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Abstract: Since gas turbines are used in airplanes, ship engines and power plants, they play a
significant role in providing sustainable energy. Turbines are designed for a certain lifetime according
to their operating conditions and the failure mechanisms they deal with. However, most of them
experience unexpected and catastrophic failure as a result of synergistic effects of more than one
damage mechanism. One of the main causes of failure in turbines is corrosion fatigue, which results
from the combination of cyclic loads and corrosive environments. In the current review paper,
an attempt has been made to investigate the damages related to corrosion and fatigue in turbines
such as fatigue corrosion, hot corrosion and oxidation, thermomechanical fatigue, emphasizing
their synergistic effect. In this regard, the mechanism of fatigue crack initiation and growth in
a corrosive environment is also taken into consideration. Moreover, a summary of the results
reported in the literature regarding the influence of the loading conditions, characteristics of the
corrosive environment and properties of the turbine materials on this failure is presented. Finally,
common methods of dealing with corrosion fatigue damage, including surface treatment and cathodic
protection, are briefly reviewed.

Keywords: gas turbine; corrosion; fatigue; oxidation; thermomechanical failure; mechanism; affecting
factors; surface treatment; cathodic protection

1. Introduction

Sustainable energy supply is one of the current critical challenges, and in this regard,
gas turbines have established themselves as one of the reliable energy sources [1]. Gas
tur-bines are widely used to generate electricity from the combustion of fossil fuels [2,3].
Although clean renewable sources of energy are of interest, the intermittent nature of
them can cause instability in the energy production [4]. Therefore, a significant part of the
required electricity is still produced by gas turbines. In addition, the increasing progress in
the field of the gas turbine industry has made it possible to use biofuels such as bio-ethanol,
bio-methanol, synthetic gas, hydrogen and so on instead of fossil fuels [5,6].

The gas turbines convert the thermal energy from fuel combustion into the mechanical
energy which is used to drive electric generators [7,8]. As is seen from Figure 1, they are
composed of three main sections, called compressor, combustor, and turbine. Ambient air
enters the gas turbine at the compressor inlet, and its pressure increases during compression.
This section contains alternating rows of static airfoils known as vanes and rotating airfoils
known as blades. The compressed air is then drawn to the combustion section, where
ignition of the air and fuel mixture further increases the temperature. The gas produced
during the combustion is expanded in the turbine section back to atmospheric pressure. The
turbine section, similar to the compressor, contains alternating rows of vanes and blades.
The expanded gas rotates the turbine blades and this rotation transfers into the external
generator. The produced energy is used to power aircraft, trains, ships and electrical
generators [9–11].
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It has been reported that increasing the inlet temperature raises the gas turbine effi-
ciency [13–15]. The engine components which are exposed to hot gas are the nozzles, disks
and rotor blades [16,17]. Exposure to high temperatures and harsh environments causes
the turbine components to suffer from oxidation and hot corrosion [18–20]. This is further
complicated for marine applications by the aggressivity of various halides contained in
seawater [21,22]. Furthermore, the rotating blades bear the centrifugal force as well as the
bending and torsion stresses caused by the steam flow pressure. These complex alternating
stresses make blades prone to unexpected fatigue failure much earlier than the designed
lifetime [23–25]. Obviously, in most cases, failure is due to the interaction of more than
one mechanism, and hence, considering single-factor damage will not satisfy the design
requirements [26]. Corrosion fatigue, stress corrosion cracking, erosion and creep are
addressed as great concerns in turbine components [27–29].

The early fracture of blades is the main reason for the turbine failure which causes
unplanned shutdowns for long periods and financial losses [30,31]. One major disadvan-
tage is that all blades in the whole system should be replaced if one of them fails. Hence,
it is important to analyze the failure and the reliability of the blade to predict service
lifetime [32]. The corrosion fatigue is found to be one of the important failure mechanisms
in turbines [33–36]. A decrease in the allowable stress limit as cyclic stresses are imposed in
a corrosive environment is a consequence of corrosion fatigue failure. In fact, the impact
of corrosion at the surface reduces the time required for fatigue crack nucleation [37,38].
Fatigue crack growth is also accelerated by corrosion. Since corrosion is both time and tem-
perature dependent, two important parameters that control the contribution of corrosion to
fatigue failure include the corrosion rate and the time available for the corrosion damage
per cycle [39]. Generally, failure caused by corrosion fatigue is affected by loading condi-
tions, corrosive environments, and material properties [40,41]. The materials used for the
turbine components, such as blades, vanes, disks, etc., must maintain their strength at high
temperatures and be resistant to oxidation, fatigue, corrosion and erosion [9]. Martensitic
stainless steels, high-strength low-alloy (HSLA) steels and nickel-based superalloys are
dominantly used for turbine components [42–45]. Some examples of Ni-based superalloys
are Inconel 718, FGH95, ME-16, RR1000, IN-100, Udimet 720LI, Nimonic 80A, Inconel 825,
Nimonic C-263, Nimonic-75, and Nimonic-105 [32].

So far, numerous research studies have focused on corrosion and fatigue failures, and
the summary of several studies is presented in Table 1. This confirms that this subject is an
attractive and open field of research. The main purpose of the present paper is to provide a
review of studies conducted in the field of fatigue and corrosion of the gas turbines.



Metals 2023, 13, 701 3 of 25

Table 1. Failure analysis summary of gas turbine components.

Material Type Working Conditions Type of Damage Consequences Ref

Ni-based superalloy High temperature, high
pressure

Corrosion fatigue,
oxidation

Corrosion pits, formation of carbide along
grain boundaries, Υ’-particle coarsening [46]

It is not mentioned Frequency of 500 Hz Fatigue,
oxidation

Fracture of blade at root of the airfoil due to
high cycle fatigue, corrosion pitting on the

leading edge of the blade
[47]

Nimonic 80A
superalloy

First-stage blade of a
3 MW combustion

turbine with a gas inlet
temperature of 770 ◦C

Creep failure,
oxidation

Υ’-particle coarsening,
delamination of the coating and cracks at the
interface of the bond coat and the base metal

in the blade airfoil hot zones

[48]

Nimonic 105 superalloy
Working in hot and

humid climate in
Persian Gulf region

Hot corrosion,
thermal fatigue

Pitting corrosion on the surface of blade
airfoil, intergranular cracks and fracture

surface at the failure area on the trailing edge.
[12]

Stainless steel 90 ◦C, low pressure Corrosion fatigue Decrease in the fatigue strength under
corrosion [41]

Steel
Working at phase

transition zone of the
turbine

Corrosion fatigue Failure of steam turbine rotor blades [49]

Ti-6Al-4 V alloy Rotor blade Pitting corrosion,
fatigue cracking Failure of rotor blade [50]

