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Abstract: In aeronautics, additive manufacturing (AM) leads to specific benefits, mainly connected to
topological optimization for weight reduction, the decrease in “buy-to-fly” ratio, and the operations
of maintenance, repair, and overhaul. Al alloys processed by AM technologies are extensively
investigated and play an increasing role in the production of aircraft structural parts. Based on the
recent literature and research activity of the authors, this work examines advantages and drawbacks
involved in the printing of Al alloys. Defects, microstructure, mechanical properties, development
of new alloys, and postprocess treatments are described and critically discussed by focusing the
attention on the effects of the specific alloy composition, AM process, and process parameters.
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1. Introduction

The development of new materials with improved characteristics is one of the key
factors for producing aircrafts with reduced operating costs [1]. The target is the extension
of aircraft service life combined with greater fuel efficiency to achieve an increase in
payload and flight range. The challenge consists in reducing the weight of structures
and components by using materials which at the same time guarantee better corrosion
resistance and mechanical properties, in particular damage tolerance, fatigue, and wear
behavior [2,3].

In a previous paper [4], the specific conditions (stress, geometric limits, environment,
production, maintenance, etc.) leading to the choice of the material for structural applica-
tions in transport aircraft were described. In general, the main requirements are low density
for reducing the weight and suitable mechanical properties for bearing the static weight of
the aircraft and the additional loads related to flight turbulence and specific maneuvers,
such as taxiing, take-off, and landing. In addition, owing to the extreme conditions of
temperature and humidity, the structural alloys must exhibit a good corrosion resistance.

Although composites play an increasing role as aeronautic structural materials, Al
alloys still represent materials of fundamental importance, and among the lightweight
alloys, they are the most used, owing to their good workability and low cost.

In the last years, additive manufacturing (AM) has gained importance in different
industrial areas, and several alloys can be manufactured by using this innovative technology.
In aeronautics, AM involves specific benefits, mainly connected to: (i) the application of
topological optimization (TO) for weight reduction and improved efficiency, (ii) the decrease
in “buy-to-fly” ratio that reduces waste material and contributes to lower manufacturing
costs, and (iii) the optimization of maintenance, repair, and overhaul (MRO) operations
to reduce costs associated with downtime [5]. MRO includes inspection, replacement
of damaged parts, refilling of gases and lubricants, coating fixing, etc., and it is strictly
regulated by aeronautical national and international authorities due to its relevance for
safety. Indeed, MRO assures that every time an aircraft flies, it is compliant with the
airworthiness directives.
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A way to reduce the weight of aircraft components consists in integrating TO criteria
in the design and fabrication processes of structural components. TO determines the
minimum amount of mass and its optimal distribution on a certain part under specific
conditions of applied loads (e.g., see [6–8]); thus, it is more flexible and efficient than the
use of materials such as metallic foams [9–11]. In addition to the development of greater
computational power, more sophisticated software, and an increased integration of robotics
in machining processes, TO strictly requires novel manufacturing technologies. AM meets
such needs quite well, allowing to manufacture components of complex geometry without
joints, reduce the mass, incorporate internal features, and use novel alloy compositions.
Lattice structures, which imitate trabecular features typical of animal and human bones,
wood, leaves, and other natural structures, can guarantee a high degree of efficiency
with consequent advantages in reducing weight, material, energy in transportation, and
pollution emissions. Therefore, the main companies of the aircraft industry have been
exploring the possibility to produce aircraft components through AM, such as interior parts,
brackets, and hinges, as well as fuselages and airframes of lighter weight; some recent
applications are reported in Section 2. AM applications are also related to the engines:
integrated piping systems, compressors, fuel nozzles, and turbine blades with internal
cooling channels [12–14].

Another aspect that makes this technology of great interest for aeronautics is related
to the reduction in the “buy-to-fly” ratio, i.e., the mass of raw material needed per unit
mass of finished component. Today, the ratio is in the range 12–25 for aircraft components
made of Al alloys and manufactured through conventional processes, resulting in large
amounts of materials scrap in the cradle-to-gate manufacturing system. This involves high
manufacturing costs and large environmental emissions footprints. For example, a recent
study by Huang et al. [15] estimated the environmental benefits of a shift from conventional
to AM of lightweight metallic aircraft components through the year 2050 in the U.S. aircraft
industry: fleetwide lifecycle primary energy savings reach 70–173 million GJ/year in 2050,
with cumulative savings of 1.2–2.8 billion GJ. Therefore, there is an increasing interest of
aircraft industries to develop and deploy AM components.

Finally, AM is quite promising for aeronautic MRO operations: the purpose is to speed
up the replacement of components and reduce costs associated with inventory and trans-
portation [16]. AM allows just-in-time production based on digital data and replacement
of mechanical parts through relatively simple machinery and, in short, manufacturing
time. For example, by using AM instead of traditional manufacturing, a helicopter rotor
blade has been produced by ACS in 2 days instead of 45 days, with a cost reduction of
USD 1588 [17]. Therefore, the appropriate integration of AM technology with the aero-
nautic industry could lead to great benefits to the supply chain, even if the lack of quality
assurance and certification standards still represent obstacles to significant advancements
in this direction [5].

AM drawbacks are mainly related to surface roughness, porosity, residual stress,
cracks, unique microstructures, and material anisotropy; therefore, postprocessing is re-
quired with custom-developed thermomechanical treatments, surface polishing and, in
some cases, final machining. The quality of components and their mechanical properties
strongly depend on the complexity of the process; thus, controversial data are found in
the literature (e.g., see [18–21]). Given some uncertainties in the microstructure and per-
formance of AM parts, the controls must be different from the traditional ones, and new
international standards and procedures are currently under development [22]. Finally,
it must be considered that today, AM technology is not yet as readily available as tradi-
tional techniques. The last updates on AM technologies and their main applications in the
aviation industry have been reviewed in a recent paper by Gisario et al. [23].

In spite of these obstacles in the use of AM technology on a large scale in aeronautics,
its possible role in relaxing the pressures in the supply chain system of the aircraft industry
is a topic of great interest.
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In recent years, several papers have been published on this topic, and there are
many reviews focused on different aspects, such as specific type of material, technology,
application, etc. For instance, an excellent review paper on the AM of Al alloys is that of
Kotadia et al. [24]. The present work focuses its attention on opportunities and specific
problems connected to the application of printed Al alloys in aeronautics. On the basis of
the recent literature and research activity of the authors, the advantages and drawbacks
involved in the AM of structural aircraft components made of Al alloys are examined.
Section 2 presents some applications in aeronautics of Al alloys, while Sections 3–5 are
devoted to the defects present in printed components, microstructures and mechanical
properties, and postprocess treatments, respectively. Al alloys prepared by AM exhibit some
common defects and microstructural characteristics, which are described and discussed by
focusing the attention on the effects of specific composition of the alloys, AM process, and
process parameters. Section 6 highlights the problems involved in postprocess treatments,
which are carried out to minimize the defects and improve the microstructural features,
and it considers some possible solutions.

The scope of the work is to present the state of the art and indicate some points of
particular interest for future work.

2. Applications of AM Parts Made of Al Alloys

Al alloys are largely used to manufacture structural components for the aeronautic
industry due to their high specific mechanical properties and good corrosion resistance.
Although AM could replace conventional manufacturing with significant advantages, the
applications of printed Al alloy are still limited by the difficulty to meet the high aeronautic
standards, especially for structural components. Moreover, while traditional technologies
have been investigated for years, the research on AM is quite young; thus, there are high
costs for quality inspection [25]. Collecting data on properties of printed materials can
reduce qualification costs and help to develop specific standards for this method. Today,
standards on the characteristics of feedstock material, allowable defects, and inspection
methods do exist; however, others regarding surface finish and damage tolerance should
be developed or improved [26].

The first use of AM components in aeronautics dates back to 2014, when Airbus in-
stalled a cabin bracket connector made of Ti6Al4V on a commercial A350 aircraft, designed
by TO and manufactured by Laser Powder Bed Fusion (L-PBF) [27]. Since then, AM entered
rapidly in the design and production systems of aeronautic industry. In 2017, structural
Ti6Al4V components produced by Direct Energy Deposition (DED) were installed on the
Boeing 787 Dreamliner [28]. In the same year, Airbus started the serial production of a
3D-printed pylon bracket in Ti alloy for the A350 XWB aircraft, namely a critical component
that is part of the pylon joining engine and wing [29], and GKN Aerospace Engine Systems
announced to have started research on AM applications for aircraft components [30]. Other
components for aircraft interiors were developed by Airbus, e.g., a Ti6Al4V door locking
shaft [31], an aircraft lattice seat made of Mg and designed by TO [32], and a borescope
boss for A320neo, which is an access point for inspecting turbines [31].

