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Abstract: We posited that the grain size dependence of the tensile necking stress, as determined by the
Considère criterion for plastic instability, is a more meaningful characteristic of the Hall–Petch (H–P)
effect than that of the yield stress or the 0.2% proof stress. An inverse square-root dependence of the
necking stress on the grain size was derived from a dislocation dynamics-based constitutive model.
In this model, the grain size effect enters the stress indirectly via the evolution of the dislocation
density. Model predictions were confirmed by the experimental data for nickel and titanium.
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1. Introduction

The Hall–Petch (H–P) relation between the yield strength and the average grain size
of polycrystalline materials is one of the pillars of physical metallurgy. It has been quite
some time since an H–P description was established for the entire stress–strain curve, i.e.,
for any strain ε—initially for the polycrystalline mild steel tested in tension [1]. The H–P
relation is commonly presented in form of the equation

σε = σ0ε + KHP
ε d−1/2 (1)

relating the flow stress σε at a given strain ε to the average grain size (or average intercept
length in micrographs) d. In Equation (1), the ‘friction stress’, σ0ε, represents the flow stress
in a single crystal limit of ‘infinitely large’ d. The friction stress absorbs the contributions
to flow stress from mechanisms not related to the dislocation interaction effects, such as
solute drag, the Peierls stress, etc. For pure fcc metals, σ0ε can be assumed to be negligible,
at least after a sufficiently large strain. The Hall–Petch coefficient KHP

ε measures the stress
intensity required for the transmission of plastic flow across the grain boundaries [2]. It is
material-specific and is determined empirically, as reviewed in [3,4].

In recent years, the research focus has been on incorporating the H–P description into
constitutive models that include temperature and strain rate dependences, as encompassed,
for example, in the Zerilli-Armstrong (Z-A) relations that are different for face-centered
cubic (fcc) and body-centered cubic (bcc) metals [5]:

σε = σGε + B0[εr(1 exp(−ε/εr))]
1/2 exp{−α∗T}+ KHP

ε d−1/2 (fcc) (2)

σε = σGε + B exp(−β∗T) + Kεn + KHP
ε d−1/2 (bcc) (3)

These phenomenological equations can be seen as special cases of Equation (1). The
specific form of the friction stress σ0ε involves an athermal stress component σGε, which
is dependent on the solute content and the dislocation density. The remainder accounts
for temperature-dependent strain hardening, with the strain- and temperature-dependent
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terms taken as a product for the fcc case and in an additive form for the bcc case. In
Equation (2), the strain hardening that is measured in terms of B0 and a recovery strain, εr, is
coupled with an exponential temperature-dependent factor, where α∗ = α0 − α1 ln(dγ/dt)
introduces a dependence on the shear strain rate dγ/dt. Here α0 and α1 are material param-
eters. In Equation (3), B is the athermal stress reflecting the resistance to dislocation glide at
zero absolute temperature, T = 0. The rate dependence enters via β∗ = β0 − β1 ln(dγ/dt),
in the same manner as in α∗. The parameters K and n in the Ludwik term Kεn [6] govern
the strain hardening of the material. The hexagonal close-packed (hcp) metals α-titanium,
zirconium, and hafnium behave like bcc metals, while magnesium, zinc, and cadmium
follow an fcc-type behavior. Accordingly, Equations (2) and (3) can be applied for these
two respective groups of hcp metals.

An excellent descriptive capability of the Z-A model has been demonstrated in many
examples, cf. [7,8]. A deficiency of the Ludwik ansatz, however, is that a trend of the flow
stress to saturate at large strains is not reflected by Equation (3), and that the constants K
and n do not have any microstructurally-based meaning, even when the approximation
of the stress–strain data by the Ludwik-type models is seemingly acceptable. A viable
alternative is a physically based modeling approach going back to Kocks and Mecking [9],
in which the dislocation density plays the role of an internal state variable evolving in the
process of straining. The model was later extended by Estrin and Mecking [10] to account
for the grain size effect (see also [11]). In the next section, an analysis of the H–P effect in
terms of the Kocks–Mecking–Estrin (KME) model [10,11] will be presented. This will be
followed by gauging the KME model against the experimental data for nickel and titanium
as representative fcc and hcp materials.