Single-crystal
superalloy CMSX-4

High temperature, in
the presence of

corrosive salt species

Hot corrosion
fatigue Corrosion embrittlement, crack-tip oxidation [51]

Ni-based superalloy
IN792

Operating with 30
starts and stops in an

industrial environment

Creep, hot
corrosion, thermal
mechanical fatigue

Precipitation of TiN and AlN near the crack
due to corrosion/nitridation, formation of a Υ’
depletion zone in front of crack, failure after

21,000 h

[34]

Ni-based superalloy
K444

High temperature, low
pressure

Thermomechanical
fatigue, oxidation Initiation of crack at the trailing edge of blade [52]

2. Corrosion Fatigue

According to statistics, low-pressure blades are more prone to corrosion fatigue failure
than those of high and intermediate pressure [33,36,53]. As the temperature falls below
100 ◦C at the end-region of the turbine, steam can easily condense on low-pressure last-stage
blades, and the corrosive elements such as Cl and S in steam can form corrosive electrolytes
in combination with water, leading to localized pitting corrosion [54–56]. This problem can
be aggravated in the case of coastal power plants and plants with outage periods at night.
The presence of chloride ions in seawater and increases in oxygen in the system during the
outage period could intensify the pitting corrosion [57].

Localized corrosion as the most dangerous type of corrosion occurs mainly in the phase
transition zone (PTZ), where steam condenses during its passage through the saturation
line [30]. The pits raise the stress level locally, and cracks usually start from these sites and
propagate under dynamic loading, eventually leading to sudden fractures [58,59]. Typically,
appearance of the fracture surface consists of two distinct regions. The region, including
fatigue striations, corresponds to the fatigue crack growth stage, and the rougher region
relates to the final rapid fracture stage [60]. Mokaberi et al. investigated the failure analysis
of the gas compressor blade made of GTD 450 stainless steel which failed after working
for about 34,000 h in seawater. SEM micrograph in Figure 2a shows that the corrosion pit
is surrounded by several micro cracks and the pits are existance in the fracture surface in
Figure 2b [61]. Rajabinezhad et al. came to the conclusion that corrosion fatigue failure
occurs mainly at the root of the turbine blades [32]. Ziegler et al. also reported that the
corrosion pits formed on the tail of the blade are a source of stress concentration, which
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in turn accelerates damage initiation [62]. Moreover, the metallurgical assessment and
chemical analysis by Adnyana revealed that the corrosion fatigue was the main cause for
failure of the low-pressure last-stage blades made of AISI 422 martensitic stainless steel after
only a few years in service. The fatigue crack was initiated from the pits and propagated in
the tangential direction towards the edge of the blade, where the final fracture occurred [63].
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At the end, it is worth noting that owing to cost, capacity of the test machine and ability
to consider various variables, the majority of the studies on corrosion fatigue behavior
are usually conducted using small compact tension or notched samples under corrosive
conditions [64].

3. Hot Corrosion Fatigue

Nickel-based superalloys, owing to having acceptable resistance to degradation at
high temperatures and fatigue, are usually employed in the compressor and turbine compo-
nents [65,66]. However, exposure of the turbine components to high-chloride salts ingested
from the air around marine and desert areas, as well as sulphur contaminants of cheap
fuels, causes their premature failure [67–69]. The surface oxidation is an early sign of hot
corrosion, which normally occurs at the hot components of turbine, especially nozzles,
rotor blades and vanes [70–72].

Hot corrosion is commonly divided into Type I and Type II. Type I usually occurs in
the temperature range of 850–950 ◦C, depending on the alloy composition. It initially starts
by attacking the oxide protective layer through deposition of alkali salts on the surface of
turbine components. Sodium sulphate is a well-known deposit which becomes liquid at high
temperature. Moreover, other impurities can combine with sodium sulphate to form a more
aggressive eutectic mixture. The sulphur then enters inward to react with elements from
the substrate such as Cr, Al and Ti, resulting in the depletion of the alloying elements and
formation of a porous scale [12,73,74]. Type II hot corrosion also typically occurs when the
temperature is in the range of 650–800 ◦C and results in pitting. A significant partial pressure
of SO3 in the gaseous phase is required for this type of hot corrosion [12,74]. In fact, diffusion
of Ni from the substrate outwards and its dissolution in the liquid sulphate phase at the
surface causes the discontinuity of the protective oxide layer, leading to pitting damage [75].

In conventional fatigue, cyclic loads introduce slip bands, leading to local plastic
deformation accumulation and generation of micropores. The fatigue crack initiates from
these pores and propagates as the stress intensity increases from threshold value [76–78].
When hot corrosion combines with a cyclic stress, it can contribute to both crack initiation
through corrosion pitting, and propagation of fatigue crack [51,79]. It is believed that hot
corrosion can be assisted by stress of sufficient magnitude as rupture of oxide surface
layer by cyclic loading allows diffusion of sulphur inward alloy, resulting in oxidation and
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de-cohesion of grain boundary [80,81]. Consequently, the hot corrosion can change the
crack propagation mode from transgranular to intergranular [79,82].

Mahobia et al. examined the corrosion fatigue behavior of the salt-coated superalloy
IN718 at 650 ◦C. The results showed that the salt coating in both type of Na2SO4 + NaCl and
Na2SO4 + NaCl + V2O5 accelerates the hot corrosion fatigue. Figure 3 depicts a possible
mechanism for initiation and growth of fatigue cracks. As is seen from this figure, a dual-
oxide scale forms on the surface during hot corrosion along with pits at the interface of
the inner layer and substrate. Then, cracks initiate mostly from the bottom of corrosion
pits under cyclic strain and propagate in a mixed transgranular/intergranular mode. At
high strain amplitude, the number of slip bands increases to accommodate the large plastic
strain impinging on weak grain boundaries, resulting in extensive crack-initiation sites
with an intergranular mode [83].
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Brooking et al. studied hot corrosion fatigue behavior of the single-crystal superalloy
CMSX-4 pre-corroded for 500 h with a 1.25 or 5 µg/cm2/h flux and subjected to 550 ◦C
under tensile unreversed trapezoidal load. They found a transition of fracture plane from
{100} to {111}, possibly due to corrosion, along with the environmental oxidation markings
on the fracture face (see Figure 4). Moreover, an increase in the dwell period shortened the
fatigue life, which was related to time-dependent crack tip oxidation [51].

Gabb et al. investigated the effect of hot corrosion at 700 ◦C on the fatigue life of the
superalloy ME3 and found that corrosion pits reduced the fatigue life by up to 98%. The
chemical composition analysis of the corrosion products on pit cross section demonstrated
that hot corrosion type II had occurred [84].

