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Abstract: Regulation of residual stress in a component is the key to improving its service performance.
A cold expansion method was proposed for reducing the residual stress in 7050 aluminium alloy
curved frame forging after quenching. The effect of the cold expansion method on the residual
stress and equivalent plastic strain distribution of the 7050 aluminium alloy curved frame forging
was investigated. The results showed that the maximum residual stress at the center thickness was
reduced from 153 MPa to 94 MPa after the cold expansion, while it decreased from 283 MPa to
120 MPa at the surface with the highest stress reduction rate of 86.2%. The stress uniformity in
the final forming region of the forging was improved. The equivalent plastic strain of the forging
gradually decreases from the center to each side along the diameter of the expanded hole in cold
expansion. The stress reduction effect matched with the distribution of equivalent plastic strain. The
surface stress of the forging measured by x-rays diffraction (XRD) method was in agreement with
the simulation results, and the reliability of the numerical model was verified. The cold expansion
method can effectively reduce the quenched residual stress in curved frame forging.

Keywords: curved frame forging; cold expansion method; residual stress; 7050 aluminium alloy

1. Introduction

The low weight of structural components is one of the critical problems in developing
large aircraft, rockets, and spacecraft. The development and use of lightweight materials are
the keys to this. High-strength aluminium alloys are widely used in aerospace applications
because of their outstanding advantages such as low weight, high strength, corrosion
resistance, good processing properties, and accessible surface treatment [1,2]. It is mainly
used as a structural material in large carrier aircraft and accounts for over 70% of the
total [3]. Most of the aluminium alloy components are designed to be thin-walled with a
material removal rate of more than 90% after finishing [4,5] to meet the lightweight purpose.
A 7000 series aluminium alloys have the advantages of high specific strength, high specific
stiffness, high toughness, excellent processing, and welding properties [6]. They are often
used in aircraft frames and other critical curved structures with high dimensional accuracy
and excellent mechanical properties [7]. However, the dimensional stability of curved
thin-walled components has been a problematic research area during machining. As a
typical curved thin-walled component, the aircraft window frame is one of the critical
components of aircraft. Its structural strength and dimensional stability are complex
problems in research. It is also the key to determining whether a new breakthrough can
be achieved in the development of large carrier aircraft. 7000 series aluminium alloy is
used as a curved component of an aircraft window frame. It has to go through a series of
processes such as billet forming, forging, heat treatment, cold deformation and machining,
and every process has a crucial role in the final molding and performance [8]. The process
of solution heat treatment, quenching and subsequent precipitation hardening is essential
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to strengthen 7000 series aluminium alloys and to achieve the formability required [9,10].
However, quenching introduces large residual stress into components [11–13]. During
subsequent machining, the release of residual stress will directly affect the dimensional
stability [12] and reduces the service life of the components [4]. Therefore, it is essential to
relieve residual stress of curved forging after quenching.

