
Citation: Li, H.; Xie, Y.; Yang, H.; Hu,

H.; Li, M.; Li, R.-W. The Effect of Size

and Strain on Micro Stripe Magnetic

Domain Structure of CoFeB Thin

Films. Metals 2023, 13, 678. https://

doi.org/10.3390/met13040678

Academic Editor: Cătălin-Daniel

Constantinescu

Received: 20 February 2023

Revised: 11 March 2023

Accepted: 17 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

The Effect of Size and Strain on Micro Stripe Magnetic Domain
Structure of CoFeB Thin Films
Hongyang Li 1,2, Yali Xie 2,* , Huali Yang 2,*, Haixu Hu 2, Mengchao Li 2 and Run-Wei Li 2

1 School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
2 CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology

and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
* Correspondence: xieyl@nimte.ac.cn (Y.X.); yanghl@nimte.ac.cn (H.Y.)

Abstract: The prerequisite for flexible magnetic electronic devices is the knowledge of the preparation
technology of flexible magnetic films and the evolution of the film properties under strain. In
this work, CoFeB amorphous ferromagnetic films with stripe domains were prepared on flexible
polyimide (PI) substrates by oblique sputtering. The results show that oblique sputtering induces the
formation of columnar crystal structure in CoFeB films, which increases the perpendicular magnetic
anisotropy of the films, thus leading to the appearance of stripe magnetic domain structures. On
this basis, the CoFeB films with stripe domains were processed on a microscopic scale to investigate
the size effect and strain regulation on the microscopic domain structure of the magnetic films. The
characterization of the magnetic domain structure shows that the stripe domain contrast is reduced
by the striped structure prepared by lithography. The triangular, circular and ring patterns deflect the
alignment of the stripe domain to different degrees. The experimental results show that the deflection
of the stripe domains is caused by the anisotropy of the shapes produced by the different patterns
and that the size of the microstructure needs to be close to the period of the stripe domains for the
size effect to be significant. In addition, the strain-induced magnetoelastic anisotropy effectively
rotates the orientation of the stripe domains, and the variation in domain contrast demonstrates that
tensile/compressive strains vary the magnitude of the out-of-plane stray field of the film. Our results
provide some insight into the modulation of the physical properties of flexible magnetic films.

Keywords: flexible magnetic film; stripe magnetic domain; oblique sputtering; magnetoelastic
coupling effect

1. Introduction

Flexible electronics is an emerging electronic technology that fabricates electronic
devices of organic/inorganic materials on flexible/ductile polymers or ultrathin metal
substrates. Unlike traditional silicon-based semiconductors with rigid substrates and
electronic materials, flexible electronic materials [1–7] have higher flexibility and wider
application scope due to their unique flexibility [8] and ductility [9,10]. With the rise of
technologies such as healthcare, smart clothing and human-computer interaction, the field
of flexible electronics has received wide attention and made long-term progress [11–15].
Among them, magnetic sensing and memory devices are one of the important branches
of electronic devices [16–18], and mastering the preparation process of flexible magnetic
films [19–24] is an important prerequisite for the development of flexible magnetic sensing
and memory devices.

When magnetic films are grown on flexible substrates, the films are subjected to
different magnitudes of tensile or compressive strain from the substrates [25,26] when
the substrates are in different bending and stretching states, which can cause changes
in the magnetic anisotropy [27,28], magnetic domains [29,30], electrical transport [31,32],
ferromagnetic resonance frequencies [33,34] and other properties of the magnetic films.
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Due to the magnetoelastic coupling effect of the material itself, the magnetic anisotropy
of the film changes with the strain state. For instance, Dai et al. [35] confirmed that the
easy magnetization axis associated with the magnetic anisotropy tends to be along the
tensile strain direction by fixing a flexible substrate on a bending mold and applying
strain to the FeGa film on the substrate. For a more complicated case, Berkem et al. [36]
prepared Co/Cu/Ni pseudo-spin valves on flexible polyimide substrates. Since Co and
Ni have positive and negative magnetostriction coefficient, respectively, the application of
uniaxial strain rotates the magnetization of the two ferromagnetic layers in the opposite
direction, which leads to an increase in the film magnetoresistance value. Furthermore,
Chen et al. [31] investigated the electrical transport properties of the Co film on the flexible
polyester substrate, and found that the anisotropic magnetoresistance (AMR) response of
the film in the large strain state was significantly larger when an external field was applied
along the easy axis direction.

