CTP) of the Fe Σ5 (310) GB. Fe atoms at different layers
along the [001] direction are represented by blue and gray, respectively. The CTP structure is repre-
sented by the corresponding atomic color on the GB. The purple sphere represents an alloying atom.

2.2. Analysis Methods

To characterize the stability of Σ5(310), GB energy was introduced and defined
as [26,33]

γGB =
EnFe

GB − nµFe
2A

, (1)

where EnFe
GB is the total energy of the GB supercell containing n Fe atoms. µFe is the chemical

potential of an Fe atom in bcc-bulk. The factor of 2 originates from the fact that one supercell
contains two GB planes due to periodic boundary conditions, and A is the area of the GB
plane. The GB energy was calculated to be 1.55 J·m−2, which is consistent with previous
calculation results [26,33,39,40].
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The stable positions of the alloying atoms in the Fe-GB were explored by the substitu-
tion energy of the alloying atoms in the GB [28]

Esub = EX
GB − EGB − µX + µFe, (2)

where EX
GB and EGB represent the total energy of the GB supercell with and without alloying

atom (X), respectively. µX is the chemical potential of the alloying atom, which was defined
as the energy of the alloying atom in their corresponding ground state structure.

Similarly, in order to obtain the stable positions of O atoms in the Fe-GB, the solution
energy, Esol, representing the energy needed to dissolve an O atom, was calculated according
to the following definition [26]:

Esol = EX+O
GB − EX

GB − µO, (3)

where EX+O
GB and EX

GB represent the total energy of the alloyed GB supercell with and
without the O atom, respectively. µO denotes the energy of an O atom in oxygen gas.
Here, the negative value represents a heat release process, and the O atom is energetically
favorable to dissolve. On the contrary, the positive value represents the heat absorbing
process, which is difficult to occur.

To assess the trapping ability of GBs to foreign atoms (O and alloying atoms), the
segregation energy was defined as the energy to move an atom from the bulk into the GB. It
was calculated as the energy difference between the solution/substitution energy of foreign
atoms in the GB and bulk [41]

γseg = Esol/sub
GB − Esol/sub

bulk , (4)

where Esol/sub
GB and Esol/sub

bulk are the solution energy of O atoms or substitution energy of
alloying elements in the GB and bulk, respectively.

To describe the interaction between the substitutional alloying atom X and the intersti-
tial O atom, the total binding energy Eb

t was defined as follows [42–44]:

Et
b = EX+O

GB − EX
GB − EO

GB + EGB, (5)

where EX+O
GB , EX

GB and EO
GB represent the total energy of a Fe-GB containing the alloying

atom X and an O atom, the alloying atom and an O atom, respectively. A negative Eb
t

indicates attractive interaction between the X and O atoms, while a positive value indicates
repulsion between the X and O atoms. In order to further explore the origin of the total
binding energy, we decomposed it into the distortion binding energy (Ed

b ) and the electronic
binding energy (Ee

b), respectively [43,45].

Et
b = Ed

b + Ee
b (6)

The electronic binding energy is the difference between bond energies in the systems
before and after the formation of the complex. The distortion binding energy is the energy
that can be gained by reducing the distortion in the host Fe matrix. Ed

b was defined as [43]

Ed
b = E−(X+O)

GB − E−X
GB − E−O

GB + EGB, (7)

where E−(X+O)
GB , E−X

GB and E−O
GB represent the total energy of the systems without X and

O atoms, X atoms and O atoms, respectively. They can be obtained as follows: once the
supercell contains X and O atoms, X atoms or O atoms have been fully relaxed, the X
and O atoms, X atoms or O atoms are removed from the corresponding relaxed supercell,
respectively. Then the total energy of the supercell can be obtained after static relaxation.
Based on the distortion binding energy, the electronic binding energy can be obtained by
Equation (6).
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3. Results
3.1. Stable Positions of Alloying and O Atoms in the Fe-GB

