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Abstract: To reduce the wear and damage of the chute caused by long-term impact of coke, a
structure parameter optimization model was established in this paper, which takes the minimum
impact force as the objective and the coke-conveying speed as the constraint. Furthermore, the
ensemble of support vector regression (E-SVR) with different kernel functions was developed to
replace the implicit relationship between the conveying speed, the impact force, and the structure
parameters. Using the numerical examples, the effectiveness of the E-SVR model was verified. Finally,
the optimal chute structure parameters were obtained by using the E-SVR model. After optimization,
the maximum impact force was reduced by 17.07% and the maximum conveying speed was reduced
by 6.59%, which still falls within the specified range. Therefore, the feasibility of the optimization
results and the effectiveness of the E-SVR surrogate model were verified.

Keywords: chute; support vector regression; kernel function; surrogate model; ensemble of surrogates;
design optimization

1. Introduction

The steel industry is one of the basic industries of modern industrialized countries and
is also an important symbol of a country’s degree of development and economic strength.
The transportation and delivery of bulk materials (such as coke and iron ore) are the basic
production link in the steel industry. As the key equipment in the steel industry, the chute
delivers the bulk materials from high to low. However, due to the long-term impact of the
bulk materials, the chute is easily worn or damaged, reducing its service life. Once the chute
is damaged, it can only be stopped for maintenance, which seriously affects the production
schedule. Moreover, maintenance usually consists of padding the steel plate at the worn
place, which leads to the unsmooth conveying of bulk materials in the chute and can even
result in the plugging phenomenon. Furthermore, the collision to the chute may cause the
bulk materials to be broken, producing a large amount of dust or even the phenomenon of
the bulk materials falling, resulting in serious safety risks to the on-site staff.

To overcome the above issues, scholars have conducted extensive research on chute
structure design. Based on the wear mechanism, new materials have been adopted for
the chute, and the wear-resistant lining board has been adhered to the inner shell of the
chute [1–3] to increase its service life. On the other hand, to avoid the plugging phe-
nomenon, structural design methods were adopted to improve the conveying smoothness
of the materials in the chute [4,5]. The structural parameters, the contour curves of the
impact plate, and the contour curves of the diversion plate of the chute were analyzed to
reduce chute wear under the premise of conveying smoothness requirements [6–9]. Other
methods for improving the working performance and service life of the chute include
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structural parameters optimization [10–13], baffle settings [14], and motion control [15].
However, the existing structural design methods of the chute still depend on experience and
simple verification, which lacks data support. Moreover, the implicit relationship between
chute structure parameters and performance responses (such as impact force of coke to the
chute and conveying speed of coke) further increases the difficulty of optimization.

To reduce optimization costs, various surrogate models were applied to approxi-
mate the implicit relationship between the design parameters and performance responses.
Among the surrogate models, the Support Vector Regression (SVR) model was widely
used in engineering problems because of its good performance in small samples, including
nonlinear, high-dimension, overfitting, and multiple local minima problems [16,17]. SVR
is the specific application of a Support Vector Machine (SVM) in the field of functional
regression and has been widely used in the field of structural reliability analysis, such as
the lightweight design of complex structures [18–22] and process parameters optimiza-
tion [23,24]. However, there are multiple kernel functions in SVR, and each kernel function
has its characteristic. Therefore, for an unknown implicit problem, how to select the optimal
kernel function is still a challenge [25,26].

In this paper, the idea of ensemble of surrogates (EoS) is introduced to alleviate
dependency on the kernel functions in modeling of performance responses of the chute.
The E-SVR model with multiple kernel functions was constructed to replace the implicit
relationship between the chute structural parameters and the performance response. Then,
the design optimization of the chute structure was carried out to reduce the maximum
impact force with the maximum conveying-speed constraint.

2. Simulation of the Material-Conveying Process

In practical production, the service life of the chute and the smoothness of material
conveying in the chute are closely related to the structural parameters of the chute. In
this paper, the coke-conveying process is simulated by EDEM 2019 software to obtain
the maximum impact force and maximum material-conveying-speed data at different
structural parameters.

