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Abstract: As an important part in new energy storage devices, electrodes containing metals or their
corresponding derivatives are widely used due to the diversity of material types, existing forms and
assembly methods. In order to obtain novel energy storage components with superior performance,
new technologies and studies on the improvement of electrode materials are emerging in recent years.
This editorial paper aims to summarize the classical and latest research highlights on manufacturing,
characterization and modification of metallic electrodes, especially new materials.

Keywords: energy storage device; metal batteries; metallic electrode materials; experimental
synthesis and manufacturing; advanced characterization methods

1. Introduction

The energy storage devices with metal electrode materials and relating techniques have
been greatly developed in recent years [1], especially based on the metal batteries including
lithium (Li) [2] /sodium (Na) [3] /potassium (K) [4] /zinc (Zn) [5] /aluminum (Al) [6]
/magnesium (Mg) [7] /calcium (Ca) [8] cells, metal/air batteries, secondary batteries, solar
energy storage and catalytic hydrogen production, which have played significant roles in
a wide range of application scenarios. However, with the increasingly prominent global
energy problems, the demand for the development of new energy storage devices and
technologies might continue to increase.

At present, there are still some defects in metallic electrode materials, especially in
large-scale manufacturing. In order to meet the requirements of energy storage, many
scholars have explored the new high-performance metal electrode material system, and
some improved preparation ways have been put forward, which provided a basis for
developing the large-scale production process for the next generation of chemical energy
storage devices. In addition, advanced characterization methods were constantly emerg-
ing, which offered basic support for regulating the structure and properties of metallic
electrode materials.

In this paper, pure/abnormal metal and metallic compound electrodes would be
emphasized, respectively.

2. Metal Electrode

In recent decades, lithium-based batteries have dominated the development of high-
performance batteries because of the low density, high voltage and excellent electrochemical
equivalent to 3860 mA·h/g for lithium metal among various negative electrode materials [9].
Lithium metal cells are difficult to commercialize even nowadays, which is mainly due to
the problems of poor cycle stability and low coulombic efficiency (CE) of lithium anode
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during charging and discharging processes. On the one hand, the root cause of the above
defects is that there is a serious side reaction between lithium anode and electrolyte, and
another reason is the obvious volume change during the cycling of lithium anode [10].
In unit time, the flux of metal ion diffusion to different positions of the electrode would
change while the current density and deposition speed at various positions on the surface
of the metal electrode also differ. When the current density is high, the deposition speed of
metal electrode is fast, and the tip growth occurs.

The unwanted deposition of lithium dendrites (as shown in Figure 1) and Li metal
on foil electrode is the main cause of damage to the performance of lithium metal cells.
The replacement and alloying reactions between special ionic liquid and lithium foil were
applied to construct Li alloy anode to solve the use problems caused by lithium dendrite
growth inside lithium metal batteries [11]. Coralloid carbon fiber (CFs) was prepared by
electroplating silver (Ag) particles on the surface of CFs in a published work [12]; then, the
composite lithium metal anode CF/Ag-Li could be obtained by siphoning molten lithium,
and the synthesized electrode could adjust the nucleation and growth of lithium during
lithium plating as well as reduce the deposition degree of lithium during the reactions.
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The working principle of Na metal batteries is similar to that of Li ones. With high
specific capacity of 1166 mA·h/g and low redox potential of −2.71 V, normal hydrogen
electrode (NHE), as well as abundant sodium element and much lower price than that of
lithium, sodium-ion battery (SIB) is expected to replace lithium-ion battery (LIB) as the
most promising next-generation energy storage equipment. On the contrary, the growth
of sodium dendrites in Na metal cells is always out of control, and the unstable solid
electrolyte interface (SEI) layer would also limit the development of Na-relating cells [13].

Compared with lithium dendrites, there are more serious disadvantages to those of
sodium and SEI layer inside Na metal cells. Currently, the new combination of metallic
salt and solvent to obtain advanced electrolyte has become the research focus to realize the
stable cycle of sodium metal battery [14]. By studying new electrolytes [15] or changing
the concentration of solute [16], the cyclic performance of sodium metal battery could be
enhanced and stabilized.

The working principle of potassium battery is similar to that of lithium and sodium
cells. K metallic electrode has high theoretical specific capacity and extremely low electrode
potential, but it still faces many problems when modified and used in potassium-ion batter-
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ies (PIBs). Potassium has high reactivity, which requests super-clean assembly environment
for batteries containing it [17]. At the same time, during the cycling, the side reactions on
the interface between negative electrode and electrolyte are usually violent, which leads
to the loss of active substances. In addition, the formation of potassium dendrites causes
the premature failure of the battery [18]. The interfacial side reactions caused by solvent
and active oxygen can be alleviated by in situ synthesis of film on the surface of metal
potassium [19]. It is also possible to synthesize an alloy SEI layer such as K-Hg to adjust
the interface reactions [20].

