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Abstract: In the present work, a critical analysis of the most-commonly used analytical models and
recently introduced ANN-based models was performed to evaluate their predictive accuracy within
and outside the experimental interval used to generate them. The high-temperature deformation
behavior of a medium carbon steel was studied over a wide range of strains, strain rates, and
temperatures using hot compression tests on a Gleeble-3800. The experimental flow curves were
modeled using the Johnson–Cook, Modified-Zerilli–Armstrong, Hansel–Spittel, Arrhenius, and PTM
models, as well as an ANN model. The mean absolute relative error and root-mean-squared error
values were used to quantify the predictive accuracy of the models analyzed. The results indicated
that the Johnson–Cook and Modified-Zerilli–Armstrong models had a significant error, while the
Hansel–Spittel, PTM, and Arrhenius models were able to predict the behavior of this alloy. The ANN
model showed excellent agreement between the predicted and experimental flow curves, with an
error of less than 0.62%. To validate the performance, the ability to interpolate and extrapolate the
experimental data was also tested. The Hansel–Spittel, PTM, and Arrhenius models showed good
interpolation and extrapolation capabilities. However, the ANN model was the most-powerful of all
the models.

Keywords: artificial neural network; constitutive flow law; analytical flow law; interpolation;
extrapolation; Gleeble

1. Introduction

Large size forged blocks made of medium carbon high-strength steels are extensively
used in the automotive industry as dies for the production of bumpers and dashboards
through the plastic injection process. The manufacturing process of the large blocks starts
with ingot casting, followed by open die forging and a quench and temper heat treatment
process to achieve the desired mechanical properties [1–3]. In recent years, in order to
respond to the market demand, larger size forgings have had to be produced. In parallel,
more stringent conditions related to chemical homogeneity, hardness, grain size, and
mechanical properties from the surface to the core of the forged block have been required.
Of the three manufacturing steps (casting, forging, and heat treatment), forging is where
the most-important microstructural changes take place, which greatly influence the final
properties that can be achieved [4–6]. The open die forging process is fundamentally a hot
compression process during which work strengthening effects, such as hardening (WH)
and precipitation, take place concomitantly with softening phenomena such as recovery
and recrystallization under static and/or dynamic thermomechanical loads [7,8]. It has
also been reported that phase transformation can occur during deformation. The extent
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and intensity of the above phenomena strongly depend on three macroscopic quantities,
namely the strain ε, the strain rate .

ε, and the temperature T [9–12].
Considering the large size of blocks, a purely experimental approach, based on trial

and error, cannot be used by industry, and therefore, reliable predictive tools, such a
finite element analysis (FEA) codes, have been developed and are commercially available.
However, the prediction reliability of such analyses is a function of the accuracy of the
material constitutive model, which describes the mutual interactions between the strain,
the strain rate, and the temperature during deformation. As mentioned above, precipitation
and phase changes are considered negligible as deformation takes place in the austenite
phase at temperatures above the dissolution temperature of most carbides. Hence, most
constitutive models depend on macroscopic parameters, which influence the hardening
and softening of the material. A large number of phenomenological, semi-empirical, or
physical models [13–16] have been developed. Among these, the Johnson–Cook (JC) [17],
Hansel–Spittel (HS) [18], and Zerilli–Armstrong (ZA) [19] models are the best-known and
most-widely available in FEA codes. Despite their simplicity, each of them suffers from
certain shortcomings: as reported by Jia et al. [20], the JC model suffers from a lack of
non-coupling between the strain, the strain rate, and the temperature, while the HS model
is better adapted for higher strain rate conditions [18]. To circumvent these shortcomings,
several modified model forms have been developed [18,20–25]. However, as reported
by many authors [26–28], even after adjusting the constants, the high-temperature flow
behavior, particularly when dynamic recrystallization takes place, cannot be accurately
predicted, and none of the models is able to accurately predict the flow behavior outside
the experimental testing interval that was used to determine the model constants. Due to
its more physics-based formulation, the ZA model and its modified form, MZA [29–33],
and the Arrhenius-type hyperbolic sine constitutive models are preferred to the JC and
HS models both for the prediction of the hot deformation behavior and microstructure
analysis of the material [34–36]. The Arrhenius formulation has been revised repeatedly
to achieve a more accurate determination of the activation energy for high-temperature
deformation [37,38]. To overcome the strong dependency of the models on specific alloy
types, Tize Mha et al. [39] recently proposed a constitutive model, PTM, whose formulation
is independent of the alloy type. This formulation is based on the MZA model and the
polynomial functions of undefined order that are used during the identification. However,
in the PTM model, the high order of the polynomial function (up to 10 in some cases) can
affect its accuracy.