Mousavinia et al. analyzed the failure of a rotating blade from the hot section of a
gas turbine. The blades were made from Nimonic-105, and their working temperature
was in the range of 700–850 ◦C. Figure 5 shows the macroscopic images of the broken
parts. As seen in Figure 5a, the blade failed from the airfoil/root interface. The broken part
can fly into the chamber and cause severe damages to other blades. Figure 5b shows that
the fracture surface has divided into two areas; the outer surface in Figure 5c contains a
clear fatigue-induced striation pattern, and the darker area closer to the inner surface is
covered with corrosion products (see Figure 5d), indicating the failure caused by corrosion
fatigue [85].



Metals 2023, 13, 701 6 of 25Metals 2023, 13, x FOR PEER REVIEW 6 of 27 
 

 

 

Figure 4. Fracture face of the single-crystal superalloy CMSX-4 exposed to trapezoidal loading and 

temprature of 550 °C [51]. 

Gabb et al. investigated the effect of hot corrosion at 700 °C on the fatigue life of the 

superalloy ME3 and found that corrosion pits reduced the fatigue life by up to 98%. The 

chemical composition analysis of the corrosion products on pit cross section demonstrated 

that hot corrosion type II had occurred [84]. 

Mousavinia et al. analyzed the failure of a rotating blade from the hot section of a gas 

turbine. The blades were made from Nimonic-105, and their working temperature was in 

the range of 700–850 °C. Figure 5 shows the macroscopic images of the broken parts. As 

seen in Figure 5a, the blade failed from the airfoil/root interface. The broken part can fly 

into the chamber and cause severe damages to other blades. Figure 5b shows that the 

fracture surface has divided into two areas; the outer surface in Figure 5c contains a clear 

fatigue-induced striation pattern, and the darker area closer to the inner surface is covered 

with corrosion products (see Figure 5d), indicating the failure caused by corrosion fatigue 

[85]. 

 

Figure 5. (a) A series of broken blades in a row, (b) stereomicroscope and (c,d) SEM image of the 

fracture surface affected by fatigue and corrosion, respectively [85]. 

  

Figure 4. Fracture face of the single-crystal superalloy CMSX-4 exposed to trapezoidal loading and
temprature of 550 ◦C [51].

Figure 5. (a) A series of broken blades in a row, (b) stereomicroscope and (c,d) SEM image of the
fracture surface affected by fatigue and corrosion, respectively [85].

4. Thermomechanical Fatigue

The turbine components in hot sections are also subjected to thermal cyclic loads [86,87].
The effect of temperature variation on fatigue life is very strong as compared with isother-
mal fatigue failure [88]. Hence, thermomechanical fatigue is known as an important failure
reason when both stresses and temperatures change with time. The combustion chamber
components, turbine blades and discs are usually affected by thermomechanical fatigue [87].
The frequent change of the service temperature is usually caused by repeated start-up and
shut-down operation [86,88] or air cooling of hot components [89].

Wang et al. studied the thermomechanical fatigue behavior of a turbine blade made
of nickel-based superalloy. SEM images in Figure 6 showed that the crack surface was
covered with an oxide layer. The crack propagation in a mixed mode of transgranular
(typical features of fatigue damage) and intergranular (typical features of creep damage)
revealed that the interaction of oxidation, creep and fatigue was an important reason for
thermomechanical fatigue failure of the turbine blade [52]. Although intergranular cracking
is a typical feature of creep damage, it is reported in reference [90] that combination of
oxidation and fatigue also leads to intergranular fracture.
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Figure 6. SEM photos of TMF crack surface: (a) TMF crack surface with oxidation layer (blue arrows),
(b) intergranular fracture feature (green arrows), (c) intergranular cracks (red arrows) [52].

Failure analysis of the first-stage nozzles of gas turbines installed in a seaside pump-
house in the south west of Iran by Salehnasab et al. also revealed that the reason for trailing
edge failure of blade was thermal fatigue in addition to hot corrosion [12]. In other research,
Chen et al. focused on the thermal corrosion fatigue behavior of two single-crystal superalloys
with different Cr contents of 4 and 7 wt.% in 75 wt.% Na2SO4 + 25 wt.% NaCl solution under
thermal cycles between 900 and 25 ◦C. The results showed that thermal fatigue behavior is
intensified by hot corrosion because of the thermal mismatch stress between the corrosion
products and the material. Moreover, low Cr superalloy showed a considerable thermome-
chanical fatigue failure mainly caused by severe hot corrosion and formation of molybdenum
sulfide with higher thermal mismatch compared to chromium sulfide [91].

Considering the fact that hot corrosion negatively affects the surface state, the thermal
fatigue damage is influenced by the surface quality [52,91]. Further, it has been reported
that at the same temperature range, the high plastic strain level intensifies the thermo-
mechanical fatigue [40,86]. The crystallographic orientation is another factor affecting
thermomechanical fatigue life. The single-crystal Ni-based superalloys with [001] orien-
tation, which have low stiffness, offer acceptable anti-oxidation hot corrosion properties,
creep and thermal fatigue resistance [92].

5. Mechanism and Modeling of Fatigue Cracking

Fatigue cracks can initiate from slip bands, twin and grain boundaries, pores, inclu-
sions, etc. [93,94]. The corrosion-induced pits are known to be preferred sites for crack
initiation in corrosion fatigue. The pits usually form from preferential dissolution of a plas-
tically deformed region and local fracture of the passive film by fatigue-loading-induced
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slip bands [95,96]. The slip bands are usually activated at the surface roughness and discon-
tinuities, depending on loading conditions [97]. Figure 7 depicts a schematic representation
of corrosion fatigue crack initiation in the X12CrNiMo12-3 martensitic stainless steel under
cyclic loading. When the passive film ruptures, the metal is directly exposed to the corrosive
environment, leading to local anodic dissolution [95].
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Numerous publications have found that pitting corrosion increases the probability of
fatigue crack initiation because of the local stress concentration at the pits [98–101]. Figure 8
depicts the different stages of corrosion fatigue, including pitting nucleation, pit growth, pit-
crack transition and crack growth. As seen in this figure, the corrosion fatigue life is divided
into two periods of pit nucleation/pit-crack transition and appearance/propagation of
crack [102]. Increasing the number of corrosion pits with cyclic loading at higher stress
amplitudes indicates acceleration of pitting by fatigue. The growth rate of pits also depends
on the stress and strain state, corrosive environment and material properties. As pits reach
a critical size at which the stress intensity factor is above the threshold, a crack can initiate
and propagate under dynamic loading [103].