2. Dislocation Density Based Constitutive Modeling of the Hall–Petch Behavior

Virtually all dislocation-based strain hardening models involving a single internal
variable comprise two constitutive equations: a semi-empirical equation relating the flow
stress σ to the total dislocation density ρ, and an equation describing the evolution of ρ
with plastic strain ε. The first equation is the Taylor relation:

σ = σf + MαGb
√

ρ = σf + β
√

ρ (4)

where b is the magnitude of the dislocation Burgers vector, G is the shear modulus, and α
is a microstructure-sensitive factor, typically ranging between 0.1 and 0.4. Its magnitude
is governed by the dislocation arrangement and includes the strain-rate and temperature
dependence of the flow stress; M is the texture-dependent orientation factor converting
the resolved shear stress to the axial stress. The factor β = MαGb is introduced on the
right-hand side of Equation (4) for brevity. The evolution equation for the total dislocation
density may take different forms, of which the simplest one reads as [10–13]

dρ

dε
= M(k0 − k2ρ) (5)

The dislocation density evolution described by Equation (5) is a result of the competing
processes of dislocation storage and annihilation (dynamic recovery). If one assumes
that dislocations are stored quasi-homogenously at a rate inversely proportional to their

mean free path 〈Λ〉, k0 can be expressed as k0 = k̃0
b〈Λ〉 , with k̃0 being a non-dimensional

constant. The term k2ρ represents the average rate of dynamic dislocation recovery, which
is a thermally activated process governed by the cross-slip of screw dislocations or the
diffusion-controlled climb of edge dislocations. This is reflected in the temperature and
strain rate dependence of the dynamic recovery coefficient k2 = k2

( .
ε, T
)
. If the dislocation

travel is geometrically constrained by grain boundaries, i.e., for sufficiently small grain
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size, the mean free path can be identified with the average grain size d. In this case, the
evolution equation assumes the form

dρ

dε
= M

(
k̃0

b d
− k2ρ

)
(6)

where the storage term is explicitly related to d.
In a more general formulation, assuming that both grain boundaries and dislocations

within the grains (distributed randomly or organized in dislocation cells) contribute to
dislocation storage concurrently, Equation (5) can be extended to a generalized evolution
equation of the Kocks–Mecking–Estrin (KME) model [10,11]:

dρ

dε
= M(k0 + k1

√
ρ− k2 ρ) (7)

This equation reduces to the evolution equation of the Kocks–Mecking (KM) model in

the limit of large d when k0 = k̃0
b d is significantly smaller than k1

√
ρ, and the dislocation

production is controlled by dislocation reactions in the grain interior.
The constitutive model expressed by Equations (4), (5), and (7) recovers an H–P type

relation between the flow stress and the grain size. Specifically, it delivers the classical H–P
formula for the conventional yield stress at the 0.2% proof strain:

σ0.2 = σf +
KHP

0.2√
d

(8)

Here, the H–P coefficient is given by

KHP
0.2 = M3/2αGb

√(
k̃0/b + k1

√
ρ0d
)

ε0.2 (9)

which, as opposed to the predictions made in [14], may be microstructure-sensitive due to
the influence of microstructure on the parameters k̃0 and k1.

In the limit of k1 → 0 (or sufficiently small initial dislocation density ρ0 and/or grain
size d) the yield stress dependence on the grain size reads as

σ0.2 = σf + M3/2αG

√
k̃0b ε0.2

d
(10)

and Equation (9) reduces to

KHP
0.2 = M3/2αG

√
2 · 10−3 k̃0b (11)

We recall that as early as in 1967, Conrad et al. [15] arrived at the following semi-
empirical relation between the flow stress and the grain size at the notional onset of plastic
flow (i.e., at the 0.2% proof strain):

σ0.2 = σf + C′
√

b ε0.2

d
(12)

Here, C′ is a material dependent parameter. The functional dependence on the grain
size given by this equation is obviously the same as that in Equation (10).