Among light alloys printed by AM technologies, those of Al play a dominant role;
some significant examples are reported in the following.

A lattice partition wall made of AlMgSc, namely a thin panel separating the seats from
the plane galley of A320 aircraft, is shown in Figure 1 [33]. They calculated that the lattice
structure of the partition wall led to a reduction in the total weight of about 30 Kg, with an
estimated CO2 emission saving of 465,000 metric tons every year.

The combined advantages of AM and TO allow the manufacturing of structural
components with high mechanical properties and a considerably lower mass than the
original ones. Two significant examples are given in Figure 2.
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Figure 1. Airbus lattice structure of a partition wall made of AlMgSc alloy and produced by L-PBF [33]
(image courtesy of The Living).

Figure 2. EOS and RUAG antenna bracket made of AlSi10Mg and manufactured by L-PBF (a) [34]
(Image taken from https://www.eos.info/en/academic-info (accessed on 28 March 2023), Source:
EOS GmbH); brackets mounted on Boeing 787 (b) [35] (Image courtesy of Spirit Aerosystems and pro-
vided for an article by Additive Manufacturing Media: https://www.additivemanufacturing.media/
articles/what-is-the-role-for-additive-manufacturing-in-aircraft-structural-components (accessed
on 28 March 2023)).

Figure 2a shows an AlSi10Mg antenna bracket manufactured by L-PBF; the original
component was redesigned to obtain a weight reduction of 40% [34]. Similarly, EOS and
Sogeti managed to produce a vertical tail plane bracket in a shorter time with a 30% mass
reduction and in one single part, while the original one was made of more than 30 parts,

https://www.eos.info/en/academic-info
https://www.additivemanufacturing.media/articles/what-is-the-role-for-additive-manufacturing-in-aircraft-structural-components
https://www.additivemanufacturing.media/articles/what-is-the-role-for-additive-manufacturing-in-aircraft-structural-components
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both metallic and plastic [36]. A bracket mounted on a Boeing 787 [35] is displayed in
Figure 2b; such components are quite common today in aircrafts due to the lower costs
linked to reduced material waste and production time. The cost reduction linked to AM of
aircraft components is one of the key factors driving the aeronautic industry towards these
technologies [37].

Al alloys have also been employed in the AM of lattice structured cooling systems
of combustion engines. One example is the AlSi10Mg microturbine generator housing
manufactured by nTopology and Cobra Aero (Figure 3a,b) [38]. The manufacturers showed
a 50% reduction in waste material and the possibility to produce the system in one single
component, instead of the six parts required in traditional manufacturing.

Figure 3. Microturbine generator housing (a); cross-section of the cooling system of the combustion
engine cylinder (b) [38] (image courtesy of nTopology).

The reported applications show the great progress which allowed the passage of AM
from lab to production, although it is not yet a mature technology. Since the quality of
aeronautic components is subjected to strict requirements, production on large industrial
scale through AM technologies is hindered by uncertainties in material performance.
The building up of components layer by layer to a final shape from a 3D model created
using Computer-Aided Design (CAD) is a complex procedure, and a multitude of process
parameters may affect the final quality of the products. In the next section, the main
defects which are present in printed Al alloys and determine their properties are examined.
Understanding the origin of defects in the production process and the specific role played
by process parameters is fundamental to optimize procedures, enhance the quality of
components, and open the way for a more extended use of AM in aeronautics.

3. Defects

AM technology offers the opportunity of modified or novel compositions to obtain
builds of high strength without defects such as cracks, often observed in conventional
alloys [39–42]. Moreover, components of complex geometry without joints, reduced mass,
and incorporating internal features can be produced [43], and this represents a great
advantage in the use of Al and its alloys in aeronautic applications. However, these
materials exhibit some drawbacks, such as high thermal conductivity and high reflectivity in
the laser wavelength range used in some common AM processes [44,45]. The combination of
high-power laser beams and low scan speeds employed to compensate for heat dissipation
leads to large melt pools, balling, damage to the powder distribution system, and relevant
impact on printing time and costs [46]. For instance, the Selective Laser Melting (SLM)
process of Al requires a laser power of at least 150 W at a scan speed of 50 mm/s to
achieve densities close to 100% for a layer thickness of 50 µm. A possible solution has been
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described by Buchbinder et al. [47], who investigated the improvement of SLM performance
by increased laser power up to 1 kW.

Another drawback is the high susceptibility of Al alloys to oxidation: oxides originally
present on the powder and forming during AM processes cause a high degree of porosity
in the final products. High porosity and poor surface quality hinder the application of these
materials in components where fatigue resistance is a critical issue [48].

Due to the special processing conditions of AM, alloys in the AM field face problems
such as inhomogeneous microstructure, excessive thermal residual stresses, and chemical
composition adjustment. The main defects observed in Al components prepared by AM
are (i) porosity; (ii) hot cracking, (iii) anisotropy, (iv) poor surface quality, and (v) residual
stresses. These aspects are examined in the following subsections.

3.1. Porosity

Components made of Al alloys and manufactured by AM always exhibit a certain
degree of porosity. The elimination of porosity is a challenging task, because it is related to
both material composition and process parameters (see Figure 4); thus, the optimization of
the characteristics of printed components involves the trade-off of different factors.

Figure 4. Causes of porosity in the AM process of Al alloys.

Material properties such as wettability, evaporation of alloying elements, presence of
impurities in the liquid pool, and absorptivity of laser beam directly depend on the alloy
composition. The manufacturing of a part by L-PBF can be considered as the movement of
a melt pool across the surface, with powder at the front of the pool and solidified material at
the back. The underlying and surrounding solid partially remelts, so that these regions are
wet and fuse with the melt pool. In the case of Al alloys, an adherent solid oxide layer forms
on the underlying solid and on the melt pool; thus, the wetting and fusing of Al regions is
controlled by the disruption of these oxides, not by the melting of the different regions.

A mechanism describing the way oxide layers affect the formation of pores during
L-PBF process has been proposed by Louvis et al. [46]: the heat source induces the evapora-
tion of oxides on the upper surface of the melt pool, and Marangoni motions disrupt oxide
layers on the lower surface, whereas oxides formed at the side of the melt pool are scarcely
affected. As schematically shown in Figure 5, the remaining thin oxide fragments may trap
gas and unmolten powder particles as the melt pool fails to wet the surrounding material.
The major confounding factor for processing Al alloys is identified in the oxidation due
to the presence of O within the build chamber, and they concluded that to produce 100%
dense Al components by L-PBF, it is necessary to develop methods either to disrupt these
oxide films or avoid their formation.
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Figure 5. Thin oxide fragments trap gas and unmolten powder particles forming pores (redrawn
from ref. [46]).

The control of the atmosphere in the build chamber is fundamental to reduce oxidation
and porosity during solidification [48] and improve the final quality of components [49].
Elements with an evaporation temperature lower than the melting temperature of the alloy
can evaporate during the process, resulting in a final product with a composition that is
different from that of precursors [50]. Of course, this affects the wettability of liquid metal
and may contribute to increase the porosity.

Generally, Al and Al alloys have a low laser absorptivity that may induce an incom-
plete melting of powders and finally lead to defects in the printed component. To overcome
this problem, apart from a suitable tailoring of the alloy composition (e.g., elements such as
Si and Mg enhance the absorptivity), an increase in energy density seems to be of help [51].
Energy density Ed (J/mm3) can be expressed as

Ed =
P

v·s·t (1)

where P (W) is laser power, v (mm/s) scan speed, s (mm) scan spacing, and t (mm) layer
thickness. By investigating AlSi7Mg0.3, Kimura and Nakamoto [52] observed that there
is a critical value of the energy density to obtain components with optimal density (see
Figure 6a).

Figure 6. Influence of energy density (a), scan speed (b), and scan spacing (c) on the relative density
of AlSi7Mg0.3 printed by L-PBF. Redrawn from ref. [52].
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Below such a critical value (low-energy density), the material exhibits an incomplete
melting of the powder layer, and some porosities remain as a matter of course, while above
it (high-energy density), there are a lot of spherical gas pores. The layer thickness being
constant, at a given laser power the energy density depends on scan speed v and scan
spacing s; thus, the right combination of these parameters allows to obtain the optimal value
of energy density and consequently of density of manufactured components. Figure 6b,c
shows the relative density of components obtained with different laser power by varying the
scan speed and scan spacing, respectively. Similar results were obtained by Read et al. [53]
by studying the AlSi10Mg alloy.