The alloying atoms prefer to occupy substitution sites if their atomic sizes are similar
to or larger than those of the solvent [24]. To determine the stable positions of the alloying
atoms in a pure Fe-GB, the substitution energies of the alloying atoms at different layers
were calculated and are shown in Figure 2a. Both Si and Cr have the lowest substitution
energy in the second layer, while Mo has the lowest substitution energy in the first layer.
Si has the lowest substitution energy among the three atoms. According to Equation (4),
the segregation energies of alloying atoms in the different layers in a pure Fe-GB were
calculated and are displayed in Figure 2b. All the segregation energies of alloying atoms are
negative, and the closer to the GB plane, the smaller the segregation energy. This indicates
the energetic driving force for alloying atoms to move to the GB region [15,26], which is
consistent with the experimental finding that alloying elements segregate at the GB [16]. In
addition, the favorable sites of the three alloying atoms are different to each other. Si and
Cr tend to segregate at the second layer from the GB plane, while Mo tends to segregate at
the GB plane.
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Figure 2. (a) Substitution energy and (b) segregation energy of alloying atoms in different layers
of the pure Fe-GB. Si, Mo and Cr are represented by yellow squares, purple circles and green
triangles, respectively.

Then, the stable positions of O atoms in the alloyed GBs were explored, since the
alloying elements segregated to the GB region may alter the electron distribution of GBs,
and further affect the behavior of O atoms in Fe-GBs. Different interstitial positions were
explored in the CTP structure unit (numbered c1–c7 in Table 1) to find the most stable
position of the O atom in Fe-GBs. As shown in Table 1, the O atoms initially located at the
c2, c4, c5 and c6 sites remain unchanged after optimization, while the O atoms at the initial
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sites of c1, c3 and c7 automatically relaxed at the c6, c2 and c2 sites, respectively. Therefore,
the c2, c4, c5 and c6 sites were taken as the energetically favorable positions for O atoms in
Fe-GBs and explored in the following study.

Table 1. Initial and final positions of the O atom in the CTP polyhedron unit of different alloyed Fe
grain boundaries. All the interstitial positions for O atoms in the CTP unit with high symmetry are
labeled by c1, c2, c3 . . . c7.
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Initial Position
Final Position

Pure Fe Si Cr Mo

c1 c6 c6 c6 c6
c2 c2 c2 c2 c2
c3 c2 c2 c2 c2
c4 c4 c2 c2 c4
c5 c5 c5 c5 c5
c6 c6 c6 c6 c6
c7 c2 c2 c2 c2

Based on the four positions mentioned above, the solution properties of O atoms
around alloying elements at the GB were investigated by calculating the solution energy
and segregation energy of an O atom in the pure and alloyed GBs. Given the specificity of
the GB structure, the OCT sites near CTP were also considered for O atoms in the alloyed
GBs with Si/Cr segregated in the GB plane (L1 layer). As shown in Figure 3a, all solution
energies are negative and lower than that those of the bulk, which indicates that O atoms
can exist stably at alloyed Fe-GBs. The solution energies of O in alloyed GBs with Si/Cr in
the L2 layer are lower than those in alloyed GBs with Si/Cr in the L1 layer, so the alloyed
GBs with Si/Cr in the L2 layer were considered in the following calculations. In all alloyed
Fe-GBs, the solution energies of the O atom at c2 are the lowest, and these GB structures
with the O at c2 have no obvious change after optimization. Thus, c2 is the most stable
position for one O atom in all the alloyed Fe Σ5(310) GBs.
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Figure 3. (a) Solution energies of O atoms at various stable CTP positions of alloyed Fe-GBs. The
black squares represent a pure Fe-GB, the red stars, the cyan spheres and the blue triangles represent
Fe-GBs containing Si, Cr and Mo, respectively. Solid symbols indicate Si and Cr in the L2 layer and
hollow indicates Si and Cr in the L1 layer. (b) The segregation energies of O atoms vary with the
distance from the crystal interface. Solid black squares indicate the pure Fe-GB, red hollow stars,
cyan hollow spheres and blue hollow triangles indicate Fe-GBs with alloying elements Si, Cr and
Mo, respectively.
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3.2. The Effects of Alloying Elements on the Solution of O Atom in the GB

The effects of alloying elements on the solution of O atoms were investigated by
comparing the solution energies of O atoms at the most stable site (c2) in the alloyed GBs
with those in the pure GB. As shown in Figure 3a, the solution energies of O atoms in all
alloyed GBs are negative and less than those in the bulk region. This implies that O atoms
prefer to solute in the GBs with the considered alloying elements energetically. The solution
energy of an O atom in the Si- and Mo-alloyed GBs are −2.58 eV and −2.63 eV respectively,
which are greater than that in the pure GB (−2.70 eV). On the contrary, the solution energy
of the O atom in the Cr-alloyed GB is −2.94 eV. Such a difference in the solution energy of
an O atom in alloyed GBs indicates that Cr could promote the solution of O atoms in the
Fe-GB, while Si and Mo may impede the solution of O atoms in the Fe-GB.