The artificial neural network (ANN) is an approach used to predict the flow stress
behavior of materials without requiring a mathematical formulation of the flow law. It is
therefore not necessary to postulate a mathematical expression to identify the parameters
of the model. Since the behavior of materials is highly nonlinear at high temperatures
and depends on many factors, which are also nonlinear, the evaluation of the flow stress
behavior by an analytical model whose parameters are identified by a classical regression
method is limited. Faced with these limitations, ANN models are of major interest be-
cause they are particularly suited to dealing with complex and nonlinear relationships.
Consequently, ANNs have been successfully applied to predict the flow stress behavior of
materials under hot working conditions [40–43]. Although ANN models can predict well
the material flow behavior, there is a problem with their implementation in finite element
software, as reported by Pantalé et al. [16,44]. In fact, the implementation of a constitutive
model in an FEA code requires the derivatives of the model with respect to the strain, strain
rate, and temperature.

Although progress has been made in improving constitutive models to better predict
the flow stress behavior of materials, problems still persist with the models’ efficiency.
Indeed, a model is considered appropriate for predicting the material’s behavior if its
predictions and experimental results correlate well. It is questionable whether a model
that correctly describes the behavior of a material in a defined experimental window can
be used to accurately predict its behavior for conditions different from those for which it
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was identified. In other words, the question is whether interpolation and extrapolation
techniques can be used to extend the applicability of a constitutive equation for different
processing windows.

The present work aimed to address the preceding question using the recently intro-
duced ANN model. To this end, initially, hot compression tests, simulating the open die
forging process, were carried out, and the flow curves generated were modeled using the
above-mentioned constitutive equations and an ANN model developed in this work. Then,
the interpolation and extrapolation capabilities of each model were evaluated. The results
were validated based on experimental work carried out herein and on data obtained from
the literature.

2. Materials and Experiments
2.1. Experimental Procedure

The material used in this study consisted of a medium carbon steel whose chemical
composition is given in Table 1.

Table 1. Chemical composition of medium carbon steel. Fe = balance.

Element C Mn Mo Si Ni Cr Cu

Wt % 0.30 0.89 0.52 0.34 0.68 1.86 0.17

Cylindrical samples were machined with an initial diameter of d = 10 mm and a height
of h0 = 15 mm. Hot compression tests were performed on a Gleeble-3800 thermomechanical
simulator (see Figure 1), for 5 temperature levels, namely 1050 ◦C, 1100 ◦C, 1150 ◦C, 1200 ◦C,
and 1250 ◦C, with the 6 strain rates of 0.001 s−1, 0.01 s−1, 0.1 s−1, 1 s−1, 2.0 s−1, and 5 s−1.

Figure 1. The Gleeble-3800 thermomechanical simulator system used for this study.

Thin tantalum sheets were used as the lubricating material at the contact surface of
the anvils and samples to minimize friction during testing. Figure 2 shows the inside of the
Gleeble thermomechanical simulator with the specimen in place. We used 3 thermocouples
soldered to the specimen to record the temperature history during the test and to ensure
that the specimen was at the correct temperature prior to testing.
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Figure 2. The inside of the Gleeble-3800 thermomechanical simulator with the specimen in place.

As shown in Figure 3, the samples were heated to a temperature of 1260 ◦C with a
heating rate of 2 ◦C/s and held at this temperature for 5 min to eliminate thermal gradients.
They were then cooled down with a rate of 1 ◦C/s to the test temperature and then held at
constant temperature for 1 min before deformation. During the compression phase, the
temperature of the specimen is kept constant by the thermal control system of the machine.
After compression, the specimen is quickly quenched to freeze its microstructure for later
analysis. Figure 3 also shows the aspects of the specimens before and after the compression
test: h0 and r0 are the height and radius before compression and h, rm, and rt are the height,
large radius, and small radius of the specimen after compression, respectively.

Figure 3. Schematic diagram of the experimental process on the Gleeble-3800 thermomechanical simulator.

The stress–strain curves are automatically exported from the Gleeble thermomechan-
ical simulator system as the true stress and true strain according to the L-gauge, where
the formula to obtain the curves is given by σ = F/A and ε = ln(1 + ∆h/h0) or C-gauge,
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having the following formulas: σ = 4F/π(d + ∆d)2 and ε = 2 ln(d/(d + ∆d)) with d = 2r0
and where F is the force as measured by the Gleeble load cell. As the raw data contain
noises, the savgol_filter method from the scipy library was used to remove noise and
provide smoother data. To allow further use of the data in numerical simulations, the
elastic parts were removed.