The effect of energy density on size, orientation, and distribution of the pores is
evident by considering the scan strategy. Damon et al. [54] observed a higher density of
clustered pores (200–300 µm) near the surface in AlSi10Mg components built by adopting
the contour-core scan strategy, while larger pores near the preheated printing platform
were detected by Cerri et al. [55]. These results evidence how the scan strategy may lead to
variations of laser energy density in different parts of a single component with the result of
inhomogeneous pore size and distribution.

Laser energy density controls the local heating; however, porosity also strongly de-
pends on the cooling rate, because the higher the rate, the greater the amount of gas
trapped in the solidified metal. This was clearly demonstrated by Hauser et al. [56], who
investigated the correlation between porosity and shielding gas flow rate in Wire Arc
Additive Manufacturing (WAAM). Since a high flow rate improves heat dissipation, rapid
solidification occurs, and the gas remains trapped in the solid, causing higher porosity.

Different types of pores are found in printed parts depending on the scan speed v.
Indeed, for each alloy, there is a critical scan speed (vc): if v < vc, metallurgical pores are
observed, whereas if v > vc, keyhole pores are observed [57]. The overall porosity does not
depend only on scan speed but also on laser power and scan spacing. Scan speed and laser
power are interconnected, and their influence can be evaluated by considering the energy
density. Generally, high energy density reduces porosity and leads to higher hardness
values; however, high scan speeds promote the spattering phenomenon [58].

Densities greater than 99% can be reached by a suitable choice of process parameters
in L-PBF [57,59]. For high-strength Al alloys with poor processability, it is of great relevance
to find the correct process window. An example is given in the work of Stopyra et al. [60],
who determined the optimal parameters to manufacture defect-free AA7075 components
by L-PBF: they were able to obtain a relative density higher than 99% and low vaporization
loss, but it was not possible to completely eliminate solidification cracks.

The quality and properties of feedstock materials, powders in particular, have a crucial
relevance on the resulting printed parts. Tests on morphology, size distribution, apparent
density, and flowability are usually made on the powders before printing. Deviations from
optimal values of these parameters can result in the higher density of defects; therefore,
they are strictly correlated to moisture absorption, surface energy, and cohesion potential,
and they affect the homogeneity and distribution of the powder layer. Tests on AlSi7Mg
powders with different particle sizes showed that fine spherical particles (~9 µm) are
more susceptible to water absorption and powder cohesion than particles of larger size
(40–48 µm) [61–64]. Samples printed by using fine powders show lower density (~95%)
than those printed with coarse powders (~99%). Moreover, coarse powders lead to lower
top surface roughness, better dimensional accuracy, and greater hardness due to finer
cellular structure [63,64].

Moisture on the powder surface must be avoided, not only because it influences the
powder distribution but also because it can lead to the formation of hydrogens pores [65,66].
A viable solution can be a drying process to remove water on the powder surface before
printing. In Al12Si, drying modifies the powder surface, reducing oxide formation that
could give rise to defects in printed parts. Through this treatment, it is possible to obtain
final parts with a 99.9% relative density.
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Another relevant issue in industrial production by AM technologies is the use of recy-
cled powders. Tonelli et al. [58] observed that spherical powders lead to the manufacturing
of components with higher density and less spattering defects than those printed using
powders of irregular shape, and such behavior has been explained by considering the
better flowability of spherical powders. Generally, recycled powders show an irregular
morphology; thus, they are expected to give rise to printed parts of lower quality compared
with those obtained using fresh powders. However, Maamoun et al. [59] demonstrated
that it is possible to obtain the same density (99.7%) by printing parts with fresh and
recycled AlSi10Mg powders if laser power is high enough (370 W). These investigators also
observed that such density is comparatively higher than that (95.6 to 99.6%,) reported in
the literature in processes using fresh powders but performed under lower laser power
(100–350 W) [53,54,56,67].

In conclusion, porosity is a multivariable problem, because it depends in many ways
on material composition and process parameters, and it is quite difficult to find the optimal
trade-off of all these factors. A lot of papers can be found in the literature on the matter
(only some of them are cited here); however, the major part is focused on specific aspects.
Therefore, it seems important to put more efforts in the future to investigate the process of
a single material in a whole by combining experimental work and simulation.

3.2. Hot Cracking

Another issue of serious concern in the production of Al alloys by AM techniques
is hot cracking due to metal shrinkage during solidification. It preferentially takes place
in alloys with a large temperature range of solidification, owing to the lack of liquid
metal in the interdendritic spaces. In different Al alloys, the phenomenon exhibits the
following characteristics: (i) cracks are parallel to the building direction [68,69], (ii) notch
effect can lead to cracks initiated by pores [70], (iii) cracks could propagate along grain
boundaries [70], and (iv) equiaxed semisolid structures partially accommodate the strain
and mitigate the cracking [70].

Figure 7, taken from ref. [68], shows how an increasing content of Si in 7075 alloy
reduces cracking susceptibility.

Figure 7. Cross-sections of 7075 alloy without Si (a) and with 1 wt% (b), 2 wt% (c), and 4 wt%
(d) of Si. Cracks parallel to the building direction (BD) are indicated by arrows. Adapted from
ref. [68] (reproduced with permission from Journal of Materials Processing Technology; published by
Elsevier, 2016).
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One of the possible solutions is the modification of the alloy composition. For instance,
the addition of Sc and Zr has beneficial effects, because it leads to the formation of Al3(Sc,Zr)
precipitates, acting as preferred nucleation sites and promoting a microstructure with fine
and equiaxed grains [71–76].

According to Hu et al. [77], who investigated the SLM of Al–Cu alloys, the center of
the molten pool is the most susceptible zone for crack initiation. Therefore, the addition of
Si in alloy composition reduces hot cracking by increasing the amount of eutectic. Other
factors that influence hot cracking are the amount of dissolved gas, wettability of the solid
by the liquid, and process parameters [51]. Scan spacing is a parameter that strongly
influences the cooling rate, thus the occurrence of hot cracking [57,78]. Hu et al. [77] de-
veloped a general method to determine the critical scan speed in SLM that was verified
for two different Al–Cu alloys, namely AlCu5MnCdVA and Al–Cu–Mg–Mn. From a litera-
ture review [79–83], they observed that scan speed and cracking susceptibility are directly
linked: the latter increases as the speed increases. Their model is based on the modified
Rosenthal’s equation and Feurer’s criterion [84], which considers both the material proper-
ties and process parameters: by applying this model, the critical scan speed above which
the cracks can form at the center of the melt pool is obtained. Solidification temperature
range is not the only thing that matters for cracking, because the thermophysical properties,
in particular thermal expansion, viscosity, thermal conductivity, specific heat, density, and
growth coefficient of secondary dendrite arms, also play a relevant role. Moreover, the
multiple thermal cycles during SLM favor crack formation, even if the overlapping of the
molten pool can eliminate the cracks which initiate during the previous scanning. Therefore,
a small scan spacing could be beneficial for crack reduction [77].

3.3. Anisotropy

Epitaxial columnar grains, parallel to the building direction, are one of the typical
features of AM metals; this structure is the main reason for anisotropy in mechanical prop-
erties [50]. However, columnar grains are not the only factor that influences the anisotropy
of mechanical properties, since lack-of-fusion defects, which can act as stress concentration
sites [85], are mostly oriented perpendicularly to the building direction. The result is a
difference in mechanical properties along the building direction and perpendicular to it
(see examples in Table 1).

Table 1. Anisotropy of mechanical properties in some Al alloys. The anisotropy is defined by σx−σz
σx
∗ 100;

Z is the vertical direction, parallel to the building direction, and X and Y are the horizontal ones.

Material Condition Process Tensile Axis
Orientation

Yield Stress
Anisotropy (%)

Elongation
Anisotropy (%) Yield Stress (MPa) Elongation (%) Ref.

Al12Si As-built SLM Z
XY −1.7 50

274.8 ± 8
270.1 ± 10

2.2 ± 0.3
4.4 ± 0.7 [86]

Al12Si HT SLM Z
XY 2.0 20.8

150.3 ± 17
153.4 ± 5

4.2 ± 0.3
5.3 ± 0.7 [86]

AlSi10Mg As-built SLM Z
XY 4.0 16.7

240
250

1
1.2 [53]

AlSi10Mg As-built SLM Z
XY - 37.5

-
-

3.47 ± 0.6
5.55 ± 0.4 [87]

Al–Si–Mg As-built DMLS Z
XY 4.9 33.9

231 ± 3
243 ± 7

4.1 ± 0.2
6.2 ± 0.3 [88]

Rashid et al. [89] observed that samples of AlSi12 manufactured by SLM in different
orientations (0◦, 45◦, and 90◦) do not exhibit significant microstructural differences, while
the relative density is different; therefore, they concluded that the resulting anisotropy is
linked to the relative density and not to microstructural features. The variations of relative
density occur due to the different energy density, because the energy is constant, but the
area differs depending on the orientation. Therefore, control of this parameter could reduce
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the gap between the mechanical properties along perpendicular directions. Analogous
results were obtained by Nezhadfar et al. [90] on AlSi10Mg, Scalmalloy, QuesTek Al, AD1,
and AlF357, produced by L-PBF: the samples manufactured with an angle of 0◦ from the
building plate present a higher defects density than the perpendicularly manufactured
ones. Among these alloys, Scalmalloy and AD1 show the lowest defect anisotropy due to
their lower thermal conductivity.