Although zinc and aluminum are bivalent and trivalent, respectively, their metal cells
are facing problems and challenges similar to those of lithium, sodium and potassium
batteries, and the solutions are basically referable [21,22].

Magnesium–sulfur (Mg-S) battery is a strong competitor of lithium–sulfur (Li-S) one,
and many scholars have studied their performance and stability [23]. The interfacial
reactions between electrode and electrolyte will cause serious capacity decline, and adding
additives can improve the performance and compatibility of cathode materials [24]. Besides
electrolyte, designing suitable sulfur carrier to avoid the electrical insulation performance
of sulfur is another obstacle for Mg-S battery [25].

Perovskite solar cell is a new generation in photovoltaic cells, and its performance is
mainly related to the distribution of CaTiO3 compounds existing in perovskite films [26].
Controlling the distribution of perovskite thin films by depositing perovskite via various
physical and chemical methods is the focus of research in recent years [27,28].

To sum up, some physical and chemical parameters of several pure metal electrodes
are listed in Table 1.

Table 1. Some physical and chemical parameters of several pure metal electrodes [13–24].

Metal Redox Potential
(V vs. NHE)

Mass Specific
Capacity (mA·h/g)

Capacity Density
(mA·h/cm3) Melting Point (◦C) Crustal Abundance (ppm)

Li −3.045 3860 2061 108 18
Na −2.714 1166 1128 97.72 22,700
K −2.928 685 591 63.65 21,000

Mg −2.372 2204 3835 648 27,640
Ca −2.868 1337 2072 842 46,660
Zn −0.762 819 5851 419 70
Al −1.662 2979 8043 660 83,000

3. Abnormal Metal Electrode
3.1. Foamed Metal Battery

Metal foam material has high porosity and large specific surface area, so it can be filled
with more active substances, which increases the capacity of the battery and greatly reduces
the real current density of the electrode. Therefore, it is an ideal material for manufacturing
electrodes of various batteries such as storage batteries/accumulators, air batteries, fuel cells
and solar cells, and it provides the possibility for the development of lightweight batteries
with low internal friction, long service life and high specific energy [29]. Nowadays, the
commonly used metal foam electrodes mainly include foamed nickel (Ni) [30], foamed lead
(Pb) [31], and foamed zinc (Zn) [32].

The performance of metal foam electrode mainly depends on the amount of active
substances it carries [33], which depends on the porosity of the foamed metal electrode [34].
In the recent years, a lot of methods have been proposed to produce metal foam with high
porosity which could reach 70~90% after adding porosity agent by using loose powder
sintering method [35]. The porosity of foamed metal electrode material produced by
electrodeposition could increase to be 80~99%, the pore structure was evenly distributed,
and the opening rate was high [36].
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Metal foam electrode is of great significance for the development of batteries. Never-
theless, a large amount of research on metal foam electrodes is in the experimental stage,
which is still far from large-scale application.

3.2. Liquid Metal Battery

Typical liquid metal battery includes two liquid metal electrodes and molten salt
electrolyte, while the three types of liquid substances are naturally divided into three layers
because of the density difference and incompatibility from each other [37], as illustrated
in Figure 2.
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Because of its unique structure and electrical conductivity, liquid metal electrode has
the following advantages in the application of energy storage battery:

(1) During the charging and discharging process, liquid metal electrode can effectively
avoid dendrite growth, phase transition and grain size change, thus the battery has a long
energy storage life [37].

(2) Liquid metal electrode has good conductivity and rapid electrode interface dynamic
response, which can meet the needs for high-power application fields [38].

(3) The structure of liquid electrode is simple, and the electrode interface is easy
to construct; therefore, the period of time for battery assembly process is short, so the
manufacturing cost is also relatively low [39].