In addition, the effects of alloying elements on the movement tendency of O atoms
were further explored by the segregation energies of O atoms in the alloyed GBs. The
segregation energies of the O atom in the Si-, Mo- and Cr-alloyed GBs were calculated and
are shown in Figure 3b. The closer to the GB plane, the smaller the segregation energy of
the O atom becomes. It indicates that energetically O atoms tend to gather in the GB region.
Relative to the segregation energy of an O atom at the most stable position of c2 (−1.63 eV)
in a pure Fe-GB, they are increased to −1.51 eV and −1.47 eV in Si- and Mo-alloyed Fe-GBs,
respectively. Nevertheless, the segregation energy of the O atom at c2 in a Cr-alloyed GB is
−1.87 eV, which is lower than that in the pure GB. Such results indicate again that Cr makes
O more stably exist and further accumulate at the Fe-GB. Instead, Si and Mo energetically
mitigate the segregation of O atoms to the Fe-GB, and further reduce the accumulation of
O atoms in the GB region. This is in agreement with the experimental observation that
several GB segments are characterized by the combined local segregation of Cr with O in
steel exposed to LBE [16].

3.3. The Effects of Alloying Elements on the Diffusion of O Atoms in the GB

As the O atom diffuses in the GB region, the substitutional atoms can be assumed to
be immobile, since their diffusion coefficients are much smaller than that of O [23]. Given
that solutes would migrate through the interstitial sites if their atomic sizes are smaller than
that of the host atoms [46], the migration path of the O atom was selected from the most
stable interstitial location to its neighbor location in a periodic lattice, such as CTP, OCT and
TET sites. The migration energy barriers of interstitial O atoms in the Σ5(310) GB region
were investigated using the climbing image nudged elastic band (CI-NEB) method [47].
Based on the three periodical CTP structural units in the Σ5(310) GB, the migration paths

along the [001] and [
−
130] directions were considered and marked as path 1 and path 2,

respectively, as shown in Figure 4a.
Figure 4b shows the energy barriers of an interstitial O atom that migrates in pure and

alloyed Σ5(310) Fe-GBs, respectively. All energy barriers of the interstitial O migrating in
path 1 present a regularly symmetrical parabolic shape. In the Mo-alloyed GB, the energy
barrier of the O atom migrating along the [001] direction is 0.76 eV, which is greater than
that in a pure Fe-GB (0.67 eV). On the contrary, the energy barriers are 0.36 eV and 0.52 eV
in the Si- and Cr-alloyed GBs, respectively, which are less than that of the pure Fe-GB.
This indicates that Mo inhibits, while Si and Cr facilitate, the migration of O atoms at the
GB plane (along the [001] direction) in the alloyed GBs. For path 2, all the energy barrier
curves of O atoms present an asymmetric parabolic shape. It is 1.22 eV in a Mo-alloyed
Fe-GB, which is greater than that in the pure Fe-GB (1.06 eV). However, they are 0.87 eV
and 1.05 eV in GBs alloyed with Si and Cr, respectively, which are less than or almost equal
to that in pure Fe. This indicates that Mo also retards, while Si promotes, the migration

of the O atom along the [
−
130] direction in the GB plane, and Cr has little effect on the

migration. In addition, the migration energy barriers of an interstitial O atom along path
2 are generally larger than those along path 1. These indicate that the O atom prefers to
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diffuse to the sites near the alloying elements along the [001] direction, especially in the Si-
and Cr-alloyed GBs.
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Figure 4. (a) The migration paths of an O atom at the GB of Fe Σ5 (310). The C and PC sites represent
the most stable positions of the O atom at the CTP structure unit, path 1 represents the migration
path from C to PC along the [001] direction and is indicated by the blue dashed line, path 2 represents

the migration path from PC to C along the [
−
130] direction and is indicated by the yellow dashed

line. The dark blue sphere represents the alloying elements Si and Cr, the purple sphere represents
the alloying element Mo and the black dotted line indicates that they replace the corresponding Fe
atoms. The blue and gray spheres represent Fe atoms, and the pink spheres represent an O atom.
(b) The migration energy barriers of O atoms on two paths (path 1 and path 2). The black hollow
square represents the migration energy barrier of O in the pure Fe grain boundary, the solid red star,
cyan sphere and blue triangle represent the migration energy barriers of O in a Fe-GB with Si, Cr and
Mo, respectively.