As observed by Chen et al. [91], anisotropy also affects corrosion resistance: in AlSi12
produced by SLM, corrosion resistance in 3.5 wt% NaCl solution is higher in the building
direction than in the perpendicular one.

In the WAAM of ER 5183, defects such as porosity and microcracks have been observed
in the regions between adjacent layers, because samples with the main axis transversal to
the building direction show lower strength and ductility than those with the main axis lon-
gitudinal or diagonal to the building direction [92]. Qin et al. [93] observed that transversely
deposited (TD) samples of Sc and Zr-modified Al–Mg alloy exhibited a superior fatigue
strength (100.5 MPa) compared with that (57 MPa) of the parallelly deposited (PD) ones
and attributed the phenomenon to two factors: defects (lack of fusion resulted in a higher
stress concentration in the PD samples) and microstructure. Different crack propagation
paths led to different columnar grains/equiaxed grains area ratios and some grains of TD
samples (<110> // building direction) contribute to enhance the fatigue resistance because
of the exceptional dislocation formation.

3.4. Poor Surface Morphology

Al components produced by AM commonly present great surface roughness. The
main parameters that influence surface roughness are laser power, scan speed, and scan
spacing. As laser power increases, the average surface roughness and data scattering
increase as well, due to instabilities in the melt pool [94] (see Figure 8).

Figure 8. Surface roughness of three groups of samples printed by L-PBF with laser powers equal to
0.32, 0.36, and 0.4 kW (redrawn from ref. [94]).

For a given laser power, lower scan speed leads to lower surface roughness; for
example, in Direct Metal Laser Sintering (DMLS) of AlSi10Mg [95], through a suitable
tailoring of the scan speed, it is possible to obtain a surface roughness of one fifth of that of
samples printed with standard parameters. The phenomenon, also observed in the same
material produced by L-PBF [96], is correlated to the melt pool size that depends on both
laser power and scan speed.
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The overlapping of molten pools in the manufacturing of a single layer depends on
hatch spacing: the greater the scan spacing, the lower the overlapping. Generally, great
scan spacing leads to poor surface quality in top/bottom surfaces, where it is possible to
see the outline of different laser scans, but also on side surfaces.

A model of Majeed et al. [94] provided a relationship to predict surface roughness of
AlSi10Mg samples produced by L-PBF given the scan speed (SS), the overlap rate (OR),
and the hatch distance (HD), where laser power (LP) is a fixed parameter:

Ra(LP) = 6.7 + 10.19·SS + 0.1709·OR− 0.552·HD + 0.00426·HD2 (2)

Calignano et al. [97] used statistical models to determine the effects of process parame-
ters on surface roughness of AlSi10Mg samples produced by DMLS: the scan speed is the
parameter that mostly influences the surface finish followed by scan distance and laser
power. In the case investigated by these authors, the optimal parameters are laser power of
120 W, scan speed of 900 mm/s, and scanning distance of 0.10 mm.

3.5. Residual Stresses

Due to the rapid solidification and thermal cycles, printed components often present
residual stresses [98,99], which must be avoided, or at least minimized, since they lead
to deformation in thin walls and poor fatigue behavior. High tensile stresses in as-built
components are often not completely recovered by usual postprocessing operations [100].
In AlSi10Mg produced by SLM, residual stresses vary with the preheating temperature:
higher temperature leads to lower residual stresses [101].

Residual stresses induce greater distortions in narrower plates and bars, but preheating
can reduce residual stress and consequent distortions regardless of the part geometry [102].
AlSi10Mg printed by SLM exhibits a significant reduction in distortions with preheating at
150 ◦C, and at 250 ◦C, distortions become negligible [97].

In Al alloys of 2xxx series produced by WAAM, residual stresses were observed to
reach the material yield stress, causing relevant distortions [98]. Hönnige et al. [98] studied
the influence of vertical and side rolling on the residual stresses in WAAM samples: vertical
interlayer rolling can eliminate the distortions; according to the authors, it also hardens the
material, facilitating the natural aging of the alloy. Postprocess side-rolling helps control
residual stresses and reduce distortion. According to Oyama et al. [103], in a WAAM of
Al5Mg and Al3Si alloys, a viable solution could be to apply an adaptive heat source during
the production of components. This reduces the thermal discontinuities during the process
and limits the metrological deviations.

4. Microstructure and Mechanical Properties

The microstructure of printed Al alloys exhibits some specific features which strongly
affect the mechanical properties of components; among them, hierarchical structure, grain
morphology, and precipitates are of particular interest and have drawn the attention of
many investigators, together with the effects of printing conditions.

4.1. Hierarchical Structure

The layer-by-layer printing of Al alloys leads to a hierarchical structure [104–108].
Typical microstructural features are melt pools, due to melting and solidification of a small
volume of material under the effect of the laser (or other energy source). For example,
Figure 9a shows the pattern of laser scans on the surface of an AlSi10Mg sample printed
by L-PBF, while in Figure 9b, the semicircular shape of melt pools can be observed on the
cross-section of the same sample [109].
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Figure 9. Laser scans on the surface of a AlSi10Mg sample printed by L-PBF (a); melt pools in the
cross-section of the same sample (b); each grain inside the melt pool exhibits a finer substructure
of cells decorated by eutectic (c,d); pores of micrometric (e) and nanometric (f) size. Micrographs
are taken from ref. [109] and other unpublished works of the present authors (b,c,e reproduced with
permission from Journal of Alloys and Compounds; published by Elsevier, 2022).

The Al grains inside the melt pools are elongated in the building direction, and each
grain exhibits a finer substructure of cells decorated by eutectic (Figure 9c). The average
size of the cells is about one order of magnitude lower than that of grains. Moreover, the
material exhibits pores with different shapes and sizes (Figure 9e). As also observed by
other investigators [110–112], Si atoms are present in the Al matrix above the concentration
of equilibrium, and networks of entangled dislocations form in Al as the result of fast
solidification (~107 ◦C/s), typical of the L-PBF process. The cells and grains present a
consistent size, morphology, and texture from top to bottom of the printed parts [113].
The cyclic reheating of the material enhances diffusion, giving rise to the precipitation of
different compounds depending on the specific composition of the alloy. As a matter of
fact, this phenomenon is an intrinsic heat treatment due to the repeated thermal cycles. In
addition, the high Mg susceptibility to evaporation leads to a lack of this element from
some parts of the final component, with effects on the properties of the material.
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Fite et al. [114] observed that the microstructural features undergo some changes
at room temperature in the first hours after the build; in particular, the concentration
of Si in the Al matrix decreases, nanoprecipitates nucleate at the center of cells, and
preexisting precipitates tend to coarsen. Generally, process parameters strongly affect the
microstructures [115], and their effects are discussed in this section.

4.2. Grain Morphology and Precipitation Strengthening

An important microstructural phenomenon occurring during solidification is columnar
to equiaxed transition (CET), namely a change in grain morphology [116,117]. During
solidification, a high G/R ratio (G thermal gradient, R growth rate) gives rise to the
formation of an epitaxial columnar grain zone, while low G/R values promote equiaxed
grains. AM technologies may exhibit significant difference in the solidification conditions;
for instance, G is 105–106 ◦C/m in SLM and 104–105 ◦C/m in WAAM, R is ~1 m/s in
SLM and ~10−3 m/s in WAAM, and cooling rate is ~107 ◦C/s in SLM and 10–102 ◦C/s in
WAAM. Such differences in solidification conditions involve different G/R ratios and CET.
Anyway, in a major part of printed Al alloys, a columnar grain structure develops along
the building direction; thus, they exhibit anisotropy of mechanical properties.

Several studies focused their attention on the possibility to promote CET and texture
modification in AM components through different strategies, such as the addition of
inoculants [23,68,118], change in process parameters in SLM and Electron Beam Melting
(EBM) [66,119], various build strategies, laser energy density, and alloy modification.