2.2. Compression Tests’ Results

The set of flow stress σy versus strain ε curves obtained from compression tests
performed on the Gleeble-3800 simulator for each test condition (6 strain rates and 5 tem-
peratures) is presented in Figure 4.

Figure 4. Stress–strain curves of medium carbon alloy extracted from the Gleeble device at various
temperatures T and strain rates .

ε.

All data curves contain 700 equidistant strain values up to ε = 0.7. Therefore, there
are 6 strain rates and 5 temperatures, and the database consists of 21,000 data points. For
the identification of the parameters of all the analytical models presented in this article, we
restricted the database to 35 strain values between 0.02 and 0.7, with a step of 0.02 (this
is illustrated in Figure 4, where the data used correspond to the dots on the graphs). The
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overall behavior of these curves shows that the flow stress σy increases with increasing
strain rate .

ε, but decreases with increasing temperature T. It should be noted that the
strain also influences the flow stress. Indeed, for the lowest strain rates .

ε, the flow stress
σy increases with the strain ε until a value of about ε = 0.2 to 0.3 and then decreases to
maintain a more or less constant value until the end of the test. For the highest strain
rates (1 s−1, 2 s−1, and 5 s−1), the flow stress increases throughout the test. The slight
increase in stress at low strain rates, when the strain is large, has been reported to be due
to friction between the sample and the anvil during the test [45]. The frictional effect is
also visible when testing at low strain rates, as the effect of lubrication decreases over
time and friction, thus, increases. The increase of stress observed at the beginning of the
deformation and up to 0.1 is due to work hardening (WH). After 0.1 and up to 0.2, the flow
stress shows a continuous reduction with increasing stress until a peak or an inflection of
the work hardening rate. This behavior indicates that thermal softening becomes more
and more predominant until it exceeds WH. At this step, the stress curve shows three
different patterns with the increasing strain: (i) gradual decrease to a steady state with
DRV/DRX softening. This is the case for all deformation temperatures and strain rates
between 0.001 and 0.1 s−1, except for those at 1050 ◦C and 1100 ◦C; (ii) higher stress levels
without significant softening and work hardening at 1050 ◦C and 1100 ◦C and a 0.1 s−1

strain rate; (iii) a continuous increase with significant work hardening (all deformation
temperatures and strain rate of 1 s−1). Therefore, it can be concluded that the softening due
to DRX, characterized by a flow curve with a single peak followed by a steady-state flow,
takes place at high temperatures and low strain rates. In contrast, at higher strain rates and
lower temperatures, the higher work hardening rate slows down the rate of softening due
to DRX, and therefore, both the peak stress and the onset of steady-state flow are shifted to
higher strain levels. In fact, the drop observed in stress is because of DRX occurrence at all
temperatures and strain rates of 0.001–5 s−1.

Figure 5a shows the microstructure obtained when the sample is held at 1260 ◦C
for 5 min and rapidly cooled to room temperature. From this image, large grains can be
observed. On the other hand, Figure 5b shows the microstructure after compression at
1150 ◦C with a 0.001 s−1 strain rate. To obtain this, the sample is heated up to 1260 ◦C, then
held for 5 min and cooled down to 1150 ◦C to be held at this temperature for 1 min before
compression. After compression, the sample is rapidly cooled to room temperature to
preserve the microstructure. From this image, full recrystallization can be observed and is
in correlation with Figure 4, where after the peak, a steady stress is observed that describes
the end of the recrystallization.

(a) Before hot compression (b) After hot compression

Figure 5. Optical micrographs of a medium carbon steel (a) before and (b) after hot compression at
1150 ◦C with a 0.001 s−1 strain rate.
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The material is in the single-phase austenite state at all of the test temperatures
examined. The data presented in Figure 4 will be utilized in the following section to
determine the parameters of the 6 flow laws proposed and to determine which model most
closely aligns with the experimental results.

3. Identification of Constitutive Flow Laws’ Parameters
3.1. The Johnson–Cook Model

The JC model, as mentioned above, is one of the most-widely used analytical models
because it can be applied to many materials under different conditions of strain ε, strain rate
.
ε, and temperature T. However, the formulation of this model does not take into account
the simultaneous effect of strain, strain rate, and temperature. Indeed, it is formulated
by describing the effect of each physical parameter (ε, .

ε, and T) separately as a factor in
the mathematical expression of the model, hence its inability to describe the phenomenon
of softening induced by temperature. The equation that describes this model is given as
follows [17]:

σy =
(

A + Bεpn)[1 + C ln
( .