According to the workshop layout of one steel plant, the initial 3D model of chute
was built (shown in Figure 1). Then, the model was imported into EDEM software for
material-conveying process simulation to obtain the impact force of coke on the chute
and the conveying speed of coke in the chute under the current combination of structural
parameters.

Metals 2023, 13, x FOR PEER REVIEW 3 of 14 
 

 

 

Figure 1. Structure of the chute. 

EDEM is a commonly used software to solve the motion analysis of discrete 

particles. By simulating the motion state of particles during the conveying process, the 

response results of particle velocity and impact force can be obtained. As shown in 

Figure 2, the material was conveyed from the input conveyor belt to the feed inlet. 

Under the influence of inertial force and gravity, the material dashed against the inner 

wall of chute and then changed direction and moved along the inner wall of the chute. 

Finally, the material was conveyed to the output conveyor belt through the receiving 

spoon at the bottom of the chute. 

 

Figure 2. Simulation diagram of coke speed. 

The settings of the material-conveying process in EDEM software were as follows: 

the contact model is the rolling friction model; the direction of gravity acceleration is Z, 

and the magnitude is −9.81 m/s2; the direction of the initial moving speed of the material 

is X, and the magnitude is 1.5 m/s; and the conveying materials is the spherical coke. 

Specific parameters are shown in Table 1. 

Table 1. Material properties and simulation settings. 

 Parameters Value 

Spherical material property 

Diameter (mm) 80 

Poisson ratio 0.28 

Shear modulus (GPa) 1.98 

Density (Kg/m3) 500 

Chute properties 
Poisson ratio 0.3 

Shear modulus (GPa) 80 

Figure 1. Structure of the chute.

EDEM is a commonly used software to solve the motion analysis of discrete particles. By
simulating the motion state of particles during the conveying process, the response results of
particle velocity and impact force can be obtained. As shown in Figure 2, the material was
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conveyed from the input conveyor belt to the feed inlet. Under the influence of inertial
force and gravity, the material dashed against the inner wall of chute and then changed
direction and moved along the inner wall of the chute. Finally, the material was conveyed
to the output conveyor belt through the receiving spoon at the bottom of the chute.
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Figure 2. Simulation diagram of coke speed.

The settings of the material-conveying process in EDEM software were as follows: the
contact model is the rolling friction model; the direction of gravity acceleration is Z, and
the magnitude is −9.81 m/s2; the direction of the initial moving speed of the material is X,
and the magnitude is 1.5 m/s; and the conveying materials is the spherical coke. Specific
parameters are shown in Table 1.

Table 1. Material properties and simulation settings.

Parameters Value

Spherical material property

Diameter (mm) 80
Poisson ratio 0.28
Shear modulus (GPa) 1.98
Density (Kg/m3) 500

Chute properties
Poisson ratio 0.3
Shear modulus (GPa) 80
Density (Kg/m3) 7850

Collision properties between materials
Coefficient of restitution 0.40
Static friction coefficient 0.40
Coefficient of rolling friction 0.05

Collision properties between material and chute
Coefficient of restitution 0.50
Static friction coefficient 0.30
Coefficient of rolling friction 0.10

Simulation parameter setting
Number of particles between
materials/(s) 5000

Fixed time step(s) 6.8 × 104

Particles were generated by EDEM’s built-in particle factory. The particle position was
set to “random,” and the weight generation rate was set to 50 kg/s.