To derive this equation, Conrad et al. assumed that grain boundaries affect the total
dislocation density, which determines the flow stress through the Taylor Equation (4). The
experimental data they used showed a linear dependence of the dislocation density on
plastic strain, ρ ∼ ε, at the onset of yielding. Note that this experimental observation
resulting in the well-known ‘parabolic’ hardening, σ ∼

√
ε, is naturally predicted by
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Equation (5) when the first term on the right-hand side describing the dislocation pro-
duction prevails over the annihilation term, e.g., for well-annealed polycrystals. Shortly
after the publication by Conrad et al., Ashby [16] used the slip distance concept that he
developed for the description of plasticity in heterogeneous materials and came up with
essentially the same form of the σ(d) relation. This work prompted the emergence of a
family of strain hardening based models of the H–P effect as reviewed, for example, by
Cordero et al. [17]. In this context one should mention the work by Hazzledine [18,19] and
the companion theoretical analysis [20] on the basis of the KME kinetic Equation (7), which
has led to the H–P expression resembling Equation (12). Godon et al. [21] expressed the
Hall–Petch slope for a group of strain-hardening based models in a general form similar to
Equation (11): KHP

0.2 = M3/2αG
√

2 · 10−3 b δ, albeit without referring to the dislocation
multiplication coefficient k̃0 directly. Here, δ is a model-specific microstructure-sensitive
parameter depending on the dislocation multiplication process, in general, and the number
of activated slip systems [22], in particular; it may also depend on the grain boundary state
through the density of ledges [23]. Furthermore, using discrete dislocation dynamics simu-
lations of the deformation behavior of Cu polycrystals with grain sizes ranging from 0.5 to
2 µm, Lefebvre et al. [22,24] demonstrated that regardless of the details of the dislocation
multiplication process, the H–P effect can be interpreted as Taylor hardening owing to a
heterogenous dislocation storage process controlled by the accumulation of dislocations at
the grain boundaries.

3. The Necking Stress Locus as a Basis for an H–P Analysis

Historically, the H–P relation was first established experimentally for the yield strength.
The latter quantity can be represented, e.g., by the lower yield point in bcc α-iron [2,25].
However, for fcc materials, the true yield strength is difficult to determine experimentally,
which is why the generally accepted convention of using the stress σ0.2 determined at the
0.2% irreversible strain is adopted as a measure of the yield strength, as mentioned above
(see Equation (8)).

In their early work, dated 1962, Armstrong et al. [2] pointed out that the KHP
ε value can

vary, depending on the plastic strain ε at which it was measured. In fact, virtually all strain
hardening models predict the square-root strain dependence of the H–P factor in the form
akin to Equations (10) and (12). This parabolic strain dependence of KHP

ε has long been
a matter of controversy in experimental measurements performed on various materials,
including fcc Cu [26–28], Al [29,30], Ni [31,32], and 30/70 brass [2]; bcc Fe [2,25,33]; and
hcp Zn [2], Ti [34], Zr [35], and Hf [36]. Most studies converged on the conclusion that KHP

ε

increases with plastic strain, yet with some exceptions, as reviewed in [17,37]. It was found
that KHP

ε may exhibit an opposite trend, decreasing with strain due to deformation twinning
or a strong crystallographic texture. The most remarkable discrepancy seen from these
assessments of the strain hardening models lies in the fact that none of the experimental
measurements confirm the parabolic KHP

ε behavior predicted by Equation (10). Cordero
et al. [17] suggested that one possible reason for the observed inconsistency is that the
KHP

ε values have historically been measured at stresses that are so large that Ashby’s
assumption that the density of geometrically necessary dislocations is much larger than
that of statistically stored dislocations is no longer valid. We share this viewpoint and
take it a step further. In our opinion, the contribution from the dynamic recovery term in
the strain hardening models including the KM, Equation (5), and the KME, Equation (7),
models cannot be neglected even at the beginning of plastic flow.