The effect of strain on the macroscopic properties of thin films is further reflected in
the microscopic physical properties of the films. For example, Peng et al. [37] investigated
the effect of tensile strain on the magnetic domains of FeCoSiB amorphous films. With
the increase of tensile strain, the magnetic domain structure was able to change from
an originally disordered irregular structure to a striped structure parallel to the strain.
Dai et al. [38] found that the striped domains of FeGa films with large magnetostriction
coefficients tend to align parallel to the direction of tensile strain in the absence of an
applied magnetic field, while the opposite is true under compressive strain. However,
when flexible magnetic films are further miniaturized to fit the trend of miniaturization of
electronic devices, the size effect of miniaturization on the regulation of magnetic domains
and magnetic anisotropy [39–41] has not yet been thoroughly studied. Previous work has
reported on the use of electron beams to etch nanogrooves, where due to the difference
in thermal expansion coefficients between Ni and the substrate during deposition, the
nanogrooves generate tensile stresses which in turn affect the alignment of the magnetic
domains [30]. In this work, CoFeB amorphous ferromagnetic films, which can form interfa-
cial perpendicular magnetic anisotropy effects [42,43] and exhibit typical stripe domains by
oblique sputtering, were selected as the object of study. The obtained flexible CoFeB does
not rely on rigid Si substrates for electron beam exposure, so that strain can be tuned by
varying the experimental conditions. Multiple types of patterns were prepared in a single
run, while the regulation of the magnetic domains and magnetic anisotropy by the shape
anisotropy generated by the different patterns was investigated to provide a basis for the
development of miniaturized flexible magnetic devices.

2. Materials and Methods

The CoFeB amorphous ferromagnetic films were grown on flexible polyimide (PI)
substrates by DC magnetron sputtering at room temperature (RT). Polyimide has good
mechanical strength and a high Young’s modulus. Metal films deposited on polyimide
are less prone to peeling or fracture and have essentially the same properties as those
obtained on rigid substrates. In contrast, metal films deposited on polydimethylsiloxane,
another polymer, are prone to wrinkling. Polyimide as a substrate will also facilitate
our micronano-processing at a later stage, for example, when the sample will experience
higher temperatures during ion beam etching. Co40Fe40B20 target with 99.95% purity and
50.8 mm diameter was used, which is produced by Hefei kejing materials technology co.,
LTD (Hefei, China). The base pressure of the sputtering chamber was below 2 × 10−5 Pa.
The sputtering gas was high-purity argon (99.99% purity), and the argon gas flow was
maintained at 20 sccm, and the sputtering pressure was 0.15 Pa. The sputtering power
was 160 W. The distance between the sputtering target position and the sample stage is
approximately 18 cm. No magnetic field is applied during the deposition process and
the rotation of the sample stage is switched off. The film growth rate was first calibrated
by growing the film for a constant time (10 min), the sputtering rate was measured to be
approximately 5 nm/min. The thickness of the film is varied by controlling the growth
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time. A thin Ta layer (∼4 nm) was grown at the top of all samples as a protective layer to
prevent sample oxidation.

The hysteresis loops were measured using a vibrating sample magnetometer (VSM,
Lakeshore 7410, Columbus, OH, USA). The surface morphology and sputtering rate of the
samples were characterized by atomic force microscopy (AFM, Dimension Icon, Bruker,
Billerica, MA, USA), and the magnetic domain structure of the samples was characterized
by magnetic force microscopy (MFM, Dimension Icon, Bruker, Billerica, MA, USA). The
cross-sectional structure of the samples was characterized by scanning electron microscopy
(SEM, Zeiss Sigma 300, Oberkochen, Germany).