4. Discussion
4.1. Insight into the Effects of Alloying Elements on the Solution and Diffusion of Oxygen

To obtain insights into the effects of alloying atoms on the solution and diffusion
of O atoms, we calculated the binding energies of the alloying and O atoms. According
to Equation (5), the binding energies between the alloying atom and O atom (Et

b) were
calculated and are listed in Table 2. The Et

b values for Si–O, Cr–O and Mo–O are 0.12 eV,
−0.24 eV and 0.07 eV, respectively. The positive binding energies for Si–O and Mo–O
indicate the repulsive interactions between O and Si/Mo atoms, while the negative binding
energy for Cr–O indicates an attractive interaction between O and Cr. This is consistent
with previous results in the bcc-Fe bulk [23,48].
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Table 2. Binding energies of alloying atoms with O at the GB and in bulk from the literature.

Ebind (eV) Si–O Cr–O Mo–O

Et
b 0.12 −0.24 0.07

Ed
b −0.04 0.02 −0.12

Ee
b 0.16 −0.26 0.19

EBulk
b 0.45 2 nn 0.05 3 nn [23] −0.25 [48] 0.06 3 nn [23]

To clarify the different interactions of alloying atoms with O atoms, the binding
energies were divided into the distortion binding energy and electronic binding energy,
which related to the distortion of local structure and charge transfer between local atoms
near the GB plane, respectively. Based on Equations (6) and (7), the distortion and electronic
binding energies of the alloying elements with O were calculated and are shown in Table 2.
The distortion binding energies of Si–O and Mo–O are −0.04 eV and −0.12 eV, respectively,
demonstrating that the strain during the formation of Si- and Mo-alloys is relaxed and
reduced continuously. On the contrary, the Ed

b between Cr–O is 0.02 eV, showing that the
strain is unrelaxed and increased in the process of forming a Cr-alloy. The interactions
could be reflected in the change in the volume of CTP caused by the alloying elements. In
Figure 5, the volumes of CTPs with Si and Mo expand to 22.93 Å3 and 22.70 Å3, respectively,
compared with that of the pure GB (22.62 Å3), which provide larger space to accommodate
O atoms. However, the volume of CTP in Cr-alloyed GB is contracted to be 22.59 Å3.
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Figure 5. The bond length between O and surrounding atoms, as well as in the volume of the CTP
structure unit in (a) pure Fe-GB, (b)Si-alloyed GB, (c) Cr-alloyed GB, (d) Mo-alloyed GB.

The electronic binding energies of Si–O and Mo–O are 0.16 eV and 0.19 eV, respectively,
while the Ee

b for Cr–O is −0.26 eV. The positive values indicate electronic repulsion between
Si/Mo and O atoms, and the attractive interaction between Cr and O atoms. The electronic
interactions between O and the alloying atoms are related to their electronegativity. The
difference in electronegativity between O (3.44) and Cr (1.66) is greater than that between
O and Fe (1.83), indicating a stronger ionic bond between O and Cr. On the contrary, the
smaller difference in electronegativity between O (3.44) and Si (1.9) or Mo (2.16) presents a
weaker interaction compared with that between O and Fe.