ε
.
ε0

)][
1−

(
T − T0

Tm − T0

)m]
, (1)

where σy is the flow stress, εp is the plastic strain, A is the initial elastic limit of the
material, B is the strain hardening coefficient, n is the strain hardening exponent, and C
and m are the material constants that describe the strain rate hardening coefficient and the
thermal softening coefficient, respectively. The other values are reference values: .

ε0 is the
reference strain rate; Tm and, thus, T0 are the melting temperature (1460 ◦C in our case)
and the reference temperature, respectively. For the determination of the parameters of the
analytical models, the reference values for strain rate and temperature are .

ε0 = 0.001 s−1

and T0 = 1050 ◦C. In our approach, the reference strain rate and reference temperature for
identifying the JC model are the lowest values used during the test; however, sometimes,
these values do not always give the best results for the model.

The procedure used to determine the parameters of the Johnson–Cook law is in accor-
dance with the one proposed by Zeng et al. [11]. This method allows sequentially obtaining
the 5 parameters in the order A, B, n, C, and m. Thus, according to the experimental
data, the initial elastic limit of the material at the reference strain rate .

ε0 and the reference
temperature T0 is A = 13.5143 MPa. For the determination of the constants B and n, from
the results of the compression test at T0 and .

ε0, these two constants can then be determined
by considering only the first term (A + Bεpn) in Equation (1). Thus, here, B = 21.816 MPa
and n = 0.0746. Once the parameters A, B, and n are known, the determination of C,
considering only all the curves at T = T0, then gives C = 0.3404. Finally, the last parameter
m is identified from the curves at .

ε =
.
ε0 and from knowledge of the parameters A, B, C, n

and gives m = 0.7057. All parameters of the Johnson–Cook model are reported in Table 2.

Table 2. Parameter values of the Johnson–Cook flow law for a medium carbon steel.

A (MPa) B (MPa) n C m

13.5143 21.816 0.0746 0.3404 0.7057

The values predicted by the Johnson–Cook flow law (solid line) and the experimental
values (dots) are compared in Figure 6.
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Figure 6. Comparison between the experimental (dots) and predicted (lines) flow stresses σy by the
Johnson–Cook model.

The JC model is unable to describe the evolution of the average flow stress for all
strain and strain rate levels. The experimental flow stresses show a growth and then a
decrease with strain, especially for low strain rates, while the JC model, by its formulation,
only allows an increasing evolution of the flow stress σy as a function of the strain indepen-
dently of the strain rate value. The discrepancy between the predicted and experimental
values is large for low strains and sometimes acceptable for high strains. As expected, the
mathematical formulation of the Johnson–Cook flow law is unable to represent the stress
drop at low strain rates, with the JC model increasing only monotonically with the strain.
Since most of the parameters are identified at low strain rates (A, B, and n), this results in a
very poor fit of the model to the experimental data.

The accuracy and predictive ability of the models are usually assessed through certain
coefficients such as the mean absolute relative error (EMAR) defined by Equation (2):

EMAR(%) =
1
N

N

∑
i=1

∣∣∣∣∣σ
p
i − σe

i
σe

i

∣∣∣∣∣× 100, (2)
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and the root-mean-squared error (ERMS) defined by Equation (3):

ERMS(MPa) =

√√√√ 1
N

N

∑
i=1

(
σ

p
i − σe

i

)2
, (3)

where σe
i is the experimental value, σ

p
i is the value predicted using the given model of the

flow stress σy, and N is the total number of data points used to compute those coefficients
(in our case N = 21,000). For the JC model, EMAR = 14.05% and ERMS = 12.00 MPa. As
reported by Phaniraj [46], the correlation coefficient (R) is not always an accurate measure
to evaluate the reliability of the constitutive law especially in the case of a highly nonlinear
functions because it only shows the correlation of the model with respect to the data and
not its accuracy. A good (high) value of R (close to 1) does not necessarily mean a good
prediction of the model, but simply establishes a good linearity correlation between the
experiment and the prediction; we, therefore, avoided its use in our analysis.

3.2. The Modified-Zerilli–Armstrong Model

The MZA model, which is the modified form of the ZA model, like the JC model
presented earlier, is one of the most-widely used models implemented in many FEA codes
such as the Abaqus software. The difference between the MZA model and JC model is
related to the consideration of the three physical parameters to describe the reality observed
from experiments. In the JC model, the parameters are considered separately, while in
the MZA model, they are considered simultaneously, and for that formulation, the MZA
model is preferred over the JC model [47]. However, the original form of the ZA model
has some limitations due to the fact that it is considered as a two-term function (thermal
and athermal functions), and to improve the formulation, Samantaray et al. [48] proposed
a modified form given by the following equation:

σy =
(
C1 + C2εpn) exp

[
−(C3 + C4εp)(T − T0) + (C5 + C6(T − T0)) ln

( .
ε
.
ε0

)]
, (4)

where the 7 coefficients Ci and n are the parameters of the model to be identified for a given
material. To obtain the parameters of the MZA model, we applied the method proposed
by [48], and the parameters are summarized in Table 3, while their predictions are plotted
in Figure 7.