In order to obtain the conveying speed of coke and the impact force on the chute, the
conveying process of coke in the chute was simulated. The simulation began from the
time the coke entered the chute until the batch of materials was output from the receiving
spoon. The maximum conveying speed and the maximum impact force of coke under the
current structural parameters were obtained, as shown in Figures 2 and 3. At 7.1 s, the
coke-conveying speed reached the maximum value of 7.59 m/s. At 17 s, the maximum
impact force of coke (2460 N) on the chute occurred.
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3. Optimization Model and Flowchart
3.1. Optimization Model

The phenomenon of blocking, dusting, and crushing often occurs in the conveying
process of the chute. Moreover, the long-term impact easily leads wear and destruction of
the chute. Therefore, the conveying speed of coke in the chute and the impact of coke on the
chute should be considered comprehensively in the design of chute structure. According to
the practical experience of enterprises, the phenomenon of plugging and high breakage
rate will not occur when the maximum conveying speed of coke is 7–7.2 m/s. Therefore,
taking the maximum impact force of coke on the chute as the optimization objective and
the maximum conveying speed of coke within the specified interval as the constraint, the
optimization model of chute structural parameters is constructed, as shown below:

f ind : d
min : f (d)
s.t. : 7 ≤ v ≤ 7.2
d = (R1, R2, θ)
1700 ≤ R1 ≤ 2500
1800 ≤ R2 ≤ 2200
25◦ ≤ θ ≤ 30◦

(1)

In Equation (1), d is the structural parameters of the chute, f (d) is the maximum
impact force of materials on the chute (N), v is the maximum conveying speed of materials
(m/s), R1, R2 is the key structure size of the chute (mm) and θ is the key angle of the chute
(◦). Figure 1 shows the location of R1, R2 and θ. The structure parameters [2100, 2000, 27.5]
of the chute previously used in a steel mill are determined as the initial design variables.
It is worth noting that the uncertainty of the design variable is not considered in the
optimization model (1). In the future, a reliability-based design optimization method will
be conducted to obtain the optimal design that meets the probabilistic constraints [27].

3.2. Flowchart of Chute Structure Optimization

The flowchart of the proposed chute structure optimization method is shown in
Figure 4. First, the initial value and the range of each design variable are determined. Then,
the objective function and constraint function are approximated by the surrogate model to
reduce the optimization cost. The E-SVR surrogate model is used here to achieve a good
performance for the implicit objective or constraint function. Finally, the gradient-based
optimization algorithm is used to obtain the optimal design.
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4. E-SVR Model
4.1. SVR Model

Based on the classification model of the Support Vector Machine (SVM), the SVR model
is extended to fit the implicit function. The main advantages of SVR are as follows [28,29]:
strong adaptability to small sample data, strong generalization ability, and the ability to avoid
the “dimension disaster” because the complexity of SVR is determined by the number of
support vectors rather than the dimension of design space. The SVR model is expressed as

y(x) = 〈w ·Φ(x, xi)〉+ b (2)

In Equation (2), Φ(x, xi) is the kernel function, which is the key to solving nonlinear
problems [28]. The weight coefficient w and the deviation b are obtained by solving the
following optimization problems:

min : 1
2‖w‖

2 + C
n
∑

i=1
(ξ+i + ξ−i )

s.t. : yi − 〈w ·Φ(x, xi)〉 − b ≤ ε + ξ+

〈w ·Φ(x, xi)〉+ b− yi ≤ ε + ξ−

ξ+, ξ− ≥ 0

(3)

In Equation (3), C is the penalty factor and ξ+i , ξ−i are the relaxation factors.
Great differences in prediction accuracy of SVR can be observed when different kernel

functions are used. Therefore, the selection of kernel functions is very important in SVR.
Typical kernel functions are shown in Table 2.

Table 2. Kernel functions in SVR.