The electronic interactions between alloying atoms and O atoms were further explored
by comparing the differential charge density of O in alloyed GBs with that in a pure Fe-GB.
As shown in Figure 6a–f, the differential charge density maps of the CTP structure in a
pure Fe-GB and alloyed Fe-GBs were obtained in three-dimensions. Clearly, the electrons
around Fe and alloying atoms are transferred to O atoms, while the amounts of charge
transfer around Si and Mo atoms to O are less than that around the Cr atom. To further
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clarify the effects of alloying atoms on the electron distribution in the CTP structure, the
charge densities were projected into two-dimensional charge density plots as shown in
Figure 6a–f. The corresponding two-dimensional projections along a specific direction are
shown in Figure 6g–l. In a given projection, the differential charge densities around O
atoms are positive, indicating that O atoms obtain electrons from the surrounding Fe and
alloying atoms. The space with negative charge density around Si is much smaller than
that around the Fe atom, which implies that Si transfers fewer electrons to the O atom, and
meanwhile changes the charge density around the neighboring Fe atoms. While in the
Cr-alloyed CTP structure, the space with negative charge density around the Cr atom is
larger than that around the Fe atom, denoting that more electrons transfer to the O atom.
Mo not only changes the density of electrons around the O atom, but also changes the
distribution of the electrons around the O atom and neighboring Fe atoms labeled as Fe2 in
Figure 6f, although the distance between Mo and O is greater than that between Si and O
or Cr and O.
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Figure 6. The differential charge densities of O in pure Fe, Si, Mo and Cr alloyed iron in three-
dimensions (a–f) and in two-dimensions (g–l). (a–c) show the differential charge densities of CTP
in a pure Fe-GB in three-dimensions with different projections for the comparison with the alloyed
GBs in the right plots (d–f). In (a–f), the yellow area indicates charge accumulation, and the blue
area indicates charge loss. In (g–l), the negative value in the blue region indicates the loss of charge
density, while the positive value in the red region corresponds to the accumulation of charge density.
The isosurface of 0.005 was used when intercepting the two-dimensional projection plane.
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The interaction between the impurity atom and O atom was further analyzed by
the projected density of states (pDOS) as shown in Figure 7. In the pure GB, the O_2p
orbital shows a narrow peak at −7.5 eV and a broad peak near the fermi energy. The O_2p
orbital shows more overlap with the Fe2_4s orbital compared with that of the Fe1_4s orbital
around −7.5 eV under the Fermi energy (Fe1 and Fe2 denote the Fe atoms located at the
first and second layer of the GB, respectively, as shown in Figure 5). This indicates the
stronger interaction between O and Fe2 than that between O and Fe1. As Si is doped, the
narrow peak of O_2p is split and shifted to lower energy, and hybridizes with the Si_3s
orbital. As Cr is alloyed, the peak of O_2p increases due to more charge transferred from
Cr than Fe as shown in Figure 6k, which denotes a stronger interaction between Cr and O.
When Mo locates at the GB, its 5s and 4d orbitals show little interaction with the 2p orbital
of O, however the 4d orbital and 3d orbital of Fe2 overlap and show metallic behavior as
shown in Figure 7d.
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Figure 7. The projected density of states (pDOS) of O with Fe, Si, Cr and Mo atoms. Fe1 and
Fe2 represent Fe atoms in the first layer and second layer of the (a) pure Fe-GB, (b) Si-alloyed GB,
(c) Cr-alloyed GB, (d) Mo-alloyed GB, respectively.

In addition, the distortion and electron redistribution of CTP induced by alloying
atoms inevitably affect the migration of O atoms in the GB. According to the Arrhenius
function [49,50], the diffusion coefficient can be estimated by D ≈ d2ω × e−Ea/kBT , where
d relates to the jumping distance and Ea is the migration energy barrier, and ω, kB and T
represent the intrinsic frequency in s−1, the Boltzmann constant (8.617 × 10−5 eV K−1)
and temperature in K. Considering the distortion induced by different alloying atoms, the
diffusion distance of O along path 1 in the pure GB (2.8 Å) is greater than that in Si-alloyed
GB (2.44 Å), while is similar to that in the Cr- and Mo-alloyed GBs. At 300 K, the diffusion
coefficients of O in the Si-, Cr- and Mo-alloyed GBs are 122, 585, 331 and 0.03 times higher
than that in the pure Fe-GB along path 1. Similarly, the diffusion coefficients of O in the Si-,
Cr- and Mo-alloyed GBs at 300 K are 1445, 1.47 and 0.002 times higher than that in the pure



Metals 2023, 13, 789 12 of 16

Fe-GB along path 2, respectively. The differences in the diffusion coefficients of O in the
alloyed GBs and pure GB decrease, as the temperature increases. For example, the diffusion
coefficient of O in the Si-, Cr- and Mo-alloyed GBs is 68, 8.81 and 0.27 times higher than in
the pure Fe GB at 800 K. Consequently, Si and Cr segregated at the GB promote the diffusion
of O atoms through the GB, especially along path 1. Therefore, the oxide originates in the
GB region in the IOZ, especially in iron-based alloys. This result is consistent with the
fact that the Cr-based oxide preferentially forms in steels with fine-grained microstructure
and the SiO2 band distributes at the interface between two grains of steels in contact with
oxygen-containing liquid metal [16,51].