In the field of residual stress reduction, a lot of research has been undertaken by
scholars. G.H. Yang et al. [14] investigated the effect of 2A14 aluminium alloy on the
evolution of residual stress in the stress field, temperature field and thermo-mechanical
coupling conditions. The results show that the continuous increase of the external load leads
to the increase of the residual stress of 2A14 aluminium alloy perpendicular to the tensile
direction. The change of the residual stress is no longer significant when the external load
approaches the yield strength; under the effect of temperature, the residual stress of 2A14
aluminium alloy decreases after the heating-holding-cooling process. The impact of over-
ageing precipitation treatment on residual stress was studied by Robinson [15], and was
shown to reduce the residual stress amplitude by 25–40%. The research by Godlewski [13]
showed that the relaxation of residual stresses increased with increasing aging temperature;
an aging temperature of 533 K used for 1 h could achieve a 50 pct reduction in residual
stress in aluminium E319 alloy. Compared to the cold working techniques, the aging
treatment could only reduce the residual stress by 40–50%. It was indicated that the
vibration ageing treatment can reduce the residual stress and improve the dimensional
stability of thin-walled 7075 aluminium alloy members [16]. A study by R. Pan [17] et al.
investigated the effect on quenched residual stress in T-shaped aluminium alloy plates
in terms of three aspects of the compression ratio, friction coefficient, and overlap length
of the cold pressing process. Pan R. et al. [18] further investigated the quenched residual
stress reduction of AA7050 aluminium alloy thick plates by cold compression method. By
applying a compressive deformation of 1.5–3% to the aluminium alloy plate, the magnitude
of residual stress could be reduced by 90%. Cozzolino and Luis [19] studied the residual
stress in steel plates after welding, and partial rolling treatment was used to reduce the
residual stress in the weld. Their study showed that partial rolling could effectively reduce
the residual stress caused by welding. It was investigated by MR [20] the effect of edge
distance ratio on the residual stress distribution in the cold reaming of 2024 aluminium
alloy. When the edge distance ratio was less than 3, cold expansion had a significant effect
on the residual stress distribution. Full-field in-plane residual strains and the out-of-plane
surface deformations around open cold-expanded holes were measured by Amjad [21] in
aluminium specimens of two different thicknesses giving thickness-to-diameter ratios of
0.25 and 1. The results show that the plastic deformation during cold expansion causes local
out-of-plane deformation of the material near the hole’s edge, and deformation is more
significant in specimens with a small thickness-to-diameter ratio. A study by Rahman [22]
identified that cold expansion of prefabricated holes in AA5251 aluminium alloy plates
could change the component’s residual stress field and enhance fatigue life.

In conclusion, the cold deformation method, an effective method for reducing residual
stress, is widely used for various types of components. However, the reduction of residual
stress in curved members, especially by the cold expansion method, has been rarely studied.

In this work, a circular hole cold expansion method was developed for the reduction
of quenched residual stress in curved frame forging. A finite element numerical model was
established to simulate the cold expansion process of curved frame forging; the distribution
patterns of residual stress and equivalent plastic strains of curved frame forging after cold
expansion were analyzed. Cold expansion experiments were conducted on the curved
frame forging, and the surface stress of the forging before and after cold expansion was
measured by the XRD method. The simulation and experiment results were discussed and
compared discussed to verify the reliability of the numerical model. This work provides a
new method for the residual stress reduction of curved frame forging.
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2. Materials and Methods
2.1. Material Parameters

Aluminium alloy is widely used in aviation, aerospace and weapons industries be-
cause of its better specific stiffness, specific strength, corrosion resistance and process ability.
Especially in aerospace field, 7050 aluminium alloy is the most commonly used material
because of its superior processing and welding properties. The chemical composition of
7050 aluminium alloy is listed in Table 1.

Table 1. The chemical composition of 7050 aluminium alloy.

Element Zn Mg Cu Zr Fe Si Ti Mn Al

wt.% 5.7–6.7 1.9–2.6 2.0–2.6 0.08–0.115 0–0.15 ≤0.12 ≤0.12 ≤0.10 Bal.

The mechanical behavior of the 7050 aluminium alloy was tested at a constant strain
rate of 0.01 s −1 based on the actual cold expansion rate, as shown in Figure 1. At room
temperature, the yield strength of 7050 aluminum alloy with a strain rate of 0.01 is 286 MPa,
Young’s modulus is 75 GPa, and Poisson’s ratio is 0.3.
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Figure 1. Stress-strain curve of 7050 aluminium alloy at a constant temperature of 293 K and a
constant strain rate of 0.01 s −1.

2.2. Cold Expansion Method

As shown in Figure 2, a cold expansion experiment was performed on the window
frame forgings within 4 h after the quenching treatment, and the equipment used in the
experiment was a 4000-ton forging machine. The basic steps are as follows.

(a) Installation: install the convex mold, forging component, concave mold, stamping
mold, and expansion block on the forging machine, and fix the convex and concave
molds through bolts;

(b) Loading: drive the forging machine to move vertically downward to the specified
position and keep 30 s;

(c) Unloading: the forging machine is slowly lifted up to unload the pressure;
(d) Completion: loosen the fastening bolts and remove the forging part, the cold expan-

sion process is completed.

Figure 2a is a schematic diagram of cold expansion; labels 1 to 5 represent stamping
mold, expansion block, concave mold, curved frame forging, and convex mold.
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3—concave mold; 4—curved frame forging; 5—convex mold; (b) experiment.