Kernel Function Formulas

Linear kernel function k(x, x′) = xT x′

Sigmoid kernel function k(x, x′) = tanh(ax ∗ x
′
+ c)

Radial basis kernel function k(x, x′) = exp
[
−|x− x′|2/(2s2)

]
Polynomial kernel function k(x, x′) = (xT x′ + h)d
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For given sample points, various surrogate model can be fitted, but the fitting precision
is different, which has a great influence on the final optimization result. Therefore, the error
index is used to evaluate the accuracy of the surrogate model. In this paper, commonly
used error indices are used:

(1) Multiple correlation coefficient R2

R2 = 1−

m
∑

i=1
(yi − ŷi)

2

m
∑

i=1
(yi − y)

2 = 1− MSE
Var

(4)

(2) Relative average absolute error (RAAE)

RAAE =

m
∑

i=1
|yi − ŷi|

m× STD
(5)

(3) Relative maximum absolute error (RMAE)

RMAE =

max
i=1,...,m

|yi − ŷi|

STD
(6)

In Equations (4)–(6), R2 and RAAE represent the global relative error of the surrogate
model. RMAE represents the local relative error. m represents the number of test samples
used to evaluate the accuracy of the surrogate model. yi represents the true value, and ŷi
represents the predicted value through the surrogate model. y represents the average value
of all true values. MSE, Var and STD represent the mean square error, variance of true
value, and standard deviation, respectively, which are calculated as follows:

MSE =

m
∑

i=1
(yi − ŷi)

2

m
, Var =

m
∑

i=1
(yi − y)2

m
, STD =

√
Var (7)

As seen from the above equations, the smaller MSE is, the larger R2 and the smaller
RAAE are. Therefore, the global error of the surrogate model is small, and the prediction
accuracy is high. The local error index RMAE represents the local fitting accuracy of the
surrogate model. In a certain region, the smaller RMAE is, the higher the fitting accuracy
of the surrogate model is. In this paper, larger R2, smaller RAAE, and smaller RMAE
indicate that the surrogate model has higher fitting accuracy.

4.2. E-SVR Surrogate Model

The kernel functions in SVR can be classified as the global kernel function and the
local kernel function [30]. In the global kernel function (such as the polynomial kernel
function), the farther to the test points, the greater the influence on the kernel function.
Therefore, the strong generalization ability and the weak learning ability are observed in
the global kernel function. Differently, in the local kernel function (such as the Gaussian
radial basis kernel function), the closer to the test points, the greater the influence on the
kernel function. Therefore, the strong learning ability and the weak generalization ability
are observed in the local kernel function [31]. To comprehensively use the advantages of
both the global kernel function and the local kernel function, an ensemble method was
developed in this paper.

Among all the kernel functions, the polynomial kernel function and the Gaussian radial
basis kernel function are most commonly used. When the samples are linearly or quadratic
nonlinearly separable, the linear kernel function has better classification ability. On the other
hand, the Gaussian radial basis kernel function has good performance for general nonlinear
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problems. The polynomial kernel function is a global kernel function. The Gaussian RBF
kernel function has better adaptability to data and strong anti-interference ability to noise,
so it belongs to local kernel function. To assess the problems of generalization and learning
ability of the single-kernel function, the ensemble of SVR models constituted by polynomial
kernel function and Gaussian radial basis kernel function was carried out.

The basic principle of establishing the E-SVR surrogate model is as follows. First, the
polynomial kernel function-based SVR model (Poly-SVR) and the Gaussian RBF kernel
function-based SVR model (RBF-SVR) were established. Then, the weight coefficients of
each single-kernel-based SVR model were calculated. Finally, two single-kernel-based SVR
models were linearly combined to obtain the E-SVR model. Compared with the single-
kernel-based SVR model, the E-SVR model has better performance on the adaptability,
robustness, and prediction ability of the implicit problems.

The equation for the E-SVR model is as follows:

ŷE−SVR(x) =
N

∑
i=1

wi ŷi(x) (8)

where, the weight coefficient should satisfy the following equation:

N

∑
i=1

wi = 1 (9)

In Equations (8) and (9), N is the number of the single-kernel SVR models used to
construct the final E-SVR model, ŷE−SVR is the predicted value of the E-SVR model at test
point x, ŷi(x) is the predicted value of the i-th single-kernel SVR model at test point x, and
wi represents the corresponding weight coefficient of the i-th single-kernel SVR model.