4.2. The Effects of Alloying Elements on Oxygen Concentration

The oxidation process is strongly related to the concentration of O, therefore, the
effect of alloying elements on O concentration was described visually by estimating the
equilibrium O concentration at the GB and bulk regions. The relationship between O
concentration in the GB and bulk-like regions can be described by the following Langmuir–
McLean equation [52,53]

CBulk
1 − CBulk

=
CGB

1 − CGB
e

EO
seg

kBT , (8)

where CBulk and CGB represent the concentration of O in the bulk and the GB, EO
seg is

the segregation energy of O in different positions of the Fe-GB as labeled in Figure 3b,
T is the environment temperature and kB is the Boltzmann constant. Instead, when the
O concentration in the environment is known, the O concentration in the GB can be
estimated by

CGB =
CBulk

CBulk + (1 − CBulk)e
EO

seg
kBT

(9)

At an experimental temperature of 800 K [9], the O concentration at different positions
perpendicular to the GB plane can be calculated according to Equation (9) based on the value
of EO

seg in Figure 3b and three typical concentrations of O in bulk (1.3 × 10−3, 1.3 × 10−5 and
1.3 × 10−7 at%). As shown in Figure 8, the concentrations of O atoms generally decrease
with the increasing distance away from the GB plane until they arrive in the bulk-like
region where the segregation energy EO

seg increases up to 0 eV. The O concentrations in
the GB show little difference among alloyed GBs, with different O concentrations in the
bulk due to the similar segregation energy in these GBs as shown in Figure 3b. So, the
oxidation would occur in the GB in the IOZ, even at a low O concentration. In addition,
the higher the O concentration in the bulk, the wider the oxidation region with high O
concentration in the GB. As shown in Figure 8a, the concentration of O atoms in a pure
Fe-GB decreases gently within 3 Å from the GB plane, and decreases sharply after 3 Å with
a high O concentration of 1.3 × 10−3 at% in the bulk. However, with an O concentration
in the bulk as low as 1.3 × 10−7 at%, the concentration of O decreases sharply from the
GB plane. In addition, the range of the oxidation region also depends on the alloying
atoms. When the O concentration in the bulk is 1.3 × 10−3 at%, the Si- and Mo-alloyed
GBs show comparable regions with high O concentration compared with the pure Fe-GB.
In the Cr-alloyed GB, the region with a high O concentration can occur at 4.23 Å from the
GB, which is greater than that in the pure Fe-GB. The more easily O atoms segregate at
the Fe-GB, the higher the concentration of O at the GB, and the greater the probability of
oxidation at the Fe-GB.
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Figure 8. The concentration of O as a function of the distance from the GB plane. The pink solid square,
blue open circle and cyan solid triangle represent the concentrations of O atoms at different positions
relative to the GB plane when the O concentration in the bulk (CBulk) is 1.3 × 10−3, 1.3 × 10−5 and
1.3 × 10−7 at%, respectively.

5. Conclusions

In this work, the effects of alloying elements (Si, Cr and Mo) on the solution and
migration of O atoms in the Fe Σ5(310) GB were studied by analyzing the energetic and
dynamic properties, as well as by electronic characterization based on DFT simulations.
Alloying elements energetically tend to segregate into the GB, with Si and Cr preferring
to stay at the second layer and Mo tending to stay at the first layer in the GB. O atoms
have a lower a solution energy and migration energy barrier in a Cr-alloy GB compared
with that in a pure GB, which denotes that the segregated Cr could promote the solution
and diffusion of the O atom in the GB. In addition, Cr can increase the O concentration
near the Fe-GB. For Si-alloyed GBs, the solution energies of the O atom increase slightly
relative to that in the pure Fe-GB, but are still less than that in the bulk. Meanwhile the
migration energy barrier of O decreases by 46% in the Si-alloyed GB. This indicates that the
Si-alloyed GB could still attract O atoms from the bulk, and the Si atom could accelerate
the diffusion of O along the GB. It may favor the formation of a SiO2 band quickly along
GBs in steels. As Mo segregates to the GB, it increases the solution energy and diffusion
energy barrier of O in the GB. The above results are consistent with the fact that the Cr-
based oxide and the SiO2 band preferentially forms at the GB in steels in contact with
oxygen-containing liquid metal [16,51]. This work not only reveals the atomic picture of the
interactions between alloying elements and O atoms in the GB, but also provides essential
energetics and dynamic parameters for simulating the growth of oxide in Fe-based alloys
with nanostructure on a large scale.
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