Liquid metal batteries mainly include lithium-based battery [40], sodium-based
battery [41], zinc-based battery [42] and aluminum-based batteries [43], magnesium-based
battery [44], and calcium-based battery [45], the equilibrium voltage of which mainly de-
pends on the activity difference of active components in metal electrodes A and B [46], as
presented in Figure 2. The negative electrode is generally the liquid metal mentioned above
such as Li, Na, Zn, Al, Mg, and Ca. Therefore, selecting appropriate metal as the positive
electrode is a main mean to guarantee the performance of liquid metal batteries. Besides
considering the balance voltage between the two electrodes, the cost should also be taken
into account. Generally, Sb, Bi, Sn or Pb could be chosen as the positive electrode, and their
applicability is very strong [47]. In addition, the electrodes used in liquid metal batteries
are not strictly limited to pure metals; sometimes, alloy electrodes are applied, and the
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goal of electrode alloying is to reduce the melting point of the electrodes without obviously
decreasing the voltage or increasing the material cost [48]. The elements added during
alloying should not have negative effects on electrodes, electrolyte, insulators, current
collectors and other assembly materials, and the alloyed electrodes should still meet the
requirements of maintaining the density of three liquid layers [49].

4. Metallic Compound Electrode Materials

Layered metallic oxides, metallic nitrides and metal sulfides could be applied as metal-
derived electrode materials whose energy storage principle is mainly Faradaic capacitance
generated by highly reversible redox reactions or chemical adsorption/desorption, which
have hence gained significant concerns among various new energy storage materials.

4.1. Metallic Oxide Electrode Materials

Metallic oxides have attracted much attention because of their high energy density, and
their theoretical specific capacitance can reach 10–100 times that of carbon materials, and
their stability is great [50]. The commonly used metallic oxide electrode materials include
ruthenium oxide (RuO2) [51], manganese oxide (MnO2) [52], cobalt oxide (Co3O4) [53]
and nickel oxide (NiO) [54]. Furthermore, the conductivity of bimetallic oxide electrode
materials is several orders of magnitude higher than that of monometallic oxides, which
can promote the transfer of electrons and ions [55] to achieve higher output power density.
Moreover, multi-metallic oxides are more diversified than bimetallic oxides, which can
effectively reduce the band gap width of electrode materials and improve the electric
conductivity [56], and the diversity of components can regulate the electrochemical activity
and stability of cells [57]. To realize the synergistic effect in components and obtain
excellent comprehensive energy storage performance, the development of multi-metallic
and bimetallic oxides is the current research hotspot [58]. Taking ZnMn2O4-Li battery as an
example, the charging and discharging processes of batteries with typical metallic oxide
electrodes is indicated in Figure 3.
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4.2. Metallic Nitride Electrode Materials

The metallic nitrides produced from urea or ammonia gas have high state density
because of the metal lattice deformation, which contributes to the excellent electrical
conductivity. The energy storage performance can be effectively improved by transforming
metallic oxides into highly conductive metallic nitrides via nitriding treatment under
high temperature. At present, the commonly used metallic nitride electrode materials are
titanium nitride (TiN) [59] and multilayered porous aluminium nitride (AlN) [60].



Metals 2023, 13, 703 6 of 9

4.3. Metallic Sulfide Electrode Materials

Compared to oxygen atoms in metallic oxides, sulfur atoms in transition metallic
sulfides have stronger electronegativity, and there are more abundant anions when the
reversible redox reactions are active, so metallic sulfides could be ideal electrode materials
due to their large theoretical capacity and long cycle life. Metallic sulfides generally exist
in the form of nano-arrays, such as porous cobalt sulfide nano-sheet arrays [61]. Similar
to metallic oxides, bimetallic sulfide electrode materials have superior properties than
monometallic ones [62]. Regardless of whether the bimetallic sulfides were obtained
from the combination with carbon nanomaterials or simple and easy-to-operate means
such as hydrothermal method, they have been proved to be superior electrode materials
after experiments [63–68].

5. Conclusions

Electrode materials containing metals and metallic derivatives with huge reserves
showing redox activity, which is precisely the reason why metallic electrode materials
have been the research focus in the field of energy storage devices since the last century.
The constantly emerging innovative and efficient preparation and modification methods
can greatly broaden the application scenarios and development prospects of new energy
storage devices in the future. This paper mainly introduces various elemental metal
electrode materials, those existing in abnormal conditions, metallic oxides, nitrides as well
as sulfides, which provides some basis for valuable aspects to be investigated.

Manufacturing as well as characterization of metallic electrode materials are worthy
and important themes in various fields in the past, present, and future. This Special Is-
sue aims to promote further research activities in power supply/energy storage relevant
fields, and accelerate the industrialization of high-performance metallic electrode mate-
rials. We sincerely invite high-quality contributions including but not limited to original
research articles/reviews/case reports/communications/perspectives/viewpoints that
present innovative and significant findings and experiences on this topic.
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