3. Results

To investigate the effect of oblique sputtering on the magnetic anisotropy of CoFeB
amorphous magnetic films, CoFeB films with a thickness of 450 nm were grown by adding
wedge-shaped molds with different oblique angles to the magnetron sputtering sample tray
and changing the angle between the PI substrate normal direction and the incident atomic
beam direction (Figure 1a), using an oblique angle θ of 60◦. Typically, homogeneous CoFeB
amorphous films grown without an applied magnetic field, stress and without the use of
oblique sputtering are magnetically isotropic. Amorphous films do not have to take into
account the effects of magneto-crystalline anisotropy, which is common in crystalline films.
In contrast, according to a previous report [44], the in-plane uniaxial magnetic anisotropy
of CoFeB films increases progressively with increasing oblique sputtering angle. In our
work, the hysteresis loops at different magnetic field directions are shown in Figure 1c.
The oblique sputtering induces uniaxial magnetic anisotropy in the film plane. The easy
axis (EA) direction is parallel to the projection direction of the incident beam on the film
plane, while the hard axis (HA) direction is perpendicular to the projection direction of the
incident beam on the film plane.
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Figure 1. (a) Schematic diagram of oblique sputtering; (b) cross-section SEM image of a CoFeB
thin film with a thickness of 450 nm on a PI substrate (θ = 60◦); (c) normalized hysteresis loops of
CoFeB films.

The cross section of CoFeB film on PI substrate was characterized by SEM and its struc-
ture is shown in Figure 1b. The result shows that CoFeB amorphous magnetic films do not
have a long-range ordered crystal structure, but they can form columnar structures. CoFeB
films grown on flexible PI surfaces by oblique sputtering form a tilted columnar structure.
The shape anisotropy generated by this columnar structure drives the CoFeB films to
exhibit perpendicular magnetic anisotropy, resulting in the formation of stripe domains.

To probe the regulation of the shape anisotropy generated by the size effect on the
microscopic magnetic domain structure of CoFeB films, CoFeB films with striped domains
on PI substrates were subjected to micro-nano processing such as photolithography and
ion beam etching to form specific patterns. As shown in Figure 2, striped structures with
different longitudinal widths were prepared. The magnetic domain characterization shows
that the stripe domain alignment direction is only slightly deflected due to the weaker
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shape anisotropy generated by the stripe structure than the uniaxial magnetic anisotropy
induced by oblique sputtering. As the line width of the stripe pattern decreases, the aspect
ratio increases and the demagnetization factor of the film changes. Accordingly, the contrast
of the stripe domains decreases to 1.094◦, 0.679◦ and 0.317◦ for line widths of 20 µm, 5 µm
and 2 µm, respectively.
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The regulation of the CoFeB stripe domain structure by triangular structures with
different top angles ϕ was investigated, as shown in Figure 3. When the top angle is large
(90◦) (Figure 3a), the triangular pattern does not produce any shape anisotropy along a
specific direction, and there is basically no deflection in the stripe domain arrangement.
At ϕ = 60◦ (Figure 3b), there is a significant deflection of the stripe domains at the edges
of the triangle, with a deflection angle of approximately 47◦. At ϕ = 30◦ (Figure 3c),
the deflection angle is at its maximum, at approximately 60◦. This is mainly due to the
increasing anisotropy of the shape of the triangle as the angle of the top angle becomes
smaller, which is aligned in the direction of the top angle and leads to a bending of the
stripe domains. This effect increases progressively with decreasing size, so that the bending
of the stripe domains is most pronounced at the apex of the triangle. In addition, the
proposed explanation for why deflection occurs only at the edges is that the stripe domains
have a large stray field at the edges and the domain structure is bent in order to minimize
the overall surface demagnetization energy.
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In addition, in order to design ordered magnetic domain structures with a certain local
curvature, we prepared a series of rings as shown in Figure 4, all with an outer radius of
20 µm and with different ring widths. When the ring is wide (8 µm) as shown in Figure 4a,
the resulting shape anisotropy is not sufficient to affect the arrangement of the striped
domains. As the width decreases, the orientation of the striped domains gradually deflects.
When the width decreases to 2 µm (Figure 4c), the deflection angle of the striped domains
becomes larger. The local striped domains become split and show a branching structure
with the overall tendency to bypass the region of lower magnetic permeability in the middle
and distribute along the ring circumference.
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Figure 4. Stripe magnetic domain structure of ring-patterned CoFeB with different line widths:
(a) 8 µm, (b) 4 µm, (c) 2 µm.