2.3. Residual Stress Measurement Method

Surface residual stress tests were performed on the forging within 4 h after the quench-
ing process of the curved frame forging to obtain the residual stress distribution character-
istics. A cold expansion experiment was performed on the curved frame forging, and its
surface residual stress was re-examined.

Figure 3 depicts the projection of the curved frame forging in the XOY plane and the
position of the XRD measurements points in forging. The thickness of the forging is 50 mm.
A total of 15 test points were selected on the forgings, with 5 points selected for each circle.
Points 1 to 5 were the first range, points 6 to 10 were the second range, and points 11 to 15
were the third range.

The surface of the forging was cleaned to prevent the surface oxidation layer from
affecting the test results and marked the measured points; the X-ray diffractometer was
started, warmed up, and set the parameters. Before measurement, the X-ray stress diffrac-
tometer was calibrated by measuring a stress-free coupon of 7050 aluminium alloy. Marked
points of the window frame forging were tested, and the test crystal plane was 311. The
residual stress on the surface of the curved frame forging before and after cold expansion
was tested using an X-ray diffractometer. The parameters of the X-ray diffractometer are
shown in Table 2.
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Figure 3. Residual stress test: (a) a projection of the forging in the XOY plane; (b) the position of the
XRD measurement points in forging.

Table 2. XRD measurement parameters.

X-ray Diffraction Parameters Specification/Values

Tube type Cr
Supplied current during the experiment 6.7 mA
Supplied voltage during the experiment 30 kV

Exposure time for the calibration 8 s
Exposure time for measurement 10 s

Collimator diameter 2 mm
Collimator distance 10.390 mm

Detector distance 50 mm
Tilt angle −45◦ to 45◦

Number of tilts 5/5
Rotation angle 0◦ to 90◦

Number of rotations 2
Stress resolution ±10 MPa

3. Models Description

The residual stress analysis based on thermo-elastic-plastic (TEP) FEM was usually
applied. In this section, the quenching and cold expansion process numerical models of the
curved forging were established.

3.1. Quenching Model

The forging was heated to approximately 477 ◦C, held at temperature for 7 h. Then
it was transferred to quench in water at 20 ◦C within 10 s. The forging entered the water
along its thickness direction.

The finite element model of the curved forging quenching process was established
using ABAQUS software. The eight-node linear hexahedral elements (HEX C3DR8T)
were assigned to the whole model, and a coupled temperature-displacement analysis was
performed. The mesh size was 5 mm × 5 mm × 5 mm.

The following assumptions were adopted in the quenching model:

(1) The material of the curved frame forging is continuous and isotropic.
(2) The initial temperature field distribution of the curved frame forging is uniform, and

the initial residual stress is negligible.
(3) The temperature of the quenching medium remains uniform.
(4) The phase change of the curved frame forging during the quenching process is not

considered.
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3.2. Cold Expansion Numerical Modelling of Curved Frame Forging

After quenching, a numerical simulation model of the cold expansion process of the
curved frame forging was established in ABAQUS by taking the calculated quenched
residual stress as the predefined initial stress. The cold expansion model was shown in
Figure 4, where the concave mold, forging, convex mold, and expansion block were in
contact. The mesh type of the other instances (concave mold, convex mold, and expansion
block) is a discrete rigid body with adaptive meshing. The residual stress distribution after
cold expansion deformation ratios of 1%, 2%, and 3%, via the friction coefficient of 0.1, and
the number of expansion blocks of 8, were predicted in numerical simulation.
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Figure 4. Simulation model of cold expansion.

The cold expansion simulation process includes four stages. In the first stage, the
forging, expansion block and mold were assembled, and the initial boundary condition
of the model was that the displacement components in X, Y and Z directions were 0. In
the second stage, the expansion block is moved outward along the radial direction of the
expansion hole, creating an extrusion force on the forging. In the third stage, the expansion
block was moved inward along the radial direction of the expansion hole to the initial
position of stage 2. In the fourth stage, the forging was unloaded from the molds.