Thus, the KME strain hardening models predict an H–P type dependence of the
flow stress on the grain size for any given strain, despite an ambiguity with the choice of
the reference strain discussed in the previous section. However, the strain is not a state
variable [38], and it is therefore desirable to compare the flow stresses for different grain
sizes in a condition free of any arbitrariness. We propose to use the locus of the maximum
loads, corresponding to the onset of tensile necking under various deformation conditions,
as representing a well-defined state that offers itself for an H–P analysis. The uniqueness of
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this locus defined by the necking instability condition eliminates the arbitrariness of other
approaches in which the strain is considered (explicitly or tacitly) as a state variable. The
necking condition is obtained in terms of extrinsic variables, the true stress and true strain,
for a given plastic strain rate

.
ε according to the Considère criterion [39]:

θ ≡ ∂σ

∂ε

∣∣∣∣ .
ε

= σ (13)

In this criterion, the strain rate sensitivity of the flow stress is neglected, which is
acceptable for many fcc and hcp metals and alloys. In principle, it has been demonstrated
that both the Considère condition and the more general Hart instability condition [40],
which does account for the strain rate sensitivity, follow from the evolution laws for
the principal internal variable—the total dislocation density [41,42]. Undoubtedly, the
advantage of utilizing the necking point to characterize the H–P grain size effects is that
unlike the conventional yield point (or the flow stress at a given strain), which is not a
special point on the stress–strain curve, the point of onset of necking instability is actually
a special point. It is controlled entirely by a combination of the parameters governing the
strain hardening of a material [41], and the slope of the H–P plot is uniquely determined
by these parameters, and not by any convention with regard to strain.

Combining the solution of the constitutive equations of the KME model for constant
plastic strain rate with the Considère condition, Equation (9), yields the plastic strain and
the flow stress at the necking point:

εKME
N = − 1

k2M

(1 +
k1

K

)
ln

∣∣∣∣∣∣
σKME

N
β − k1+K

2k2
σ0
β −

k1+K
2k2

∣∣∣∣∣∣+
(

1− k1

K

)
ln

∣∣∣∣∣∣
σKME

N
β − k1−K

2k2
σ0
β −

k1−K
2k2

∣∣∣∣∣∣
 (14)

and

σKME
N =

βk1 M
2 + β

√(
KM

2

)2
+ M

2k2
· [K2 − k1

2]

(2 + k2M)
(15)

with K =
√

k2
1 + 4k0k2.

Turning now to the analysis of the grain size dependence of the stress at maximum
load, or the necking stress, we obtain

σKME
N = β

√√√√ k̃0M
d b

(1 + k2M)

(2 + k2M)2 ⇒ (k2M� 1)⇒ MαGb

√
1
d

k̃0

bk2
=

KHP
N√
d

(16)

which yields the Hall–Petch type behavior of the necking stress. Here, the H–P factor is
redefined at the Considère point as

KHP
N = MαG

√
b

√
k̃0

k2
(17)

We used the condition k2M� 1, which is fulfilled particularly well for fine-grained
and ultrafine-grained materials [41–45].

The simplicity of both relations, Equations (16) and (17), makes them very attractive
for practical use.