The presence of elements such as Sc, Zr, Ti, Ta, Ni, and Nb facilitates the formation
of equiaxed grains, because their precipitates Al3X (X = Sc, Zr, Ti, Ta, Ni, and Nb) act as
preferred sites for heterogeneous nucleation due to their very low lattice mismatch with
the Al matrix [120]. For example, as shown in Figure 10, the addition of Nb particles (3%)
to 7075 alloy processed by L-PBF leads to a complete CET, passing from columnar grains
(~10 µm width, 100 µm length) to ultrafine equiaxed grains (d < 3.5 µm).

Figure 10. The 7075 alloy processed by L-PBF exhibits a columnar structure (a). After the addition
of Nb particles (3%), the structure consists of ultrafine equiaxed grains (b). Adapted from ref. [120]
(reproduced with permission from Additive Manufacturing; published by Elsevier, 2022).

Li et al. [121] reported that an equiaxed microstructure with random texture was
obtained by adding nanoparticles of TiB2 to AlSi10Mg during SLM. A similar approach was
adopted by Yang et al. [118] with the addition of Sc to the Al–Mg–Zr alloy; in this case, the
Al3Sc particles play a fundamental role in heterogeneous nucleation in the melt pools, and
a fully equiaxed microstructure was achieved. Moreover, Al–Mg–Sc–Zr alloys are hardened
by aging, so the microstructure can be suitably tailored to have a high fraction of finely
dispersed coherent Al3(ScxZr1-x) intermetallics for improving mechanical properties [122].
According to these authors, the fast solidification leads to a high quantity of Sc and Zr
trapped in the Al matrix; thus, subsequent heat treatments and HIP induce the precipitation
of Al3Sc particles by a factor of ~3–10 times compared with the as-built condition.

In general, in AM technologies, there is a narrow window of process parameters to
achieve CET. Hadadzadeh et al. [123] found that the grains of AlSi10Mg printed by DMLS
switch from columnar to equiaxed by changing the building direction from vertical to
horizontal: 75% of columnar grains in vertical samples and 49% in horizontal samples.
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CET alters the shape and consistency of Si precipitates and dislocation density in the α-Al
dendrites: in the vertical samples, they found a fine coherent dispersion of Si precipitates,
while in the horizontal samples, Si precipitates are bigger and noncoherent, and the dislo-
cation concentration is smaller. According to these investigators, the transition depends on
the angle between the nominal growth rate and the <hkl> direction of the dendrite.

Today, aircraft components of large size, such as wing ribs and fuselages, are still
manufactured through conventional techniques, namely milling and forging. A lot of work
is still focused on these processes to obtain the optimal precipitate distribution, reduce the
microstructural heterogeneity by grain refining, and improve the mechanical properties,
and in particular, enhance the fracture toughness without detrimental effects on yield stress
and ultimate tensile strength (e.g., see refs. [124–127]). However, WAAM technology has
attracted increasing interest for producing near-net structures with reduced costs and high
efficiency. Significant progress has been made by investigating the application of WAAM
to different Al alloys, including Al–Cu, Al–Mg, Al–Si, Al–Cu–Mg, and Al–Mg-Si [128–135].
Alloys for structural aeronautic applications must guarantee relevant mechanical properties;
thus, WAAM has been used to produce more complex materials such as Al–Zn–Mg–Cu
alloys. Since their first application in the Japanese Zero fighter aircraft, these alloys have
been of great interest for the aeronautic industry, owing to their high specific strength,
excellent toughness, and fatigue resistance, achieved by aging treatments inducing a fine
and homogeneous distribution of the η phase.

Dong et al. [136] investigated the 7055 alloy produced by WAAM and evidenced
that in a single-layer deposition, there are two types of columnar grains (one originated
from the starting position and the other one from the bottom fusion lines), with different
orientations. As shown in Figure 11, the grains originated from the starting position are
partially remelted during the deposition of the subsequent layer, giving rise to a periodical
microstructure.

Figure 11. Mechanism of formation of the two types of columnar grains during WAAM of 7055.
Redrawn from ref. [136] (reproduced with permission from Additive Manufacturing; published by
Elsevier, 2020).

Another interesting characteristic is the presence of second phases with both micrometric
(Mg(Zn,Cu,Al)2 and Al7Cu2Fe) and nanometric (T(Al2Mg3Zn3) and η(Mg(Zn,Cu,Al)2)) size.

Zhou et al. [137] produced a 2219 alloy by WAAM with a heterogeneous band structure
consisting of an alternating distribution of equiaxed and columnar grains. The volume
fractions of equiaxed and columnar grains were varied by adjusting the cooling mode of
the substrate.

Other alloys of the Al–Cu family of interest for aeronautic applications are those
containing Mg and Ag, because Ag enhances precipitation strengthening by promoting the
formation of the Ω phase [138,139]. The A201 alloy, developed about 60 years ago, showed
relevant strength but poor castability. Generally, these alloys exhibit high susceptibility to
hot tear formation; therefore, a new generation has recently been developed to overcome
these limitations.

In the development of high-strength Al alloys tailored specifically to AM, L12-Al3X-
forming elements are particularly effective to (i) reduce the susceptibility to solidification
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cracking by grain refinement and (ii) increase the strength by forming secondary nanoscale
precipitates. A significant example is reported by Roscher et al. [140] regarding Al1.76Ti
and Al2.51Ti (wt%) alloys manufactured by L-PBF.

One of the most investigated alloys of this novel generation is the A205 alloy (Al–Cu–
Mg–Ag–Ti–B), owing to its fine microstructure, excellent strength and toughness over a
broad range of working temperatures, and good compatibility with both conventional and
AM technologies [141]. These characteristics are achieved by adding Ti (3.00–3.85 wt.%)
and B (1.25–1.55 wt.%) in the form of TiB2, which promotes the formation of intermetallics.
With respect to Sc and Zr, which also refine the grains through the formation of Al3Sc and
Al3Zr nucleants at temperatures in the range 1500–2000 ◦C [73], TiB2 keeps its stability
up to 3500 ◦C [142]. As elucidated by Carluccio et al. [143], the presence of TiB2 restricts
grain growth even at the high temperatures involved in the laser melting process. These
investigators found that, when Sc is added to AA6061 and Al7Si alloys, a mix of fine
equiaxed and fine-to-moderated size columnar grains unevenly nucleate and grow within
the melt pools during SLM; the same materials microstructurally modified by TiB2 show
a homogeneous distribution of fine equiaxed grains over the entire melt pools without
preferential crystallographic orientations [144]. This fine grain structure is resistant to the
intergranular cracking and shrinkage porosities observed in A201 and other Al–Cu alloys
with coarse columnar morphology.

4.3. Printing Conditions

The mechanical properties depend on the specific AM process and process parameters
used to build the part. Printed metallic alloys often exhibit improved strength and hardness
if compared with the same as-cast and wrought materials due to the finer microstructure
(e.g., see refs. [113,145]), while the presence of unmelted powder and pores, they can
decrease the ductility and Young’s modulus, which is strongly affected by porosity. This has
been confirmed by Mechanical Spectroscopy (MS) investigations carried out on AlSi10Mg
produced by both casting and L-PBF [110,146]. More details about the technique that can
be used to investigate various phenomena of metals can be found in refs. [147–151].

As shown in Figure 12, in the first test run, the dynamic modulus of AM alloy exhibits
an anomalous trend: as temperature increases, the modulus is expected to monotonically
decrease, owing to anharmonicity effect; however at ~170 ◦C, it starts to increase, exhibits
a maximum at ~210 ◦C, then decreases again. After cooling at room temperature, the
modulus is increased by about 7%, while the density passes from 2.39 g/cm3 (as-built
material) to 2.52 g/cm3. The modulus is not further modified by successive test runs. SEM
and TEM observations allowed to explain the phenomenon, which does not occur in the
same as-cast alloy, as the closure of pores of nanometric size.

Figure 12. Dynamic modulus E vs. temperature of the AlSi10Mg alloy manufactured by L-PBF
measured in two successive test runs. The values of dynamic modulus are normalized to the value
E0 measured at room temperature in the 1st test run. Redrawn from ref. [109] (reproduced with
permission from Journal of Alloys and Compounds; published by Elsevier, 2022).



Metals 2023, 13, 716 17 of 33

Another aspect relevant to industrial AM processes is the use of recycled powders.
The analysis of the microstructure of AlSi10Mg samples printed from virgin and recy-
cled powders shows differences in terms of Si precipitate characteristics, cell size, and
dislocation density. According to Hadadzadeh et al. [152], recycled powders contribute to
strengthen the alloy through the Orowan mechanism (more Si precipitates), Hall–Petch
effect (formation of eutectic cell walls), and dislocation hardening. A possible drawback of
the use of recycled powders is their higher content of inclusions, which form because of the
great reactivity of Al with O [41].