Moreover, a series of circular structures of different diameters similar to the ring were
designed, as shown in Figure 5. Consistent with the pattern described previously, the
circular structures at large sizes have almost no effect on the stripe magnetic domains
(Figure 5a). When the size drops below a certain level (~10 µm), the circular structures
only have a deflecting effect on the magnetic domain arrangement (Figure 5b). When the
diameter drops to 5 µm (Figure 5c), stripe domains are deflected with large curvature and
distributed along the circumference at the edges. This suggests that the size of the CoFeB
microstructure needs to be close to the period of the stripe domains (~2 µm) for the size
effect to be significant.

Metals 2023, 13, x FOR PEER REVIEW 7 of 10 
 

 

domains. As the width decreases, the orientation of the striped domains gradually deflects. 
When the width decreases to 2 µm (Figure 4c), the deflection angle of the striped domains 
becomes larger. The local striped domains become split and show a branching structure 
with the overall tendency to bypass the region of lower magnetic permeability in the mid-
dle and distribute along the ring circumference. 

   

Figure 4. Stripe magnetic domain structure of ring-patterned CoFeB with different line widths: (a) 
8 µm, (b) 4 µm, (c) 2 µm. 

Moreover, a series of circular structures of different diameters similar to the ring were 
designed, as shown in Figure 5. Consistent with the pattern described previously, the cir-
cular structures at large sizes have almost no effect on the stripe magnetic domains (Figure 
5a). When the size drops below a certain level (~10 µm), the circular structures only have 
a deflecting effect on the magnetic domain arrangement (Figure 5b). When the diameter 
drops to 5 µm (Figure 5c), stripe domains are deflected with large curvature and distrib-
uted along the circumference at the edges. This suggests that the size of the CoFeB micro-
structure needs to be close to the period of the stripe domains (~2 µm) for the size effect 
to be significant. 

   
Figure 5. Stripe magnetic domain structure of CoFeB with circular patterns of different diameters: 
(a) 20 µm, (b) 10 µm, (c) 5 µm. 

To investigate the regulation of strain on the microscopic magnetic domains of CoFeB 
films, we laminated the lithographed PI samples to the concave or convex curved surfaces 
of aluminium alloy moulds, and the radius of curvature of each mould was different, re-
sulting in different compressive or tensile strains in the PI substrate and the CoFeB amor-
phous films. The strain ε in the CoFeB films can be obtained from an equation: 𝜀 1 2𝑟2𝑟 ℎ 𝑡 (1) 

where r is the radius of curvature of the mould (10 and 25 mm), h is the thickness of the 
substrate (0.1 mm) and t is the thickness of the CoFeB film. As shown in Figure 6, loading 
the substrate onto the curved surfaces with different radiuses of curvature in our work 
produced strains of −0.20%, 0%, 0.20% and 0.50% respectively. Figure 6a shows that the 
application of compressive strain to the CoFeB micro-nano structure causes the stripe do-
mains to rotate away from the strain direction. The in-plane magnetization component 
decreased because of the magnetoelastic coupling effect, leading to an increase in vertical 

Figure 5. Stripe magnetic domain structure of CoFeB with circular patterns of different diameters:
(a) 20 µm, (b) 10 µm, (c) 5 µm.