Metals 2023, 13, 690 6 of 13

4. An H–P Dependence for σN of Nickel and Titanium—A Compilation of
Experimental Results

The tenet of the Z-A approach that strain hardening is contained chiefly in σ0ε, while
KHP

ε is essentially unchanged, has been taken a step further in the comparison of compiled
H–P measurements of σ0.2 and σN covering a large range of grain sizes for pure nickel and
commercial purity (CP) titanium (Grade 2), as shown in Figures 1 and 2, respectively. In
these figures, the subplots (a) and (b) refer to the conventional yield stress σ0.2 and the
necking stress σN , respectively. For the sake of generality, both datasets for Ni and Ti
represent the results of independent investigations by different researchers. For nickel, the
compilation by Di Leo et al. [14] (see the references therein) is used, with an addition of
data from several other sources. The shown measurements of Yasnikov et al. [45] comprise
two groupings of conventional and ultrafine-grained materials, in the latter case, having
been produced by the annealing of the material that had been severely pre-strained by
equal-channel angular pressing (ECAP). The ultrafine grain size measurements of Bui
et al. [46,47] (see also [48] and Krasilnikov et al. [49]), adopted here, were obtained by
various techniques of severe plastic deformation (SPD). The solid line corresponds to the
least square regression line, with the intercept value of σf = 66 MPa and the slope of
KHP

0.2 = 204 MPa × µm1/2, which is in fair agreement with what is typically reported for
Ni [14]; the Pearson’s r value for the entire dataset approximation is 0.95.

Metals 2023, 13, x FOR PEER REVIEW 6 of 14 
 

 

which yields the Hall–Petch type behavior of the necking stress. Here, the H–P factor is 

redefined at the Considère point as 

0

2

HP

N

k
M G bK

k
=  (17) 

We used the condition 2 1k M , which is fulfilled particularly well for fine-grained 

and ultrafine-grained materials [41–45].  

The simplicity of both relations, Equations (16) and (17), makes them very attractive 

for practical use.  

4. An H–P Dependence for N  of Nickel and Titanium—A Compilation of Experi-

mental Results 

The tenet of the Z-A approach that strain hardening is contained chiefly in 0 , 

while HPK
 is essentially unchanged, has been taken a step further in the comparison of 

compiled H–P measurements of 0.2  and N  covering a large range of grain sizes for 

pure nickel and commercial purity (CP) titanium (Grade 2), as shown in Figures 1 and 2, 

respectively. In these figures, the subplots (a) and (b) refer to the conventional yield stress 

0.2 and the necking stress N , respectively. For the sake of generality, both datasets for 

Ni and Ti represent the results of independent investigations by different researchers. For 

nickel, the compilation by Di Leo et al. [14] (see the references therein) is used, with an 

addition of data from several other sources. The shown measurements of Yasnikov et al. 

[45] comprise two groupings of conventional and ultrafine-grained materials, in the latter 

case, having been produced by the annealing of the material that had been severely pre-

strained by equal-channel angular pressing (ECAP). The ultrafine grain size measure-

ments of Bui et al. [46,47] (see also [48] and Krasilnikov et al. [49]), adopted here, were 

obtained by various techniques of severe plastic deformation (SPD). The solid line corre-

sponds to the least square regression line, with the intercept value of 
f  = 66 MPa and 

the slope of 
0.2

HPK  = 204 MPa × μm1/2, which is in fair agreement with what is typically 

reported for Ni [14]; the Pearson’s r  value for the entire dataset approximation is 0.95. 

 

Figure 1. Hall–Petch plots showing the grain size dependence of (a) the yield stress 0.2  and (b) 

the true stress at maximum load N  for nickel polycrystals. The linear regression line for 0.2  

presented in (a) is reintroduced in (b) for easier comparison. The references for the datapoints col-

lected from different studies by Di Leo et al. (2019) are given in [14]; other points are adapted from 

[45–49]. 

Figure 1. Hall–Petch plots showing the grain size dependence of (a) the yield stress σ0.2 and (b) the
true stress at maximum load σN for nickel polycrystals. The linear regression line for σ0.2 presented
in (a) is reintroduced in (b) for easier comparison. The references for the datapoints collected from
different studies by Di Leo et al. (2019) are given in [14]; other points are adapted from [45–49].

Figure 1b compares the slope KHP
0.2 represented by the regression line of Figure 1a

with KHP
N obtained from the data collected at the true necking stress. The latter quantity,

231 MPa × µm1/2, is only slightly higher than the value of KHP
0.2 corresponding to the

0.2% proof strain. Considering the significant scatter of experimental data, it is fair to say
that both values are practically indistinguishable, and as a first order approximation, a near
equality KHP

0.2 ≈ KHP
N holds.