The S (stress range)–N (number of cycles to failure) curve and fracture mechanics
approach are two common methods of fatigue assessment. The fracture mechanics ap-
proach predicts the fatigue life according to the Paris model. In a modified Paris model,
the fatigue crack growth rate ( da

dN ) can be estimated using Equation (1), where the effec-
tive stress intensity factor (∆Ke f f ) is the difference between the maximum mode I stress
intensity factor (Kmax) around a crack tip and the stress level when the crack initially opens
(Kop). N and a are the load cycle and crack length, respectively, and C and m are material
coefficients [104–106].

da
dN

= C
(

∆Ke f f

)m
= C

(
Kmax − Kop

)m (1)
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Figure 8. The corrosion fatigue stages [102].

The above equation is based on the dependence of the growth rate on the stress
intensity factor, as illustrated diagrammatically in Figure 9. In this plot, the first region
is near a threshold stress-intensity factor, ∆Kth [105]. According to ASTM standard E 647,
the fatigue threshold is defined as a value at which da

dN of long cracks approaches zero
and below which cracks no longer propagate [107]. However, short cracks show higher
and more irregular growth rates than large cracks at similar ∆k [108]. The threshold value
is dependent on the type and properties of the material (grain size, etc.) and operating
conditions (stress ratio, temperature, etc.) [107,109,110].
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Apart from the Paris model, the Forman–Newman–de Koning (FNK) model is also
mostly used to estimate the fatigue crack growth rate. This model describes the fatigue
crack growth rate according to Equation (2), where C, n, p, and q are empirical con-
stants [106,111,112].

da
dN

= C
[(

1− f
1− R

)
∆K
]n
(

1− ∆Kth
∆K

)p

(
1− Kmax

Kcrit

)q (2)
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In the above equation, the effect of stress ratio (R) is incorporated by the Newman clo-
sure function ( f ) defined using Equation (3) in which α and Smax

σ0
are 2.5 and 0.3, respectively.

f =


max

(
R, A0 + A1R + A2R2 + A3R3) R� 0

A0 + A1R −2 ≤ R < 0
A0 − 2A1 R < −2

(3)

A0 = (0.825− 0.34α + 0.05α2[cos
( π

2 Smax

σ0

)
]

1
α

A1 = (0.415− 0.071α)Smax/σ0

A2 = 1− A0 − A1 − A3

A3 = 2A0 + A1 − 1

Furthermore, the amount of critical stress intensity factor (Kcrit) is associated with
the thickness according to Equation (4). Here, KIC, t, t0, and σys are fracture toughness,
thickness, reference thickness and tensile strength yield, respectively. Moreover, Ak and Bk
are empirically fitted parameters.

Kcrit = KIC

(
1 + BKe−(Ak

t
t0
)

2
)

t0 = 2.5
(

KIC
σys

)2 (4)

The threshold stress intensity factor (∆Kth) can also be calculated using the empirical
Equation (5):

∆Kth = ∆K∗1

[
1− R
1− f

](1+RCp
th)

/(1− A0)
(1−R)Cp

th R ≥ 0

∆Kth = ∆K∗1

[
1− R
1− f

](1+RCn
th)

/(1− A0)
(Cp

th−RCn
th) R < 0

(5)

In the above equations, Cth is a constant with positive (p) and negative (n) amounts.
Moreover, ∆K∗1 can be calculated by Equation (6) in which ∆K1 is the stress intensity factor
when R→ 1 , a is crack length and a0 is a small crack parameter with usually a typical
value of 0.102.

∆K∗1 = ∆K1

[
a

a + a0

]1/2
(6)

Furthermore, there are other models to evaluate the growth rate of fatigue cracks,
such as the Walker (Equation (7)) [113], the Manson–Coffin equation [114], and more
complex equations.

da
dN

= B
[
(1− R)n∆K

]m (7)

The Kitagawa–Takahashi diagram (Figure 10) is another diagrammatic technique that
associates the threshold stress intensity factor with crack size and the fatigue endurance
limit (∆σc). In the K–T diagram, considering the intrinsic crack length of a0,H introduced
by El Haddad, a smooth transition is observed from the threshold of long cracks to the
endurance limit. Moreover, there is a region of non-propagating cracks leading to the
infinite fatigue life, the area of which becomes smaller in the presence of a corrosive
environment [104,115,116].
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For corrosion fatigue, the crack growth rate (
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da
dN

)
CF

) can be shown using Equation (8)
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(

da
dN

)
F
,
(

da
dt

)
C

and
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dt
dN

)
are related to cycle-dependent, time-dependent crack

growth rates and the time of corrosion per fatigue cycle, respectively [117].(
da
dN

)
CF

=

(
da
dN

)
F
+

(
da
dt

)
C

(
dt

dN

)
(8)

The total life for corrosion fatigue can be obtained by summation of pit growth life,
initiation life and propagation life of a crack [104]. The initiation life of a fatigue crack is
defined as the time taken to initiate a crack with a specific size under cyclic loading [118]
and corrosion pits, which in addition to affecting crack initiation also accelerate its propa-
gation [119]. According to equations suggested by Newman and Raju, the pit dimensions
can affect the amount of threshold stress intensity factor (∆Kth), and the fatigue cracks
cannot propagate below threshold [120]. Figure 11 illustrates that the aspect ratio (a/2c) is
a main parameter affecting the amount of stress concentration factor (∆Kt). The strains are
concentrated more at the pit mouth than at depth; hence, cracks initiate mostly from the
surface and grow inwards if the applied stresses are sufficiently high [121–123].
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The depth of pits is dependent on the anodic dissolution. The complex stresses ap-
plied to turbine components affect dissolution such that the larger loading leads to a faster
dissolution rate and the forming of a larger pit, which in turn reduces the threshold factor
of crack initiation and propagation [54]. The crack growth in the aqueous environments can
also include two mechanisms of anodic dissolution of metal at the crack tip and hydrogen
embrittlement caused by hydrogen absorption. The mechanism by which the crack grows
depends on the metallurgical and mechanical characteristics of the metal as well as the envi-
ronmental conditions. When the value of ∆K is low, the domain mechanism of initial fatigue
crack growth is anodic dissolution [57,124,125]. The local plastic deformation caused by
stress concentrations accelerates the anodic dissolution of metal (Fe, reaction 1) at the crack
tip. As the crack grows, Fe2+ can react with hydroxyl and hydrogen produced according to
reactions 2 and 3 can adsorb on the crack tip surfaces, causing embrittlement [126]. It has
been reported that the hydrogen embrittlement is associated with transition of the crack
growth from transgranular to intergranular mode above a critical stress intensity [127].