Maamoun et al. [59] demonstrated that the use of recycled powders is not an obstacle
to achieving the optimal mechanical properties of AlSi10Mg printed by SLM, if suitable
postprocess heat treatments are adopted.

AM processes carried out in noncontrolled environment (e.g., SLM) or with nonop-
timal shielding gas flow rate (WAAM) may lead to the formation of oxides which then
remain trapped in the metal during solidification; thus, the right choice of process pa-
rameters can have a great impact on the oxidation and the resulting inclusions [56]. SEM
observations on the fracture surfaces of 6061 samples evidenced that thin oxides films are
present in the material, especially in the sides of the melting tracks, with a related decrease
in ductility. The model of Louvis et al. [46], presented in the previous section, well describes
the phenomenon.

Different approaches have been proposed to refine the microstructure and obtain high
density parts.

Mohammadpour et al. [153] showed how Solidification Microstructure Selection (SMS)
maps, obtained from solidification models, can help to predict the microstructure based
on the solidification parameters. A very important parameter is the energy density of the
beam used to melt the metal; higher energy densities, which are helpful to limit the defects
in the built components, also promote microstructure coarsening and consequently lower
mechanical properties of the printed parts [96].

Various works highlight the influence of shielding gases used during the process [154]:
the preheating temperature of the building plate and chamber [155] and the orientation of
the part in the printing space [156].

The shielding gases used in AM usually are inert gases, such as Ar. Li et al. [154]
used N2 as shielding gas to print 5356 Al samples by using the WAAM technique. Com-
paring the results with those obtained with Ar, they observed smaller grains, hardness
increase of ~12%, and ductility reduction due to the presence of a large number of nitrides
formed during the printing process.

Bian et al. [155] obtained a ~100% dense AlSi10Mg alloy by EBM with good surface fin-
ish and refined microstructure, consisting of a bimodal microstructure of coarse grains and
fine subgrains. They achieved such excellent results through a suitable choice of preheating
temperature and scan speed. Preheating the building platform (300 ◦C) allows to produce
AlSi10Mg by SLM with a more homogeneous microstructure with globular Si particles and
no apparent differences in samples with different printing direction (0◦, 45◦, and 90◦). The
effects of preheating on microstructure and mechanical properties of A357 manufactured
by L-PBF were also studied by Aversa et al. [156]. They proved that preheating at 140 ◦C
and 170 ◦C promotes an in situ ageing treatment, leading to a ~17% higher ultimate tensile
strength, values comparable to those of the same alloy produced by casting and T6 treated.

AlSi10Mg samples produced by SLM show a fatigue resistance dependent on growth
direction; in particular, those grown at 0◦ (growth angle) present a higher fatigue resistance.
The same alloy produced with heating of the build platform (300 ◦C) exhibits a better
fatigue behavior and negligible differences in the three examined building directions
(0◦, 45◦, and 90◦) [157,158].

5. Tailoring of Alloy Composition

The Al alloys most used in AM processes are the near eutectic Al–Si ones such as
Al12Si, A357, A356, and AlSi10Mg, because their solidification range is much narrower
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with respect to other high-strength alloys such as 2024. Moreover, Si improves the fluidity
of liquid Al and favors laser absorption in the L-PBF process. One of the main problems
related to the 3D printing of Al is its low absorptivity, and the presence of Si and Mg as
alloying elements improves the absorptivity and consolidation kinetics [159]. Alloys with
Si and Mg have higher packing density, and there is a reduction in input heat. Moreover,
Si partly prevents Al oxidation and reduces the thickness of the oxide layer. In general,
Si and Mg broaden the processing window.

Apart from AlSi10Mg, the high-strength Al alloys such as those of 2xxx, 6xxx, and 7xxx
series can hardly be manufactured by L-PBF because of their hot cracking susceptibility
during solidification and the high volatility of alloying elements such as Zn, Mg, and Li,
which easily evaporate during the process [160]. The risk of failure to create dense samples
from age-hardenable Al alloys is very high, even if densities above 99% have been achieved
by manufacturing AW-2022 and AW-2024 under variations of laser power, scan speed, and
scan spacing [161].

High-strength alloys were originally designed for conventional manufacturing pro-
cesses, while L-PBF provides higher cooling rates (up to 107 ◦C/s); thus, elements can
be quenched into solid solution in concentrations far above the maximum equilibrium
solubility. Therefore, rapid solidification extends the range of elements that can be applied
for precipitation hardening.

Moreover, Al–Fe–V–Si series heat-resistant Al alloys have received considerable at-
tention due to their low density, excellent thermal stability, high specific strength, and
high specific stiffness. These alloys have the potential to replace some of the Ti alloys
applied in aviation industries at temperatures up to 400 ◦C. Full dense AA8009 (Al–8.5Fe–
1.3V–1.7–Si by wt%) alloy parts were fabricated by SLM with a few build defects and
chemical composition similar to that of precursor powders, despite a slight Al loss and a
low O pickup [162].

Tailoring alloy composition can have beneficial effects on the choice of process param-
eters and the final properties of components. Alloying elements can improve absorption,
allowing a reduction in laser power; influence the thermal expansion and solidification
range of the alloy; form stable precipitates; and act as grain refiners.

Among the alloying elements added to Al alloys to improve their performances, Sc
plays a dominant role. Soviet metallurgists developed the first Sc-containing Al alloys,
which were implemented on the MiG-21 and MiG-29 aircrafts. Minor additions of Sc
(<0.5%) remarkably increase the strength of Al alloys (>30%) because of Al3Sc precipitates
homogeneously dispersed into the Al matrix. Some decades later, engineers at Airbus came
up with a second-generation alloy (Scalmalloy), also containing Zr, whose composition is
reported in Table 2.

Table 2. Chemical composition of Scalmalloy.

Element Mg Sc Zr Mn Si Fe Zn Cu Ti O V

wt %
(min) 4.00 0.60 0.20 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(max) 4.90 0.80 0.50 0.80 0.40 0.40 0.25 0.10 0.15 0.05 0.05

Scalmalloy exhibits an excellent strength-to-weight ratio; thus, it is an ideal material for
use with TO tools in the aeronautic industry. This alloy offers benefits few AM metals can
boast by combining the lightness of Al with almost the same specific strength and ductility
of Ti6Al4V [71,163]. In addition, compared with other Al alloys for AM, Scalmalloy has a
unique level of corrosion resistance and a stable microstructure at elevated temperature.

Zhang et al. [164] successfully fabricated a high-performance Al–Mg–Sc–Zr alloy by
SLM and investigated the thermodynamics of precipitation and its influence on mechanical
properties. Recently, Agrawal et al. [165] designed a novel alloy (Al1.5Cu0.8Sc0.4Zr),
showing a good combination of strength and ductility in both as-built and aged conditions
with a defect volume of about 1%. The aged samples show higher mechanical properties
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due to coherent precipitates and the presence of Cu-rich regions. Since in as-built conditions
columnar grains act as preferred crack nucleation sites, the precipitation of new phases at
grain boundaries during aging allows to overcome this drawback.

A lot of conventional Al alloys of the 2xxx, 6xxx, and 7xxx series, commonly used for
structural applications in aircraft, have been manufactured by means of AM technologies;
however, they suffer from hot-tearing. For a wider diffusion of beam-based AM in the
aeronautic industry, the design and development of high-strength Al alloys with good
L-PBF processability is considered as one of the main challenges. Therefore, the addition of
grain refiners [71,122,166–171] and modification of alloy composition [172,173] have been
used to overcome, or at least reduce, this disadvantage.

The addition of Sc and Zr has also been used by Qi et al. [174] to develop a new Al–Li
alloy (Al–Cu–Li–Sc–Zr) to be processed through L-PBF. This alloy was successfully printed
with a high building rate and low loss of Li, obtaining a mix of fine equiaxed and columnar
grains and good mechanical properties due to grain refinement (yield strength = 482± 1 MPa;
ultimate tensile stress = 539 ± 1 MPa; and elongation = 8.8 ± 0.7%).

To reduce hot cracking, the combination of Zr and Cu has also been studied [175]:
Cu promotes the segregation of an eutectic Al–AlCu phase during the final stages of
solidification [176–178], while Zr refines the microstructure and favors the formation of
equiaxed grains [179]. A Sc/Zr-modified Al–Mg alloy was prepared by both SLM and DED,
and due to the different precipitation behaviors of the primary Al3(Sc,Zr)–L12 nucleation
sites, a heterogeneous grain structure (ultrafine equiaxed grains bands and columnar grains
domains) was formed in SLM samples, while a fully equiaxed grain structure was obtained
in samples manufactured by DED [180]. As-built SLM samples exhibit the best combination
of strength and ductility.