To investigate the regulation of strain on the microscopic magnetic domains of CoFeB
films, we laminated the lithographed PI samples to the concave or convex curved surfaces
of aluminium alloy moulds, and the radius of curvature of each mould was different,
resulting in different compressive or tensile strains in the PI substrate and the CoFeB
amorphous films. The strain ε in the CoFeB films can be obtained from an equation:

ε = 1 − 2r
2r + h + t

(1)

where r is the radius of curvature of the mould (10 and 25 mm), h is the thickness of the
substrate (0.1 mm) and t is the thickness of the CoFeB film. As shown in Figure 6, loading
the substrate onto the curved surfaces with different radiuses of curvature in our work
produced strains of −0.20%, 0%, 0.20% and 0.50% respectively. Figure 6a shows that the
application of compressive strain to the CoFeB micro-nano structure causes the stripe
domains to rotate away from the strain direction. The in-plane magnetization component
decreased because of the magnetoelastic coupling effect, leading to an increase in vertical
anisotropy and a significant increase in the contrast between brightness and darkness of
the stripe magnetic domains, which indicates an increase in the out-of-plane stray field
strength of the film. On the contrary, in the stretched state (Figure 6c,d) the striped domains
tend to align parallel to the direction of tensile strain. When the strain is further increased
to 0.50%, the striped domains disappear completely, which indicates that the out-of-plane



Metals 2023, 13, 678 6 of 8

magnetization component of the striped domains gradually turns in-plane due to the tensile
strain. When the domain contrast is basically zero, the magnetization component of the
CoFeB film is parallel to the film surface.
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tained by micro-nano processing. By characterization, it was found that the lithograph-
ically prepared stripe structure reduced the stripe domain contrast. Triangular, ring and 
circular patterns deflected the stripe domain alignment to various degrees. The experi-
mental results show that the deflection of the stripe domains is caused by the shape ani-
sotropy generated by the different patterns and that the size effect is significant only when 
the microstructure size is close to the period of the stripe domains (~2 µm). The stripe 
domains have a large stray field at the edges and the bending of the domain structure 
generally occurs at the edges of the pattern in order to minimize the overall surface deg-
radation energy. Due to the coupling of the strain-induced in-plane anisotropy and the 
inherent perpendicular magnetic anisotropy, the stripe domains deviate from the strain 
direction when compressive strain is applied to the CoFeB micro-nano structure, and the 
striped domain lining increases. In the tensile state, the striped domains tend to align par-
allel to the tensile strain direction, and the out-of-plane magnetization component of the 
striped domains rotates in-plane. 
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Figure 6. MFM images of micro-domain structure of 5 µm linewidth CoFeB thin films under different
strain conditions: (a) 0.20% compressive strain, (b) no strain, (c) 0.20% tensile strain, (d) 0.50%
tensile strain.

4. Conclusions

In summary, CoFeB films with striped domains was successfully produced on flexible
PI substrates by oblique sputtering. The oblique sputtering induces a columnar crystal struc-
ture in the CoFeB films, resulting in in-plane uniaxial magnetic anisotropy and increased
perpendicular magnetic anisotropy. CoFeB films with specific patterns were obtained by
micro-nano processing. By characterization, it was found that the lithographically prepared
stripe structure reduced the stripe domain contrast. Triangular, ring and circular patterns
deflected the stripe domain alignment to various degrees. The experimental results show
that the deflection of the stripe domains is caused by the shape anisotropy generated by the
different patterns and that the size effect is significant only when the microstructure size is
close to the period of the stripe domains (~2 µm). The stripe domains have a large stray
field at the edges and the bending of the domain structure generally occurs at the edges of
the pattern in order to minimize the overall surface degradation energy. Due to the cou-
pling of the strain-induced in-plane anisotropy and the inherent perpendicular magnetic
anisotropy, the stripe domains deviate from the strain direction when compressive strain is
applied to the CoFeB micro-nano structure, and the striped domain lining increases. In the
tensile state, the striped domains tend to align parallel to the tensile strain direction, and
the out-of-plane magnetization component of the striped domains rotates in-plane.
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