Fe→ Fe2+ + 2e Reaction 1
Fe2+ + 2OH− → FeOOH + H+ Reaction 2
Fe2+ + FeOOH → Fe3O4 + 2H+ Reaction 3

6. Role of Different Parameters in Corrosion Fatigue

The environmental parameters, loading conditions, material characteristics, and their
interactions influence the lifetime of turbine components [40,128,129]. Some of these
variables are discussed in this section.

6.1. Environmental Parameters

Perkin et al. studied the effect of oxygen and chloride content on the corrosion fatigue
behavior of a 12%Cr stainless steel in a simulated environment of a low-pressure steam
turbine. The S–N curve (see Figure 12) indicated that increasing the amount of oxygen
reduces the fatigue strength at 106 cycles. Moreover, when only 1 ppm chloride was
added to the oxygen-containing environment, a further decrease in the fatigue strength
was obtained because of acceleration of the localized corrosion. They also found that the
severity of pitting depends on the stress and that when the chloride concentration is low
(1 ppm), the presence of dynamic stress is necessary to start re-passivation and localized
corrosion [57].
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Figure 12. Effect of (a) oxygen content and (b) Cl− on the corrosion fatigue life of FV566 in deionized
water at 120 ◦C [57].

Child et al. studied the corrosion fatigue behavior of RR1000 coated with 98% Na2SO4-
2% NaCl mixed salts under cyclic loading. They reported that the combination of pre-salting
and testing in an air-SO2 environment shortens fatigue life. Increasing the initial salt loading
level led to faster initial pit growth, resulting in an earlier crack initiation under sufficiently
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high cyclic stress. However, hot corrosion had less impact on the fatigue life when the
applied stress was not sufficient to initiate the crack [44].

Hendery et al. studied the hot corrosion fatigue behavior of shot-peened RR1000
Ni-based superalloy coated with the two-salt composition of 55%K2SO4-45%KCl and
98%Na2SO4-2%NaCl at 600 ◦C in a corrosive environment of a pre-mixed air-300 ppm SO2
gas. Their findings as S–N curves (see Figure 13) showed a decrease in the fatigue life for
the salt-coated samples compared to the reference uncoated sample. Furthermore, above
a threshold normalized stress of 0.875, 55%K2SO4-45%KCl mixed salt having a higher
content of chloride reduced the fatigue life of RR1000 superalloy more than 98%Na2SO4-2%
NaCl. The obtained result was related to the mechanical cracking in the surface oxide film
at stresses above threshold which provides diffusion pathways for chloride [73].
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2%NaCl and tested at 600 ◦C with an R ratio of −1 [73].

Chen et al. investigated the effect of chemical composition and temperature of corro-
sive environment on the corrosion fatigue behavior of nickel-base alloy 718. The results of
potentiodynamic polarization in 3.5 wt.% NaCl solution (see Figure 14) showed a passive
behavior for this alloy. However, Epit sharply decreased with raising the temperature to
80 ◦C. Additionally, as the amount of NaCl in solution increased to 21 wt.%, active corrosion
behavior was observed at 80 ◦C [130].
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6.2. Loading Conditions

The crack growth rate also depends on the stress intensity factor and loading frequency
such that with a decrease in the loading frequency as well as an increase in the stress
intensity factor and stress ratio, the rate of fatigue crack growth rises. A decrease in the
fatigue strength at low frequency means that the longer dwell time at the peak stress is
more damaging [57,131–133]. In addition, at a lower loading frequency, there is more
time for hydrogen to enter the metal, and therefore hydrogen embrittlement occurs more
severely [133]. However, it has been reported that the frequency has little effect on the
fatigue behavior in air, unlike in the other environments [40].

Zhao et al. studied the corrosion fatigue behavior of a turbine blade made of nickel-
based single-crystal superalloy DZ125 in the presence of Na2SO4 (75 wt%)/NaCl (25 wt%)
salt mixture. According to Figure 15, the results showed the load dwell time meaningfully
influences the corrosion fatigue such that the fracture step starts earlier at the salt-coated
sample with increasing the hold time at maximum load [69].
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Hollie et al. also studied the effect of cycle loading on the corrosion fatigue of the
salted U720Li and RR1000 superalloys in a pre-mixed air-300 ppm SO2 gas at 700 ◦C. The
results of this study showed that, at the higher stress level, fatigue is the main reason
for failure as there are very few corrosion products. By decreasing the stress level, the
time-dependent corrosion played a significant role in crack initiation and stress-enhanced
type II hot corrosion occurred [80].

Since a turbine during its service lifetime is subjected to a 10% over-speed test each
year, it is important to understand the crack growth behavior under over-speed overloads.
Cunningham et al. have reported that a periodic overload of 50% of the cyclic baseload
in FV566 martensitic stainless-steel delays the crack initiation and also slightly slows the
crack growth rate owing to the strain hardening, introducing compressive residual stress
ahead of the crack tip, and plastic closure effects [134].

6.3. Material Characteristics

Metallurgical factors such as manufacturing method, microstructures, chemical com-
position and heat treatment are other variables influencing the performance of a gas turbine
during its service lifetime. Ebara revealed that the higher volume percent of ferrite in the
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austenite-ferrite duplex stainless steel enhances fatigue resistance [135]. In contrast, it has
been reported that the fatigue crack grows preferentially in the ferrite phase, whereas the
ductile austenite phase delays the crack propagation. Unlike air, in corrosive environments
such as seawater, the crack growth is affected by the high dissolution of hydrogen in the
ferrite. This significantly increases the fatigue crack growth rate in ferrite caused by the
hydrogen embrittlement process, while the crack growth rate in austenite is unaffected
by environment. Hence, in both air and seawater, the cracks propagate in austenite by
ductile fatigue striations, while cleavage fractures have been reported for the ferrite phase
in seawater [136,137].

Pradhan studied the full annealing heat treatment of the cost-effective austenitic
stainless-steel grade 304 with the aim of improving its properties for gas turbine applica-
tions. According to the results, the heat-treated samples offered the properties close to the
commonly used gas turbine materials such as IN706 alloy, IN718 alloy, A-286 alloy, RENE95
alloy [138]. Akita et al. also improved the corrosion fatigue strength of 304 stainless steel
via annealing in nitrogen gas to form chromium nitride [139].