Zhang et al. [181] found that the introduction of Ti into the Al–Cu–Mg alloy effectively
promotes grain refinement and CET because of the heterogeneous nucleation provided
by Al3Ti precipitates. Hot tearing cracks were eliminated after Ti modification due to the
formation of a homogeneous and fine equiaxed microstructure. The novel high-strength
Al–Cu–Mg–Ti alloy exhibits improved tensile strength, yield strength, and ductility.

As shown in Figure 10, 3 wt. % of Nb added to 7075 alloy processed by L-PBF
modifies the grain structure from large columnar grains into ultrafine equiaxed grains and
completely suppresses hot tearing [120].

Among Al alloys, those containing Li are of particular interest for aeronautic appli-
cations, because this element strongly increases the specific mechanical properties (e.g.,
see refs. [4,182,183]). However, it is well known that optimal mechanical properties of
ternary Al–Cu–Li alloys can be achieved by the strict control of the Cu/Li ratio, because it
influences the precipitation sequence [183]: a high Li content favors the precipitation of the
metastable δ’ phase that is undesired, because it is prone to shear localization with conse-
quent poor toughness and ductility. The optimal composition was found to be ~3 wt. % Cu
and <1.5 wt. % Li. By using an ultrashort pulse laser, Yürekli et al. [184] exploited the
very fast cooling rate to print Al–Li alloys with high Li content (4 wt. %) and with an
extremely low amount of δ’ phase. In their experiments, these investigators printed parts
of relatively low density (~75%); however, Li et al. [185] demonstrated that is possible to
reach an acceptable relative density by controlling the process parameters, in particular
the scan speed. In general, for Al–Li alloys, AM exhibits clear advantages with respect to
conventional manufacturing methods, which are limited by the high chemical activity of Li.

A system of particular interest for high-temperature applications is the Al–Ce eutectic
alloy [186–196], which is suitable for AM process due to its narrow solidification range. An
example taken from the paper of Bahl et al. [186] is displayed in Figure 13a, comparing
the Scheil curve of the Al7.78Cu4.73Ce alloy with that of the AlSi10Mg, AA2024, and
AA7075 alloys. The hot-tearing susceptibility index C, calculated by these investigators
and reported in Figure 13b, is clearly much lower for the alloy containing Ce.
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Figure 13. (a) Comparison of Scheil curves (at high solid fractions) of Al–Cu–Ce, AlSi10Mg, AA2024,
and AA7075 alloys. The shaded region in (a) marks the range of solid fraction over which the
hot-tearing susceptibility index C reported in (b) is calculated. Redrawn from ref. [186] (reproduced
with permission from Additive Manufacturing; published by Elsevier, 2021).

The strength at high temperature of the Al–Cu–Ce alloys depends on the spacing
(~300 nm) and thermal stability of the intermetallics (Al8Cu3Ce) in the eutectic structure.
The spacing between intermetallic particles in the eutectic alloys is inversely proportional
to solid–liquid interface velocity, which in turn increases with laser scanning speed during
AM [197]. Therefore, alloys with increased strength can be potentially produced by adopt-
ing higher laser scanning speed. The particle spacing can also be refined by changing the
alloy composition to increase particle volume fraction, and a further contribution could be
achieved by additional elements altering the eutectic solidification [195].

According to the criteria suggested by Knipling et al. [198], since the particle thermal
stability is related to the slow diffusivity of Zr in the Al matrix, the addition of further
elements such as Ti, V, and Cr, with even slower diffusivity, can increase thermal stability.
By exploiting the same strategy of grain refinement and precipitation strengthening, other
metallic systems have been investigated. For instance, a nearly full dense high-strength
AlNd8Ni5Co2 alloy [199] has been produced by SLM, and the material has a composite
microstructure with intermetallic AlNdNi4, Al4CoNi2, and AlNd3 platelets dispersed in
the Al matrix.

Through SLM, Al–Ni–Ti–Zr components have also been printed with strategies involv-
ing grain refinement through heterogeneous nucleation and eutectic solidification. These
parts exhibit a lack of hot cracking in a wide parameter window [200].

Aversa et al. [201] improved the mechanical properties of the AlSi10Mg alloy with the
addition of Cu and Ag.

Belelli et al. [202] modified the composition of the 2618 Al alloy by adding low amounts
of Ti (2.3 wt. %) and B (0.8 wt. %), and the samples processed by L-PBF exhibited a relative
density higher than 99.7%. Ti and B form Ti2B particles acting as preferred nucleation
centers for grains of primary α-Al; thus, microstructure consists of equiaxed grains with
excellent resistance to hot cracking.

6. Postprocess Treatments

Postprocess treatments are mainly carried out to induce an optimal distribution of precip-
itates, reduce porosity and inclusions, improve surface quality, and relieve residual stresses.

6.1. Aging Treatments

In many Al alloys prepared by AM, the rapid solidification leads to a supersaturated
solid solution; therefore, aging treatments are usually performed to induce precipitation
and strengthen the material [177,203]. Problems involved in aging treatments are those
typical of Al alloys; in particular, it is important to find the suitable temperature–time
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combination to obtain a fine dispersion of precipitates for optimizing mechanical properties.
In addition, treatments should not produce coarsening of the fine microstructure induced
by AM processes. To predict the microstructure evolution, which is rather complex and
plays a critical role in determining mechanical performances, some numerical models have
been proposed (e.g., see ref. [204]).

According to Fite et al. [114], holding AlSi10Mg at room temperature and a subsequent
170 ◦C aging leads to the formation of Si precipitates at the center of Al cells, as well as the
preservation of eutectic ribbons. In this way, they achieved a hardness that is 47% higher
than that obtained through conventional solution treatment and 170 ◦C aging.

The effect of low-temperature annealing at 225 ◦C on creep behavior was investigated
by Paoletti et al. [205] in experiments carried out at 150, 175, and 225 ◦C. The comparison
with data of as-printed alloy demonstrated that annealing results in a loss of creep resistance
that is more pronounced at lower temperatures. In general, the creep response of as-printed
and annealed alloy becomes more and more similar as temperature increases. The creep
behavior was compared with the prediction of a physically based model, considering the
effect of Si particle ripening. In such a model, the complex microstructure of the AM
AlSi10Mg manufactured by SLM was assimilated to that of a composite formed by soft
zones (cell interiors) and hard zones (Si-rich eutectic regions). The constitutive equations
were then used on the resulting simplified material model described by the rule of mixture.
On the basis of the excellent agreement between data from experiments and the model, they
concluded that the key factors determining the creep response are the size and distribution
of the second-phase particles: annealing causes an increase in particle size with consequent
decrease in creep resistance.

For AlCu5MnCdVA manufactured by SLM, conventional aging methods cannot be
implemented due to the loss of Cd during manufacturing. Hu et al. [206] systematically
studied different aging treatments to determine the optimal temperature–time combination
and avoid θ’ coalescence with detrimental effects on mechanical properties. The domi-
nant strengthening mechanism is the fine dispersion of θ’ (with high aspect ratio) and θ”
precipitates. Their results are summarized in Table 3.

Table 3. Effect of different heat treatments on AM205A alloy: geometrically necessary
dislocations (GND), type of precipitate phases, their volume fraction, yield stress (YS), and ulti-
mate tensile strength (UTS). Data taken from ref. [206].

Treatment GND Density (m−3) Main Precipitates Volume Fraction (%) YS (MPa) UTS (MPa)

As-built 7.2 × 1013 155.5 ± 1.5 317.3 ± 1.2

Solution + Natural Aging 3.3 × 1013 θ”
θ′

217.2 ± 20.4 412.7 ± 15.6

Solution + Artificial
Aging (426 K, 10 h) 5.5 × 1013 θ”

θ′
282.1 ± 15.1 458.0 ± 10.7

Solution + Artificial
Aging (426 K, 24 h) 4.8 × 1013 θ”

θ′
3.67
0.53 345.4 ± 15.5 470.6 ± 6.5

Solution + Artificial
Aging (426 K, 48 h) 4.3 × 1013 θ”

θ′
4.29
1.49 383.3 ± 10.8 476.2 ± 6.4

Solution + Artificial
Aging (446 K, 2 h) 4.4 × 1013 θ”

θ′
1.51
0.10 262.8 ± 5.7 437.3 ± 22.1

Solution + Artificial
Aging (446 K, 6 h) 3.7 × 1013 Mixed θ”/θ′ 3.27 352.5 ± 10.5 453.3 ± 5.0

Solution + Artificial
Aging (446 K, 10 h) 4.1 × 1013 Mixed θ”/θ′ 3.35 344.7 ± 14.4 441.5 ± 8.7

An interesting phenomenon, namely a multiple precipitation pathway, was observed
by Rao et al. [207] in A357 samples manufactured by SLM. Si particles with random
crystallographic orientations are the dominant precipitates at the direct aged condition,
whereas the precipitation sequence resembles that of cast Al–Si–Mg alloys with solid
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solution treatments of 1 or 8 h. However, the main precipitates at peak-aged condition
are premature B′ (1 h) and β” (8 h), respectively. Uniaxial strains in the Al matrix seem to
be responsible for such unusual precipitation pathways, because they reduce the vacancy
formation energy, and both the diffusivity of solutes and nucleation of some precipitates
(randomly oriented Si particle and B′) are enhanced by the increased vacancy concentration.