The following assumptions were adopted in the cold expansion model:

(1) The material of the curved frame forging is continuous and isotropic.
(2) The friction coefficient between the curved frame forging and the mold is constant

during the cold expansion process.
(3) The temperature change of the curved frame forging during the cold expansion

process is not considered.

4. Results and Discussion

The effectiveness of the cold expansion residual stress reduction technique has been
evaluated by comparing the stress distributions in the curved frame forging after quenching
and cold expansion. The residual stress reduction rates before and after cold expansion
have been calculated. Moreover, the equivalent plastic strain of the forging was studied
to analyze the effect of cold expansion on the deformation of the components after cold
expansion. Finally, the reliability of the cold expansion model was verified by comparing
the surface residual stress of the forging measured by XRD with the simulation results.
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4.1. Effect of Cold Expansion Rate on Residual Stress

The cross-section was taken in the forging thickness direction through point 9, with
the cross-section parallel to the YZ plane, as shown in Figure 5. The MN was taken as
path 1 along the thickness direction, and the residual stress in this path was analyzed to
demonstrate the effect of cold expansion rate on quenched stress.
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Figure 5. The analysis location of cold expansion rate on quenched residual stress in the forging.

The quenched residual stress in the forging was reduced to varying degrees after cold
expansion. The distribution of stress in the X-direction (σx), Y-direction (σy), Z-direction
(σz), and Mises was observed, as shown in Figure 6. The results revealed that 2% cold
expansion rate of was most effective for reducing quenched residual stress. From the result,
it could be seen that the magnitude of σz was within ±40 MPa, both before and after the
cold expansion. However, after quenching, the stress amplitudes of σx and σy are relatively
large. The forging surface exhibited compressive stress with a maximum compressive stress
amplitude of 221 MPa, and the core exhibited tensile stress with a maximum tensile stress
amplitude of 205 MPa. After cold expansion, the stress amplitudes of both σx and σy were
reduced to varying degrees, but still exhibited surface compressive stress with a maximum
compressive stress amplitude of 119 MPa, and core tensile stress with a maximum tensile
stress amplitude of 125 MPa. After quenching, the von Mises stress along path 1 show
a W-shaped distribution (larger values at the surface and in the core of the forging, and
smaller values at the quarter thickness), with a maximum value of 227 MPa. After a 2%
cold expansion process, the von Mises stress amplitude of the forgings was reduced to
below 120 MPa.
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Figure 6. Effect of cold expansion ratio on quenched stress of the forging: (a) stress in X-direction;
(b) stress in Y-direction; (c) stress in Z-direction; (d) von Mises stress.

The most effective ratio (2%) was subsequently used. The stress contour maps of the
forging after quenching and cold expansion were shown in Figure 7. The distribution of
von Mises stress could be seen in the maps. After quenching, the von Mises stress on the
surface of the forging reached 283 MPa, and the von Mises stress in the center thickness
of the forging reached 210 MPa. After quenching, the von Mises stress in the K region of
the forging surface was above 260 MPa, and the von Mises stress value in the L region was
above 220 MPa, as shown in Figure 7b. The K and L regions exhibited large stress, and the
sum of the two areas occupied 2/3 of the convex surface. After the cold expansion, the
von Mises stress on the surface of the forging was reduced significantly to below 120 MPa
in most areas, as shown in Figure 7d. The von Mises stress in the K and L regions was
effectively relieved. After quenching, it was observed that the stress in most areas of the
central layer was below 210 MPa, and the stress did not exceed 80 MPa in the edge areas
of the central layer shown in Figure 7a. After cold expansion, it was seen that the stress
in most areas of the central layer of the forging was reduced to 135 MPa below, and the
stress was displayed a circular distribution with an amplitude of 65 MPa or less in the area
14 mm to 38 mm from the expansion hole, as shown in Figure 7c.
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4.2. Residual Stress and Strain Fields after Cold Expansion