The chemical composition of an alloy is another decisive parameter in corrosion fatigue
behavior. The addition of molybdenum in the right proportion to steel can aid the formation
of a dense thick protective oxide layer on the sample surface [40]. Furthermore, it has been
reported that the addition of Al, Ti, Nb and Ta to increase the volume fraction of the phase
γ” and applying heat treatment are two solutions for improving the fatigue behavior of
Ni-based superalloys [60,140]. Li et al. investigated the hot corrosion behavior of a ternary
alloy of Ni-16Cr-xAl and concluded that the hot corrosion resistance improves with the
increase in Al content owing to the Al2O3 surface layer being inherently a good barrier to
sulfidation with respect to chromia. Moreover, the hot corrosion resistance was increased
by pre-oxidation treatment [141]. Zhang et al. studied the hydrogen embrittlement of the
PH17-4 and PH13-8Mo martensitic steels, which are widely employed to manufacture
steam turbine last-stage blades. The presence of about 3 wt.% Cu in PH17-4 steel and
1 wt.% Al in PH13-8Mo caused the precipitation of nano-sized Cu-rich and NiAl particles,
respectively, within the martensitic matrix during ageing treatments. The results indicated
that, unlike PH17-4 steel, hydrogen decreases the tensile strength of PH13-8Mo steel.
The lower resistance to hydrogen embrittlement in the PH13-8Mo steel was attributed
to its higher hydrogen diffusion coefficient and explained by the fact that the incoherent
Cu-rich particles in PH17-4 steel are more able to trap hydrogen atoms compared with
coherent NiAl particles in PH13-8Mo steel [142]. The addition of refractory elements such
as chromium, rhenium, tantalum and ruthenium to nickel alloy composition has also been
recommended in a number of studies aimed at developing a new type of high-temperature
corrosion-resistant alloy for turbine blades [143,144]. The effect of different parameters
on hydrogen cracks in pipeline steel has been thoroughly discussed in Refs. [145,146] and
probably these parameters can be applied to turbines exposed to a hydrogen environment.

Lastly, the design of turbine components is another parameter affecting its perfor-
mance. Morita et al. conducted a study on the corrosion fatigue life of a Christmas-tree
type rotor groove and reported that the gap conditions at the place of insertion of the blade
into the rotor groove strongly influence crack initiation and propagation behavior. The
results showed that the life of crack initiation decreases with increasing amounts of g2 and
g3 (Figure 16a). Moreover, the longest crack propagation life was achieved for small values
of g2 and large values of g3 (Figure 16b). Figure 16c also displays the location of these gaps
between the rotor groove and the blade root (g1, g2, g3) [147].
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7. Surface Treatment for Improving the Fatigue and Corrosion Fatigue Strength

In most cases, fatigue and corrosion starts from the surface, and hence, surface engi-
neering can play a key role in the service lifetime of the turbine engine. Corrosion pits or
other surface damages can provide preferred sites for the fatigue-crack initiation which fi-
nally results in catastrophic failure. Surface treatments with shot peening can minimize the
negative impact of surface damage on the fatigue life through introducing a cold-worked
compressive stress layer [148].

Cockings et al. studied the effect of two different shot sizes, 110H and 330H, on the
fatigue behavior of Ni-based superalloy RR1000. Their findings according to Figure 17
showed that the fatigue life at 700 ◦C in both air and corrosive environment can be extended
using shot peening. In addition, the corrosion fatigue life was further increased using
a smaller shot size of 110H, which is associated with achieving a greater depth of cold
work [75].

However, Gibson et al. reported that shot peening could not improve the hot corrosion
resistance of the nickel-based superalloy 720Li mainly owing to a greater sulphide diffusion
to the metal as a result of increasing dislocations and relaxation of compressive stresses at
high temperatures [148].

Laser shock peening (LSP), low plasticity burnishing (LPB), ultrasonic peening, high-
pressure torsion (HPT), surface mechanical attrition treatment (SMAT) and surface mechan-
ical rolling treatment (SMRT) are the other promising methods to improve the fatigue life.
In these techniques, the severe plastic deformation increases the microhardness, introduces
compressive residual stress on the surface, eliminates or reduces the surface tensile stresses
and crushes the coarse inclusions which are crack initiation sites. The presence of a layer
with compressive stress on the surface is associated with the growth-delaying or arresting
of cracks [149–152].
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In this regard, the fractography results of a SMATed sample (see Figure 18a) showed
that the fatigue crack originates at the subsurface layer as a result of existing high compres-
sive residual stress on the surface. Once the crack initiates, it propagates, and finally the
instantaneous rupture occurs in region II and III, respectively. Moreover, according to S–N
curves in Figure 18b, SMAT treatment depicted a significant improvement in the fatigue
strength [153].
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(AF), hot isostatic pressing (HIP) and SMATed samples [153].

The severe plastic deformation can also facilitate the formation of a continuous and
protective oxide layer through increasing the diffusion of elements such as Cr and Mn from
bulk to surface [151]. Compared to the conventional method of shot peening, LPB, LSP,
and ultrasonic peening have an ability to form a deeper layer of compressive stress with
high thermal and mechanical stability in service. Hence, they could effectively improve
fatigue resistance even at high temperatures where compression stresses produced from
shot peening relaxes [150,152]. Furthermore, since different components of a steam turbine
are subjected to different levels of loading, LSP with different pulse energies can induce
gradient stress distribution and a gradient structure on the surface [152].

Applying a nanostructured and resistant coating on the turbine components is another
way to protect them from failure [40]. For this purpose, erosion-resistant coatings in the
fan and compressor areas and oxidation-resistant/thermal barrier coatings in combustor
and turbine areas have been developed [22]. Aluminides and MCrAlY overlay coatings
are capable of forming a uniform, protective, and adherent oxide layer when they are
exposed to high temperature [21]. Aluminizing is a thermo-chemical diffusion treatment
and an aluminide coating is applied by pack cementation or gas phase processes. The
properties of this coating can be modified with Cr, Si and Pt. The MCrAlY overlay coating
where M is Fe, Ni, Co or their combination is another choice to protect the gas turbine
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components from hot corrosion and oxidation. This coating can also be modified by adding
Ta, W, Ti, Nb, Zr, etc. Both the aluminide and MCrAlY layers are usually applied as a
bond coating [22]. In addition to increasing the oxidation and corrosion resistance, a bond
coating enhances adhesion of the next layer to the substrate by providing a rough surface
and reducing the thermal expansion coefficient mismatch between substrate and top layer.
The top layer is usually a thermal barrier coating (TBC) which lowers the heat transfer,
leading to a decrease in the hot corrosion of the substrate. The requirements for the top
layer are phase stability during exposure to high temperatures and thermal cycling, low
thermal conductivity, thermal shock resistance and erosion resistance [17]. Having these
properties, zirconia-based ceramics stabilized by MgO, CaO, Y2O3 are typically used for
the top layer [21]. Furthermore, since yttria-stabilized zirconia (YSZ) shows a high thermal
expansion coefficient close to that of the metallic substrate, it allows better accommodation
of thermal cycling to prevent immediate spalling of the coating [154].