The weight value quantifies the prediction accuracy of the single-kernel function-based
SVR model. In general, among the single-kernel SVR models, the higher the prediction
accuracy of the single-kernel SVR model, the larger the weight value that will be assigned
to it. Conversely, a smaller weight value will be assigned to the single-kernel SVR model
with less accuracy. It is worth noting that, when the weight value of the single-kernel SVR
model is assigned as 1 and the weight values of the other single-kernel SVR models are
assigned as 0, the E-SVR model will degenerate into the single-kernel-based SVR model.

In this paper, the heuristic weight-solving strategy [32] proposed by Goel and Haftka
is used to calculate the weight values of single-kernel function-based SVR models. The
heuristic weight-solving strategy is simple and easy to implement, which can better balance
the weight values of each single-kernel-based SVR model. The equation of Goel and
Haftka’s method is as follows:

Eavg = 1
N

N
∑

i=1
Ei

ω∗i = (Ei + αEavg)
β, α < 1, β < 0

ωi = ω∗i /
N
∑

i=1
ω∗i

(10)

In Equation (10), Ei is the predicted error of the single-kernel SVR model, which can
be expressed by global error or local error. N is the number of single-kernel SVR models
required to construct the final E-SVR model. α and β are used to control the importance of
averaging and importance of individual surrogate, respectively [32]. Smaller α and larger
negative β impart higher weight for the single-kernel SVR model with higher prediction
accuracy. On the contrary, larger α and smaller β show high confidence in the averaging
scheme for all the single-kernel SVR models [32]. According to Goel and Haftka’s study,
α = 0.05 and β = −1 are used in this paper.
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4.3. Numerical Examples

In this section, 2 test functions were introduced to compare the performance of Poly-
SVR, RBF-SVR, and E-SVR models proposed in this paper.

(1) Brain-Hoo function [33]:

f (x, y) = (y− 5.1x2/4π2 + 5x/π − 6)
2
+ 10(1− 1/8π) cos(x) + 10, x ∈ [−5, 10], y ∈ [0, 15] (11)

This is moderate nonlinear problem with 2 variables. The 3D graph of Brain-Hoo
function is shown in Figure 5. In this example, 20 points by Latin hypercube sampling (LHS)
were selected as the training samples. The error evaluation index (R2, RAAE, RMAE) were
calculated through leave-one-out cross-validation [34]. The comparative results of different
SVR models for the Brain-Hoo function are shown in Table 3.
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Table 3. Brain-Hoo function test results.

Evaluation Index Poly-SVR RBF-SVR E-SVR

R2 1 0.9575 1
RAAE 0.0026 0.1078 0.0038
RMAE 0.0276 1.3177 0.031

Based on the results in Table 3, a much smaller global error evaluation index RAAE
and local error evaluation index RMAE are observed in the Poly-SVR model compared
to the RBF-SVR model. Therefore, the accuracy of the Poly-SVR model is much better
than the RBF-SVR model in this example. Differently, E-SVR obtained by the ensemble
of two different kernels has similar accuracy to the Poly-SVR model, where the same
R2 and slightly larger RAAE, RMAE are observed. Therefore, taking the 2D Brain-Hoo
test function with moderate nonlinearity as an example, the E-SVR model has better
performance.

(2) Hartman3 function [32]

f (x) = −
4
∑

i=1
ci exp

{
−

n
∑

j=1
aij(xj − pij)

2

}
x = (x1, x2, · · · , xn), xi ∈ [0, 1]

(12)

This is a highly nonlinear problem with 3 variables. The corresponding parameters of
Hartman3 function are given in Table 4 [32].
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Table 4. Parameters of the Hartman function.

i aij ci pij

1 3.0 10 30 1.0 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3.0 10 30 3.0 0.1091 0.8732 0.5547
4 0.1 10 35 3,2 0.03815 0.5743 0.8828

In this example, 30 points selected by Latin hypercube sampling (LHS) were used as
the training samples. The error evaluation indices (R2, RAAE, RMAE) were calculated
through leave-one-out cross-validation [34]. The comparative results of different SVR
models for the Hartman3 function are shown in Table 5.