The effectiveness of the cold expansion residual stress reduction method was evaluated
by comparing the stress distribution in curved frame forging after quenching and cold
expansion. The forging was divided into five regions by five pentagons (P1, P2, P3, P4, P5)
depending on the gradient of the von Mises stress cloud diagram. As in Figure 8, taking the
intersection of O‘A, O‘B, O‘C, O‘D, O‘E and P1, P2, P3, P4, and P5 at the center thickness
of the forging, and von Mises stress radar maps were plotted after quenching and cold
expansion of the forging as shown in Figure 9. Quench_1 represented the von Mises stress
of region P1 after quenching, Expansion_1 represented the von Mises stress of region P1
after cold expansion, and so on. The ABCDE in the radar diagram corresponds to the
ABCDE of the forgings.
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As shown in Figure 9, the quenched von Mises stress in the central layer of the forging
was larger in the P1, P3, and P5 regions, with a maximum value of 197 MPa; the quenched
von Mises stress in the P4 region was smaller, below 120 MPa; the quenched von Mises
stress amplitude in the P2 region was in between P4 and P3. After cold expansion, the
von Mises stress amplitude in the P2 region decreased significantly from a maximum of
179 MPa to a maximum of 43 MPa. The von Mises stress amplitude in the P1, P3, P4, and
P5 regions also decreased to some extent. However, the reduction effect in the P1 region
was not satisfactory because it is in direct contact with the expansion block. Moreover, the
stress reduction effect was poor in the O‘A and O‘D directions of the five regions. The
distance between these two directions and the centre of the expanding hole was the farthest,
and the effect of cold expansion was not obvious. After cold expansion, the von Mises
stress in the centre thickness of the forging was reduced from an average of 153 MPa to
an average of 94 MPa. The von Mises stress in the centre thickness of the forging was
effectively relieved. Considering the stress uniformity in the final forming region of the
forging, the standard deviation and the extreme deviation of the von Mises stress in the P5
region were calculated. The results indicated that the standard deviation of the quenched
von Mises stress was 40.09 and the polar deviation was 134.23, while the standard deviation
of the von Mises stress after cold expansion was 36.90 and the polar deviation was 107.99.
After cold expansion, the stress uniformity in the P5 region of the forging was improved.

The equivalent plastic strain distribution of the curved frame forging after the cold
expansion was obtained, as shown in Figure 10. To further discuss the plastic strain
generated and the effect on stress reduction, the radar plot of the equivalent plastic strain
after the cold expansion was plotted (Figure 11).
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Figure 11. Equivalent plastic strain of the forging.

As shown in Figure 11, after cold expansion of the forging, the equivalent plastic
strain gradually decreased from P1 to P5. The largest equivalent plastic strain was in the
P1 region, with a maximum value of 3.2 × 10−2. The P1 region was where the expansion
hole was in contact with the expansion block, and the largest plastic deformation occurred
in this region. The equivalent plastic strain in P2 is smaller than that in the P1 region but
larger than that in the P3 region. The equivalent plastic strain in the P3 region was slightly
larger than that in the P4 and P5 regions, and the equivalent plastic strain values in the P4
and P5 regions were both very small, less than 3.8 × 10−4.

In addition, we noticed that the equivalent plastic strain of the forging after the cold
expansion was not uniformly distributed along the expansion aperture from the centre to
each side. As in Figure 10, the path Ln (n = 1, 2, 3, 4, 5) was taken at the centre thickness
of the forging to analyze the distribution of the equivalent plastic strain along it. The
equivalent plastic strain distribution for the five paths of the forging in center thickness
was shown in Figure 12. It was obvious that the equivalent plastic strains of L1, L3 and
L4 decreased gradually from the expansion hole to each side of the forging; however, the
equivalent plastic strains of L2 and L5 exhibited a decrease and then an increase. Moreover,
we noticed that the distances from L2 and L5 paths along the expansion hole to the outer
edge of the forging were 50.8 mm and 50.3 mm, respectively, a difference of less than
1%. However, the distances of L1, L3 and L4 paths were 86.6 mm, 72.3 mm and 73.2 mm,
respectively, with differences of 70.5%, 42.3% and 44.1% from L2. We believed that the
equivalent plastic strain of the forging after cold expansion had occurred in different
distributions due to the different thicknesses of each path. Not only had plastic strain been
accumulated in the area around the expanded hole, but plastic strain also penetrated the
whole thickness in L2 and L5 directions, after cold expansion treatment.
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Figure 12. Equivalent plastic strain in the centre layer of the forging in the direction of the diameter
of the expanded hole.