6.2. Reduction in Porosity and Improvement of Surface Quality

Since pores, inclusions, and poor surface finish represent preferential sites for fatigue
crack initiation, different postprocess treatments have been studied for improving fatigue
resistance of printed components, in particular, surface polishing, Shot Peening (SP), and
Hot Isostatic Pressing (HIP) (e.g., see ref. [208]).

In some cases, surface polishing after fabrication may present relevant drawbacks,
such as unacceptable costs and impossibility to perform the treatment because the surface
is inaccessible. Moreover, as evidenced by Nicoletto [209] investigating AlSi10Mg prepared
by L-PBF, fatigue behavior is sensitive to the applied stress direction with respect to
build direction.

In AlSi10Mg, it has been shown that SP causes shrinkage and collapse of pores,
reducing the overall porosity by 0.1–0.3%, and it is more effective in a layer of about 500 µm
near the surface [56]. This leads to greater fatigue resistance in both low- and high-cycle
fatigue tests [55]. By comparing different surface treatments, Uzan et al. [210], whose results
are displayed in Figure 14, showed that the optimal fatigue behavior of the AlSi10Mg alloy
produced by SLM can be obtained after surface polishing and SP treatment.

Figure 14. S–N curves of die cast and SLM AlSi10Mg samples in different conditions, namely
as-printed, after polishing, and after polishing plus shot peening (SP). Redrawn from ref. [210]
(reproduced with permission from Additive Manufacturing; published by Elsevier, 2018).

HIP is an effective solution to reduce porosity of printed materials [211,212], however
the microstructural evolution due to soaking at high temperature must be carefully taken
into account. For instance, a reduction in the fatigue resistance of AlSi10Mg probes sub-
mitted to SP and HIP at 500 ◦C, with respect to the as-built alloy has been reported and
attributed to the coarsening of Si particles [211].

The combination of HIP and standard heat treatments can be performed on printed
Al alloys with promising results. For example, T6 treatment after HIP leads to a homo-
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geneous distribution of Si particles in Al matrix without significant grain growth due to
particle pinning of grain boundaries; the final result is an improvement of mechanical
properties [212]. On the contrary, the same treatment performed on the alloy that did
not undergo previous HIP results in a reduction in hardness [55]. The explanation of the
different effect of T6 treatment is related to unsolvable gases present inside the printing
chamber which remain trapped in the pores. T6 treatment, performed at high temperature,
promotes gas expansion in the pores and material flow; this does not occur if as-built
material is previously submitted to HIP that closes the pores [213].

A different solution is to perform HIP and heat treatment in a single step
(Giovagnoli et al. [213]). Finally, another approach involves variations of standard heat
treatments; for instance, Di Egidio et al. [214] performed a rapid solution (10 min at 510 ◦C)
followed by artificial aging (6 h at 160 ◦C). The rapid solution prevents pore growth, leads
to a more homogeneous distribution of Si particles in the Al matrix, and limits diffusion of
Si and Mg, so these elements remain trapped in solid solution and can form precipitates
during the following aging treatment.

To neutralize differences in fatigue life for the 0◦, 45◦, and 90◦ directions, Brandl et al. [158]
successfully investigated the possibility to combine platform heating (300 ◦C) and peak-
hardening treatment.

6.3. Relieve of Residual Stresses

Thermal cycles during AM process cause residual stresses in printed components,
which tend to induce crack extension and structural deformation affecting their quality
and performance.

Salmi et al. [100] investigated the effect of stress relief treatments and SP on AlSi10Mg
prepared by SLM. They found out that residual stresses, measured by hole drilling method,
are tensile stresses and have an oscillatory nature (see Figure 15). Such residual stresses are
reduced but not completely eliminated by heat treatments (300 ◦C for 3 h) while successive
SP induces a more uniform stress state and, most important, a compression state near the
surface (good for fatigue behaviour).

Figure 15. Values of residual stresses vs. distance from top surface of AlSi10Mg samples: as-built (AB),
after heat treatments (HT) at 300 ◦C for 3 h, and after heat treatment and shot peening (HT + SP).
Redrawn from ref. [100].

Although the effects of statistical populations of defects on fatigue behavior are well-
established for materials manufactured by conventional processes, fatigue strength predic-
tion concerning AM materials still lacks accuracy and does not provide adequate estimation.
Recently, Schneller et al. [215] developed a new methodology, based on experimental data
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(residual stresses, defect population, and hardness), to assess fatigue strength of Al compo-
nents with unnotched shapes. The proposed approach modifies Murakami’s method [216],
which correlates the fatigue resistance σf to the characteristic dimension of defects and ma-
terial hardness HV by introducing a residual stress factor σr. The equation is the following:

σf =

√√√√√σ2
r

4
+

C1
HV + C2S
√areae f f

1
6

2

− σr

2
(3)

where s = 1 − σr/HV is a reduction factor, (areaeff)1/2 is the dimension of killer defects,
C1 = 1.43, and C2 = 120.

The equation was validated on AlSi10Mg samples fabricated by SLM in the following
conditions: as-built, after a heat treatment (T > 300 ◦C for 2 h), and after HIP (T > 500 ◦C
and 100 MPa for 2 h, followed by 7 h at 160 ◦C).

7. Conclusions

The strong competition in the aeronautic industry for producing aircrafts with im-
proved technical features and reduced costs requires advanced structural materials which
guarantee reduced weight, improved mechanical properties, and corrosion resistance. The
development of such materials needs new technologies, and AM involves specific benefits
mainly related to MRO operations, minimizing the “buy-to-fly” ratio and weight reduction
through TO.

Recent advances in the AM of Al alloys for aeronautic applications were described
and critically discussed, highlighting current problems and perspectives. Attention was
focused on some relevant issues: (i) defects typically found in AM-printed Al alloys,
(ii) microstructure–properties relationships, (iii) development of novel alloys, and
(iv) postprocess treatments. These topics were treated by considering different AM technolo-
gies and the effects of material (powders or wires) characteristics and process parameters.

From this study, the following topics seem of particular interest for future investigations:

(i) A major part of the literature papers are focused on specific aspects of the AM process
of Al alloys; however, defects in printed components depend in many ways on
material composition and process parameters, and it is a challenging task to find
the optimal trade-off of all the factors affecting the final macro- and microstructure.
Therefore, more efforts should be made to investigate the process of a single material
in a whole by combining experimental work and simulation, with particular attention
to the contributions which could be given today by artificial intelligence.

(ii) The development of models and deep learning systems able to predict with accu-
racy the final characteristics of printed products will be very useful to reduce long
and expensive experimental trails and accelerate the application of AM on a larger
industrial scale.

(iii) Since AM has characteristics completely different from conventional manufacturing
methods, the design and development of new alloys, in particular high-strength Al
alloys, with compositions specifically tailored for this technology, is a critical issue,
and relevant advancements are expected from future research.

(iv) It is of fundamental importance to identify inoculants that are more effective in promoting
a microstructure consisting of equiaxed grains with small size and random orientation.

(v) The integration of AM with MRO aircraft operations through the just-in-time produc-
tion of components requires relatively simple machinery; thus, complex postprocess
treatments represent a drawback. In addition to the production of printed components
of better quality, a target of future research should be the reduction of postprocess
treatments, as well as their simplification and integration.
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Nomenclature

AM Additive Manufacturing
TO Topology Optimization
CAD Computer-Aided Design
MRO Maintenance, Repair, and Overhaul
L-PBF Laser Powder Bed Fusion
DED Direct Energy Deposition
WAAM Wire Arc Additive Manufacturing
SLM Selective Laser Melting
DMLS Direct Metal Laser Sintering
CET Columnar to Equiaxed Transition
G Thermal gradient
R Growth rate
EBM Electron Beam Melting
SMS Solidification Microstructure Selection
GND Geometrical Necessary Dislocations
E Dynamic modulus
YS Yield Stress
UTS Ultimate Tensile Strength
SP Shot Peening
HIP Hot Isostatic Pressing
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