The durability and performance of the coatings are dependent on their chemical com-
position and application method [21]. Chemical vapor deposition (CVD), physical vapor
deposition (PVD), thermal spraying, plasma spray and electroplating are more common
methods to apply overlayer and thermal barrier coatings on the turbine components [22,40].
The thickness of coating is an important parameter, as lower thickness does not provide
complete protection and a higher thickness, having adhesion problems, causes a reduction
of the coating life [21]. The quality, adhesion and spallation life of the thermal barrier
coating determine the reliability and performance of gas turbine components. In this re-
gard, Shin et al. studied the spallation of MCrAlY/YSZ (Yttria Stabilized Zirconia) coating
on the Ni-base superalloy GTD111DS through thermal fatigue tests. They reported that
the delamination of coating first starts from the edge and then progresses towards the
center. The bond strength of coating was also decreased gradually as the number of cycles
increased (see Figure 19) [155].
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In fact, the most failures caused by thermal fatigue are because of the spallation of the
YSZ top layer arising from the oxidation of the bond coating and the existence of a thermal
mismatch between these two layers. To overcome this problem, Xu et al. developed the
gradient thermal barrier coatings of Al-Al2O3-YSZ on the NiCoCrAlY. The results showed
that the gradient coating has more resistance against hot corrosion and thermal fatigue in
comparison with the conventional two-layered coating [156].

It is worth noting that the coatings used on the turbine component should not be
brittle. In addition, in high-temperature applications, they must resist the formation of Ni
or Co eutectic salts with Na2SO4. For this purpose, it has been reported that the corrosion-
resistant Cr2AlC coating is suitable, due to the ability to form an Al2O3/Cr2O3 protective
layer and the absence of the Ni or Co required for the eutectic phase formation [157]. In
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any case, it should be considered that if the surface layer peels, the rate of the localized
corrosion rises. Then, the formation and propagation of the cracks causes unexpected
fractures under loads far less than the design load [158].

The zinc coating can also act as a sacrificial anode and prolong the corrosion fatigue
endurance. Nevertheless, corrosion of zinc is associated with considerable hydrogen
production owing to the higher hydrogen overvoltage on zinc. Therefore, when a crack
initiates and propagates through the coating, the generated hydrogen atoms can penetrate
into the substrate, leading to hydrogen embrittlement. However, the oxide or hydroxide
compounds produced by the corrosion of Zn may obstruct the cracks and prevent hydrogen
from entering the substrate, thus reducing the hydrogen concentration at the crack tip [126].
Regular washing of blades, use of anti-corrosion agents and frequent inspections of the
turbine components are other recommended ways to reduce the possibility of sudden
rupture [61].

8. Recommendations and Future Prospects

An increased knowledge of corrosion and fatigue can be helpful in improving the
lifetime of turbines. One method to achieve this purpose is to introduce new and high-
performance intermetallic, composite and refractory materials. This should be done si-
multaneously along with developing more adhesive and hot corrosion/oxidation-resistant
coatings. Furthermore, in recent years, much attention has been focused on functionally
graded materials to manufacture the turbine blades. Therefore, future research is expected
to shift towards additive manufacturing, which has considerable potential to fabricate
turbine components with more acceptable performance. Such research must be conducted
at both laboratory and field levels to prove their performance in manufacturing gas turbine
engines with greater efficiency. This also needs the formulation of advanced damage mod-
els, including debonding and delamination, which are inherent to material with geometric
discontinuities. At the end, since different types of fuels such as methanol, ethanol, natural
gas, biodiesels, hydrogen, heavy residual fuel, etc., are used in gas turbines, a compre-
hensive study involving experimentation is required to determine their impacts on the
performance of gas turbines in the future studies.

9. Conclusions

1. In most cases, failure in turbines is due to the interrelation of more than one failure
mechanism. The combination of complex alternating stresses and working in harsh
environments causes unexpected corrosion fatigue failure of the turbine components
much earlier than the designed lifetime.

2. The low-pressure blades are more prone to corrosion fatigue because of easy con-
densation of steam containing Cl and S on the low-pressure last-stage blades, which
accelerates the localized pitting corrosion. Moreover, the presence of high chloride
salts ingested from the air and sulphur contaminants of fuels causes the hot corrosion
of turbine components at elevated temperatures.

3. The anodic dissolution of metal at the crack tip and hydrogen embrittlement are the
two main mechanisms involved in the crack growth, depending on the metallurgical,
mechanical and environmental variations.

4. The corrosion pits are the preferred sites for crack initiation. The pit dimensions
can affect the amount of threshold stress intensity factor (∆kth) below which fatigue
cracks cannot propagate. Moreover, the exposure of the crack tip to the corrosive
environment and hydrogen for a long time per cycle as well as time-dependent
oxidation at elevated temperatures make the low frequency loading more harmful.

5. Microstructure is another factor influencing fatigue and corrosion fatigue behavior.
For example, fatigue cracks in duplex stainless steel grow preferentially in the ferrite
phase and are significantly affected by hydrogen embrittlement, whereas the ductile
austenite phase delays the crack propagation. Furthermore, adding Al, Ti, Nb and Ta
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to increase the volume fraction of the phase γ” and applying heat treatment improve
the fatigue behavior of Ni-based superalloys.

6. Since fatigue and corrosion usually start from the surface damage, the surface state is
of significant importance. Mechanical treatment of surfaces and/or application of a
suitable coating are effective strategies to increase fatigue endurance limit.

Author Contributions: L.F.: Investigation, Methodology, Data curation, Formal analysis, Writing—
review & editing, M.A.M.-B.: Investigation, Methodology, Writing—review & editing. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no specific grant from any funding agency in the public, commercial,
or not-for-profit sectors.

Institutional Review Board Statement: The study did not require ethical approval.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the Research Center of University of Bonab for the
support of this study.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Kulor, F.; Markus, E.D.; Kanzumba, K. Design and control challenges of hybrid, dual nozzle gas turbine power generating plant:

A critical review. Energy Rep. 2021, 7, 324–335. [CrossRef]
2. Mangra, A.C. Design and Numerical Analysis of a Micro Gas Turbine Combustion Chamber. Eng. Technol. Appl. Sci. Res. 2020, 10,

6422–6426. [CrossRef]
3. Wei, D.; Lei, L.; Yinghou, J.; Songtao, W.; Xingchen, L.; Sunden, B. Heat transfer in the trailing region of gas turbines—A

state-of-the-art review. Appl. Therm. Eng. 2021, 199, 117614. [CrossRef]
4. Ajiwibowo, M.W.; Darmawan, A.; Aziz, M. A conceptual chemical looping combustion power system design in a power-to-gas

energy storage scenario. Int. J. Hydrogen Energy 2018, 44, 9636–9642. [CrossRef]
5. Öberg, S.; Odenberger, M.; Johnsson, F. Exploring the competitiveness of hydrogen-fueled gas turbines in future energy systems.