Table 5. Hartman3 function test results.

Evaluation Index Poly-SVR RBF-SVR E-SVR

R2 0.2628 0.7461 0.7581
RAAE 0.6744 0.3854 0.3689
RMAE 3.3907 1.8152 2.1837

By comparing the experimental results in Table 5, it can be seen that the performance
of the RBF-SVR model is better compared to the Poly-SVR model whether viewed from
the global evaluation index (R2, RAAE) or the local evaluation index RMAE. Among the
3 SVR models, the global fitting performance of the E-SVR model is better than the Poly-
SVR model and the RBF-SVR model because larger R2 and smaller RAAE are observed.
On the other hand, the local error evaluation index RMAE in the E-SVR model is smaller
than the Poly-SVR model and slightly larger than the RBF-SVR model. Therefore, taking
the Hartman3 test function as an example, the E-SVR model has better performance among
the three different surrogate models.

After comprehensive analysis of these 2 examples with different dimension and
nonlinearity, the following conclusions can be drawn. For the first problem, the Poly-SVR
model has the best performance, which is a little better than the E-SVR model. For the
second problem, the E-SVR model has the best performance when using most error indices.
In other words, the E-SVR model has high fitting accuracy for both problems. Therefore, for
the test functions with different dimension and nonlinearity, the E-SVR model constructed
by RBF-kernel and Poly-kernel has good fitting performance.

5. Design Optimization of Chute Structure
5.1. Design of Experiment

In order to obtain the optimal design parameters of the chute, the optimization
model (1) can be solved directly by using the EDEM simulation results. However, due to
the huge cost of calculation, this is difficult to realize in practice. In this paper, the surrogate
model is introduced to replace the implicit relationship between structural parameters
and performance responses of the chute, then the surrogate model is directly used in the
optimization process to greatly reduce the simulation cost.

To reduce the number of EDEM experiments but generate representative samples,
various experiment design methods can be used to select the chute structure parameter
combinations (R1,R2,θ) in the design space. LHS has the characteristic of uniform stratifica-
tion and can obtain the representative sample in the case of less sampling, so LHS is more
efficient than the ordinary sampling method [35]. Moreover, LHS has the freedom to define
the sample number, thereby providing greater flexibility for problem with different dimen-
sionality [36]. Therefore, the LHS method is used to select 30 chute structure parameter
combinations (R1,R2,θ) in this paper. Specific data are shown in Table 6.
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Table 6. Chute structure parameter combinations.

R1, R2, θ R1, R2, θ R1, R2, θ R1, R2, θ R1, R2, θ

2168/2034/27.9 2350/2125/29.1 2406/2153/29.4 2042/1971/27.1 2296/2098/28.7
2375/2137/29.2 1877/1888/26.1 1738/1819/25.2 1961/1931/26.6 2338/2119/29.0
1907/1903/26.3 1934/1917/26.5 1979/1939/26.7 2144/2022/27.8 1830/1865/25.8
2052/1976/27.2 1782/1841/25.5 2428/2164/29.6 1763/1832/25.4 2088/1994/27.4
1852/1876/25.9 2205/2052/28.2 2220/2060/28.3 2495/2198/30.0 2010/1955/26.9
1705/1802/25.0 2281/2090/28.6 2460/2180/29.8 2248/2074/28.4 2116/2008/27.6

5.2. Solution and Verification

In this paper, the E-SVR surrogate model was used in the iterative optimization procedure
of chute structure, and the Sequential Quadratic Programming (SQP) method was used to
calculate the next design point. The optimal chute structure parameters [2259.6, 1813.4, 29.9]
were obtained under the condition that the coke velocity was between 7 m/s and 7.2 m/s.
All program codes are tested in Matlab R2014b.