The same trends are observed for commercially pure titanium (Grade 2) with a wide
range of grain sizes produced by various severe plastic deformation routes and annealing
procedures [50–65], as shown in Figure 2.
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5. Discussion

The present measurements and the analysis of the data add to a previously reported
compilation of results assembled for the tensile test characteristics of bcc, fcc, and hcp
metals [66]. Special emphasis is put on the H–P analysis of the stress at the maximum load
locus (necking stress) as an important convention-free measure of the material state. Both
the phenomenological Z-A model and the KME model, with its greater microstructural
underpinning, were revealed to provide an adequate description of the H–P behavior, the
latter being capable, in principle, of predicting different slopes of the H–P curves for the
yield stress and the necking stress. Even though no significant difference between these two
slopes was seen in the present work for either Ni or Ti, this is not what is often observed.
For example, Tsuji et al. [67] found that the KHP

0.2 value for fine grained CP aluminum alloy
Al1100 was considerably larger than that of KHP

N measured at the ultimate tensile strength.
The microstructural sensitivity of the H–P effect is reflected in Figures 1 and 2 in several
aspects. The significant scatter seen in large experimental datasets assembled from different
sources for materials of the same type (see also recent comprehensive compilations of H–P
data for Ti by Takebe and Ushioda [68], Ti and Al by Figueiredo and Langdon [69], and for
Ti, Al, Mg, Cu, and Fe by Dangwal et al. [70]) suggests that while the general 1/

√
d scaling

law for the flow stress does hold, the microstructural factors other than grain size (e.g.,
crystallographic texture, dislocation storage in the substructure, the grain boundary state,
etc.) strongly influence the mechanical response. Thus, KHP

ε is not a universal material
constant that can be used to quantitatively predict the flow stress dependence on the grain
size. The slopes of the H–P plots generated by different investigators for essentially the
same material can differ quite appreciably. As an example, in Figure 2, we highlighted the
data by Luo et al. [64] (grey squares), showing that the H–P slope of 404 MPa × µm1/2

for a specific sub-set (plotted as a dashed linear regression line) is almost triple the slope
of the linear regression line for the whole dataset (137 MPa × µm1/2). Furthermore, both
these values are remarkably different from the H–P coefficient of 173 MPa × µm1/2 derived
from the data presented by Figueiredo and Langdon [69] for ultrafine grained Grade
2 Ti. The results reported by Khamsuk et al. [71] for fine grain Al1100, with a different
processing history, corroborate the above statement that the H–P coefficient is sensitive to
the microstructure. These authors showed that within approximately the same range of
grain sizes, the slope of the H–P diagrams varied by a factor of five—from 28 MPa × µm1/2