Int. J. Hydrogen Energy 2021, 47, 624–644. [CrossRef]
6. Gupta, K.; Rehman, A.; Sarviya, R. Bio-fuels for the gas turbine: A review. Renew. Sustain. Energy Rev. 2010, 14, 2946–2955. [CrossRef]
7. Sirignano, W.A.; Liu, F. Performance Increases for Gas-Turbine Engines Through Combustion Inside the Turbine. J. Propuls. Power

1999, 15, 111–118. [CrossRef]
8. Poullikkas, A. An overview of current and future sustainable gas turbine technologies. Renew. Sustain. Energy Rev. 2005, 9,

409–443. [CrossRef]
9. Shirzadi, A.; Jackson, S. Structural Alloys for Power Plants, Operational Challenges and High-Temperature Materials; Woodhead

Publishing Series in Energy: Cambridge, UK, 2014; pp. 3–21.
10. Cheddie, D.F. Thermo-economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant. Int. J.

Hydrogen Energy 2011, 36, 1702–1709. [CrossRef]
11. Park, Y.; Choi, M.; Kim, K.; Li, X.; Jung, C.; Na, S.; Choi, G. Prediction of operating characteristics for industrial gas turbine

combustor using an optimized artificial neural network. Energy 2020, 213, 118769. [CrossRef]
12. Salehnasab, B.; Poursaeidi, E.; Mortazavi, S.; Farokhian, G. Hot corrosion failure in the first stage nozzle of a gas turbine engine.

Eng. Fail. Anal. 2016, 60, 316–325. [CrossRef]
13. Bontempo, R.; Manna, M. Work and efficiency optimization of advanced gas turbine cycles. Energy Convers. Manag. 2019, 195,

1255–1279. [CrossRef]
14. Shayegh, S.; Moreno-cruz, J.; Caldeira, K. Optimal gas turbine inlet temperature for cyclic operation. IOP Conf. Ser. J. Phys. Conf.

Ser. 2018, 1111, 012046.
15. Salim, B.; Orfi, J.; Alaqel, S.S. Effect of Turbine and Compressor Inlet Temperatures and Air Bleeding on the Comparative

Performance of Simple and Combined Gas Turbine Unit. Eur. J. Eng. Technol. Res. 2020, 5, 39–45.
16. Mirhosseini, A.M.; Nazari, S.A.; Pour, A.M.; Haghighi, S.E.; Zareh, M. Failure analysis of first stage nozzle in a heavy-duty gas

turbine. Eng. Fail. Anal. 2019, 109, 104303. [CrossRef]
17. Feuerstein, A.; Knapp, J.; Taylor, T.; Ashary, A.; Bolcavage, A.; Hitchman, N. Technical and Economical Aspects of Current

Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review. J. Therm. Spray Technol. 2008,
17, 199–213. [CrossRef]

18. Puspitasari, P.; Andoko, A.; Kurniawan, P. Failure analysis of a gas turbine blade: A review. IOP Conf. Ser. Mater. Sci. Eng. 2021,
1034, 012156. [CrossRef]

http://doi.org/10.1016/j.egyr.2020.12.042
http://doi.org/10.48084/etasr.3835
http://doi.org/10.1016/j.applthermaleng.2021.117614
http://doi.org/10.1016/j.ijhydene.2018.11.177
http://doi.org/10.1016/j.ijhydene.2021.10.035
http://doi.org/10.1016/j.rser.2010.07.025
http://doi.org/10.2514/2.5398
http://doi.org/10.1016/j.rser.2004.05.009
http://doi.org/10.1016/j.ijhydene.2010.10.089
http://doi.org/10.1016/j.energy.2020.118769
http://doi.org/10.1016/j.engfailanal.2015.11.057
http://doi.org/10.1016/j.enconman.2019.03.087
http://doi.org/10.1016/j.engfailanal.2019.104303
http://doi.org/10.1007/s11666-007-9148-y
http://doi.org/10.1088/1757-899X/1034/1/012156


Metals 2023, 13, 701 21 of 25

19. Kanesund, J.; Brodin, H.; Johansson, S. Hot corrosion influence on deformation and damage mechanisms in turbine blades made
of IN-792 during service. Eng. Fail. Anal. 2018, 96, 118–129. [CrossRef]

20. Carter, T.J. Common failures in gas turbine blades. Eng. Fail. Anal. 2005, 12, 237–247. [CrossRef]
21. Gurrappa, I.; Rao, A.S. Thermal barrier coatings for enhanced efficiency of gas turbine engines. Surf. Coat. Technol. 2006, 201,

3016–3029. [CrossRef]
22. DeMasi-Marcin, J.T.; Gupta, D.K. Protective coatings in the gas turbine engine. Surf. Coat. Technol. 1994, 68, 1–9. [CrossRef]
23. Salehnasab, B.; Poursaeidi, E. Mechanism and modeling of fatigue crack initiation and propagation in the directionally solidified

CM186 LC blade of a gas turbine engine. Eng. Fract. Mech. 2020, 225, 106842. [CrossRef]
24. Nowell, D.; Duó, P.; Stewart, I. Prediction of fatigue performance in gas turbine blades after foreign object damage. Int. J. Fatigue

2003, 25, 963–969. [CrossRef]
25. Hou, J.; Wicks, B.J.; Antoniou, R.A. An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical

analysis. Eng. Fail. Anal. 2002, 9, 201–211. [CrossRef]
26. Li, K.-S.; Wang, J.; Fan, Z.-C.; Cheng, L.-Y.; Yao, S.-L.; Wang, R.-Z.; Zhang, X.-C.; Tu, S.-T. A life prediction method and damage

assessment for creep-fatigue combined with high-low cyclic loading. Int. J. Fatigue 2022, 161, 106923. [CrossRef]
27. Mazur, Z.; Ramirez, A.L.; Islas, J.A.J.; Amezcua, A.C. Failure analysis of a gas turbine blade made of Inconel 738LC alloy. Eng.

Fail. Anal. 2005, 12, 474–486. [CrossRef]
28. Shlyannikov, V.; Yarullin, R.; Zakharov, A. Fatigue of Steam Turbine Blades with Damage on the Leading Edge. Procedia Mater. Sci.

2014, 3, 1792–1797. [CrossRef]
29. Gu, S.; An, D.; Qiu, G.; Wang, R.; Liu, Y. Failure Analysis of Compressor IGV in 9F Gas Turbine Generator Unit. J. Fail. Anal. Prev.

2022, 22, 1393–1399. [CrossRef]
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