The von Mises stress in the centre thickness of the forging had been reduced after cold
expansion. The intersection points of O‘A, O‘B, O‘C, O‘D, O‘E, and P1, P2, P3, P4, P5 at the
centre thickness of the forging were taken to obtain the residual stress magnitude, and the
residual stress reduction rate was calculated (Figure 13).
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The stress reduction rate could be expressed by Equation (1).

δ =
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δ—Reduction rate;
RSq—Residual stress before cold expansion;
RSe—Residual stress after cold expansion.
It can be observed from Figure 13 that the von Mises stress reduction rate was max-

imum in the P2 region in the centre thickness of the forging. Although the equivalent
plastic strain in the P1 region is significantly larger than that in the P2 region, the stress
reduction rate in the P1 region was significantly smaller than that in the P2 region. In
the P1 region, the forging was in direct contact with the expansion block, and although
significant plastic deformation occurs in this region after cold expansion, the stress was
poorly relieved. The von Mises stress of the forging in the P2, P3 and P4 regions was
effectively relieved; especially in the P2 region, the stress reduction rate was above 75%,
with the highest reaching 86.2%. Before cold expansion, the von Mises stress amplitude
in the P2 and P3 regions was large. After cold expansion, the stress in these regions was
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validly relieved, and the uniformity of the overall stress distribution of the forging was
improved.

4.3. Results Verification

The X-directional stress on the surface of the forging before and after the cold expan-
sion was measured by XRD. The X-directional stress at points 1 to 15 on the forging surface
was obtained from the numerical model, compared with the experimental measurement
results, and plotted in Figure 14. The experimental results show that the X-directional stress
on the surface of the forging is reduced from a maximum of −194 MPa to −109 MPa after
cold expansion. After cold expansion, the surface residual stress of forging is significantly
reduced. After quenching, the average error between the measured and simulated values
was 14.4%. After cold expansion, the average error between the measured and simulated
values was 12.2%. There was a general agreement between the simulation results and
measurements in terms of distribution trend and amplitude, which validated the reliability
of the numerical model.
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5. Conclusions

A cold expansion method, which was used to reduce the residual stress of curved
frame forging, was proposed. Subsequently, a numerical model was developed to simulate
the cold expansion process of curved frame forging. The effect of cold expansion method
on the residual stress and equivalent plastic strain distribution of frame forging was
investigated. The main conclusions were as follows.

(1) The quenched numerical model results revealed that the quenched residual stress on
the surface of the forging was up to 283 MPa, and the residual stress in the central
layer was up to 210 MPa, which left a significant safety hazard for the subsequent
processing.

(2) The numerical results indicated that cold water quenching the 7050 aluminium alloy
frame forgings led to large magnitude residual stress that varied from surface com-
pression (up to 221 MPa) to tension in the core over 205 MPa. After cold expansion,
the maximum compressive stress was reduced to 119 MPa, and the maximum tensile
stress was reduced to 125 MPa. 2% cold expansion rate was the most efficiently for
the reduction of quenched residual stress.

(3) After 2% cold expansion, the residual stress in the forgings was effectively relieved.
The von Mises stress on the surface was reduced from 283 MPa to 120 MPa; the von
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Mises stress at the central thickness was reduced from 153 MPa to 94 MPa. The stress
uniformity in the final forming region of the forging was improved.

(4) After cold expansion, extensive plastic deformation occurred in the vast majority
of the area near the cold expansion hole, with a maximum plastic strain of 0.032
and a deformation of 0.013 in the smaller areas; the plastic strain in the area of the
forging near each side was not significant. The equivalent plastic strain of the forging
decreased gradually along the diameter of the expansion hole from the center to each
side. However, in the two directions of the minimum thickness, the plastic strain
decreased and then increased.

(5) After cold expansion, the highest stress reduction rate of 86.2% was achieved in the
region of 0.013 equivalent plastic strain at the center thickness of the forging; the stress
reduction effect matched with the distribution of equivalent plastic strain. The XRD
method was used to measure the surface stress of the forging after cold expansion,
and the distribution was a general agreement with the numerical simulation results,
which verified the reliability of the numerical model.
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