for cold-rolled and annealed samples to 58 MPa × µm1/2 for those produced by torsion,
and 139 MPa × µm1/2 for the material fabricated by accumulated roll bonding.
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We should thus contend that the slope of the H–P line is sensitive to the microstruc-
ture of a material and may depend appreciably on its processing history. The data by
Tian et al. [72], Bai et al. [73], and Dangwal et al. [70] provide further support for this posit.
These authors observed a two-stage H–P regime with remarkably different slopes in coarse-
and fine-grain domains in differently processed pure Cu, Al, Mg, Ti, and ultrafine grained
Fe-31Mn-3Al-3Si alloy specimens, as schematically illustrated in Figure 3. Similar results
indicating the existence of a critical grain size dc, where a sharp transition in the H–P
behavior is observed with grain refinement to the sub-micron scale, were reported by Fu
et al. [74] for IF steels with the grain size ranging from 0.5 to 500 µm. A similar bi-linearity
in the H–P behavior for strains up to 5% has been reported earlier by Kashyap and Tan-
rgi [75] for 316 stainless steel (note that the single H–P relation was, however, observed
at larger strains up to necking) by Thompson [76] for Ni, by Begrström and Hallen [77]
for Fe, and by Lloyd [78] and Armstrong [79] for aluminum. This microstructure sensi-
tivity can, in principle, be readily accounted for in a phenomenological way by allowing
a dependence of the dislocation production coefficients k̃0 and k1 in Equation (9) on the
grain microstructure, texture, and grain boundary state resulting from a specific processing
route. For example, the puzzling two-stage H–P behavior reported in the publications
cited above can be seamlessly explained by the KME model we use. The authors of [70]
have heuristically related the observed change-over in the slope of the H–P plot, with grain
reduction to the sub-micron range, by the increased number of dislocations stored during
SPD processing. We concur with this view and expand on that. Recalling the general form
of the H–P coefficient proceeding from the KME model, Equation (9), one can notice that the
initial dislocation density ρ0 enters it as an addition to the ‘classical’ H–P term k̃0/bd under
the square root sign. An upward change in the slope of the H–P diagram occurs when the
k1
√

ρ0d term in Equation (9) comes into play and becomes comparable with or greater than
k̃0/b. Then Equation (8) for the yield stress is transformed to the more general form

σ0.2 ∼
√

1
d
+

k1b

k̃0

√
ρ0 (18)

 

1 

 
 
 
 
 

 
 Figure 3. Schematic illustration of the two-stage Hall–Petch behavior that has been frequently

reported for pure metals and alloys [70,72–74].



Metals 2023, 13, 690 9 of 13

Assuming that the initial dislocation density scales with the inverse grain/cell size is
ρ0 ∼ 1

d [80] (cf. Figure 4 confirming this relation for ultrafine grained materials, according
to the X-ray profile analysis by Zhilyaev et al. [81] for Ni, Gubicza et al. [82] for Ti, and

Dalla Torre et al. [43] for Cu), the last expression reads simply as σ0.2 ∼
√

1+A
√

d
d . Here A

is a microstructure-sensitive parameter integrating the coefficients of the KME model. To
highlight the versatility of the proposed approach, we note that, generally speaking, A can
also be grain size-dependent through the k1 factor tending to increase with decreasing grain
size. A discussion about these minutiae of the model is beyond the scope of the present
paper and will be extended elsewhere.

Metals 2023, 13, x FOR PEER REVIEW 10 of 14 
 

 

. 

Figure 4. Initial dislocation density scaling with the inverse grain size in ultrafine-grained Ni [81], 

Ti [82] (cf. also similar data in [83]), and Cu [43]. 

We should also note that the results reported in [67] and [74] for the H–P effect meas-

ured at 0.2% proof strain and at the maximum tensile load compare favorably with our 

findings and model predictions. It is fair to say that the predictions for the H–P behavior 

of the ultimate tensile strength (i.e., the necking stress), which follow from Equation (18), 

are largely fulfilled. This refers particularly to a decrease in the slope of the H–P diagram 

with the grain size reduction to the nano-scale [70], which can be attributed to the experi-

mentally established strong inverse dependence of the dynamic recovery rate coefficient 

2k  on the grain size. This dependence is bound to level off as the grain size is reduced to 

the nano scale [41–45]. Indeed, at this scale, the diffusional processes at the grain bound-

aries prevail and control the plastic flow [84] (see also [70] and references therein). This 

domain, which is very interesting scientifically, is rarely reached with common materials 

processing techniques, however. 

In conclusion, the simplicity and generality of the present analytical model, coupled 

with its sensitivity to the microstructure, provides it with a high predictive capability. This 

refers in particular to the Hall–Petch relation derived on the basis of the model, thus mak-

ing it a valuable practical tool for materials design. Although we tested it only against Ni 

and Ti as representatives of fcc and hcp materials, the model can easily be applied to other 

metals and alloys from these classes. Moreover, without loss of generality, it can be 

adapted to bcc systems where the Peierls stress can no longer be neglected. The validation 

of the proposed approach to the Hall–Petch relation for bcc metals is thus a future target 

of research in this field.  