In order to verify the effectiveness of the optimization results, a 3D model of the chute
was reconstructed according to the optimal structure parameter [2259.6, 1813.4, 29.9]. The
3D model was imported into EDEM software for verification experiments. Moreover, the
original chute of the factory was upgraded by using the structural parameters obtained
from the optimization design of the chute structure through the E-SVR model. During
the actual service of the upgraded chute for 1000 h, there was no blocking phenomenon.
Through actual monitoring, the maximum impact force of coke on the chute was reduced
to 2047 N, which was basically consistent with the simulation result of 2040 N and proved
the effectiveness of using EDEM simulation.

After optimization, the maximum impact force was reduced by 17.07% and the maxi-
mum conveying speed was reduced by 6.59%, which still falls within the specified range.
The result comparisons of the chute structure before and after optimization are shown in
Table 7.

Table 7. Result comparisons of the chute structure before and after optimization.

Structure Parameter Maximum Impact Force Maximum Conveying Speed

Before optimization 2100, 2000, 27.5 2460 N 7.59 m/s
After optimization 2259.6, 1813.4, 29.9 2040 N 7.09 m/s

5.3. Comparison of Single/Ensemble-Kernel-Based SVR

To further verify the effectiveness of the proposed E-SVR model in design optimization
of chute structure, the performance of commonly used single-kernel-based SVR models
(Poly-SVR and RBF-SVR) are used for comparison.

The 30 chute structure parameter combinations in Section 5.1 to construct the Poly-
SVR model and the RBF-SVR model, respectively. According to the Poly-SVR model, the
design optimization model of the chute structure was solved, and the optimal parameter
combination [2296.7, 1742.4, 29.3] was obtained. Using this parameter combination, a 3D
model of the chute structure was reconstructed. Then, the model was imported into EDEM
software to conduct simulation experiments.

Similarly, according to the RBF-SVR model, the design optimization model of the chute
structure was solved, and the optimal parameter combination [2173.5, 1909.5, 28.2] was
obtained. According to this parameter combination, the 3D model of chute structure was
reconstructed, and the model was imported into EDEM software for verification experiments.

The comparison results of single/ensemble-kernel SVR models are shown in Table 8.
As can be seen, different optimization results were obtained based on different kernel SVR
models for the chute structure optimization problem. By comparing the optimization results
of 3 single/ensemble-kernel SVR models with that before optimization, the performance of
chute structure based on the 3 SVR models improved in different degrees. Moreover, the
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optimization result of E-SVR model is better than that of Poly-SVR and RBF-SVR models.
Therefore, better performance is observed in the parameter optimization of chute structure.

Table 8. Comparison results of single/ensemble-kernel SVR models.

Structure
Parameter Maximum Impact Force Maximum Conveying Speed

Poly-SVR 2296.7, 1742.4, 29.3 2420 N 7.14 m/s
RBF-SVR 2173.5, 1909.5, 28.2 2370 N 7.18 m/s
E-SVR 2259.6, 1813.4, 29.9 2040 N 7.09 m/s

6. Conclusions

To avoid blocking and crushing of the coke and reduce wear and destruction of the
chute during the conveying process, the design optimization model of structure parameters
of the chute was established and solved in this paper. In the proposed method, the
conveying speed of coke in the chute and the impact force of coke on the chute were
comprehensively considered.

(1) The optimization model of the chute structure parameter was established and solved
in this paper. The maximum impact force of coke on the chute and the material crush-
ing rate were effectively reduced within the allowed speed range, which improved
the utilization rate of coke and prolonged the service life of the chute.

(2) The E-SVR model was developed to integrate the advantages of both the Poly-SVR
model and the RBF-SVR model. The effectiveness of the E-SVR model was verified
through numerical examples.

(3) By using the E-SVR surrogate model in the chute structural parameter optimiza-
tion models to replace the implicit relationship between the maximum impact force,
maximum conveying speed, and design variables, the computational cost of design
optimization was reduced.

(4) Through comparison with the results by using the Poly-SVR model and results by using
the RBF-SVR model, the optimal results obtained by the proposed E-SVR model are
accurate and effective, which is of great significance for the design of chute structure.
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