6. Summary 

Using experimental data for two archetypal metals—fcc nickel and hcp titanium—

the grain size dependence of the stress at maximum load, which is determined by the 

Considère criterion for necking, was shown to obey a Hall–Petch type relation. Calcula-

tions based on the Kocks–Mecking–Estrin model confirmed a great predictive capability 

of the proposed modeling method. A distinctive difference between the Z-A and the KME 

approaches is that the grain size effect enters through an additive term in stress in the Z-

Figure 4. Initial dislocation density scaling with the inverse grain size in ultrafine-grained Ni [81],
Ti [82] (cf. also similar data in [83]), and Cu [43].

We would like to emphasize that we do not associate the observed change in the slope
of the H–P diagram with a break of the H–P relation. In our opinion, this relation holds
universally true for both coarse-grained and fine-grained materials, but with different
H–P coefficients governed by the phenomenological parameters in the dislocation kinetics
laws. We should reiterate that for grain sizes above the nano scale, the KME model
provides a coherent view for both observed H–P regimes, without a need to invoke a new
deformation mechanism. Rather, the differences observed in the H–P behavior in coarse-
and fine-grained materials or differently manufactured materials are associated with an
interplay between the contributions of the omnipresent grain size-dependent and grain
size-independent dislocation storage processes.

We should also note that the results reported in [67,74], for the H–P effect measured at
0.2% proof strain and at the maximum tensile load compare favorably with our findings
and model predictions. It is fair to say that the predictions for the H–P behavior of the
ultimate tensile strength (i.e., the necking stress), which follow from Equation (18), are
largely fulfilled. This refers particularly to a decrease in the slope of the H–P diagram with
the grain size reduction to the nano-scale [70], which can be attributed to the experimentally
established strong inverse dependence of the dynamic recovery rate coefficient k2 on the
grain size. This dependence is bound to level off as the grain size is reduced to the
nano scale [41–45]. Indeed, at this scale, the diffusional processes at the grain boundaries
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prevail and control the plastic flow [84] (see also [70] and references therein). This domain,
which is very interesting scientifically, is rarely reached with common materials processing
techniques, however.

In conclusion, the simplicity and generality of the present analytical model, coupled
with its sensitivity to the microstructure, provides it with a high predictive capability. This
refers in particular to the Hall–Petch relation derived on the basis of the model, thus making
it a valuable practical tool for materials design. Although we tested it only against Ni and Ti
as representatives of fcc and hcp materials, the model can easily be applied to other metals
and alloys from these classes. Moreover, without loss of generality, it can be adapted to bcc
systems where the Peierls stress can no longer be neglected. The validation of the proposed
approach to the Hall–Petch relation for bcc metals is thus a future target of research in
this field.

6. Summary

Using experimental data for two archetypal metals—fcc nickel and hcp titanium—the
grain size dependence of the stress at maximum load, which is determined by the Considère
criterion for necking, was shown to obey a Hall–Petch type relation. Calculations based on
the Kocks–Mecking–Estrin model confirmed a great predictive capability of the proposed
modeling method. A distinctive difference between the Z-A and the KME approaches is
that the grain size effect enters through an additive term in stress in the Z-A model and
appears indirectly, through its effect on the strain hardening rate controlled by dislocation
density evolution, in the KME model. We contend that the Hall–Petch behavior of the
necking stress is a more meaningful measure of the grain size dependence than the classical
H–P relation of the yield stress represented by the 0.2% proof stress. The greatest advantage
of using the former measure is that it does not rely on any arbitrary conventions. Still,
even this measure we favor is not free of problems, as the slope KHP

N is sensitive to the
microstructure of the material and cannot be regarded as a universal material characteristic.
The concluding judgement is that while the general validity of the H–P relation is not put
in question by our results, its universality over the entire grain size range can no longer
be claimed.
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