Table 3. Parameter constants of the Modified-Zerilli–Armstrong model.

C1 (MPa) C2 (MPa) C3 C4 C5 C6 n

13.5143 21.2591 4.7902× 10−3 1.4895× 10−4 0.1389 1.495× 10−4 0.0621

It can be seen from this figure that both the MZA and JC models are not able to
faithfully reproduce the experimental data, especially at low strain rates, but they are
slightly better at higher strain rates. The deviation between the predicted values and the
experimental values is large because this model has a problem correctly describing the
softening in its formulation. For the MZA model, EMAR = 21.20% and ERMS = 19.57 MPa,
showing an overall worse performance than the JC model, as reported in [39]. In addition,
it can be observed that, at high strain rates, the MZA model is not good either, even if there
is no softening effect, and this can be explained by the fact that this model is formulated for
quasi-static phenomena.
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Figure 7. Comparison between the experimental (dots) and predicted (lines) flow stresses σy by the
Modified-Zerilli–Armstrong model.

3.3. The Hansel–Spittel Model

The Hansel–Spittel model [49] is one of the least-known models in terms of integration
in FEA codes, although its parameters can more easily be determined than those of the JC or
MZA models. Programming a simple identification script is sufficient to identify its param-
eters for a given material. The equation of the HS model is given by the following relation:

σy = A em1T εm2 .
εm3 e(m4/ε) (1 + ε)m5T em6ε .

εm7T Tm8 , (5)

where again, σy is the flow stress, ε is the strain, .
ε is the strain rate, and T is the temperature,

as proposed earlier. The coefficients A and mi are the 9 parameters of the model to be
identified. However, this model has some shortcomings, notably related to the fact that its
accuracy varies according to the number of parameters taken into account during the iden-
tification. For its identification, several authors restrict its expression to a reduced number
of only 5 or 6 mi parameters, by forcing a zero value for the other parameters [15,18,50].

In the present study, the best results were obtained by taking the model defined by
only the first 7 mi terms of the Equation (5), so that m8 = 0. From the experimental data
obtained during the compression tests, an identification procedure based on the use of the
LMFIT optimizer [51] allowed computing the parameters reported in Table 4.
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Table 4. Parameter values of the Hansel–Spittel flow law for the medium carbon steel.

A m1 m2 m3 m4

5.954× 103 −3.3576× 10−3 0.2641 −0.0868 2.2688× 10−4

m5 m6 m7 m8

−4.2163× 10−4 −0.0561 2.264× 10−4 0

A comparison of the values predicted by the HS model and the experimental values is
presented in Figure 8, where the dots represent the experimental values and the solid lines
are the values predicted by the Hansel–Spittel flow law. For the HS model, EMAR = 7.75%
and ERMS = 3.80 MPa. It appears that both this model and the previous ones do not ade-
quately predict the experimental one, and the difference is relatively significant for all strain
rates below 1 s−1. This shows that this model is not appropriate for the characterization
of this alloy, particularly because of the strong nonlinear behavior observed for low strain
rate values. The DRX phenomenon cannot be reproduced by this type of model.

Figure 8. Comparison between the experimental (dots) and predicted (lines) flow stresses σy by the
Hansel–Spittel model.
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3.4. The Arrhenius Model

The Arrhenius type model [52] is one of the most-used models in the framework of
material forming, especially when it comes to studying the material microstructure. The
model takes into account the physical phenomena describing the behavior of the material
in the formulation of the relationships between the stress σy, the strain ε, the strain rate .

ε,
and the temperature T expressed as the power law, exponential law, and hyperbolic sine.
This makes it easier to describe the softening phenomenon observed in the material due to
increasing temperature. The following equations describe the Arrhenius model:

.
ε =


A1σyn1 exp

(
− Q

RT

)
ασy < 0.8

A2 exp(βσy) exp
(
− Q

RT

)
ασy > 1.2

A3[sinh (ασy)]n2 exp
(
− Q

RT

)
for all σy

(6)

with:

Z =
.
ε exp

(
Q
RT

)
, (7)

where Z is the Zenner–Hollomon parameter [53], .
ε is the strain rate (s−1), Q is the apparent

activation energy (J mol−1), R is the universal gas constant (8.314 J mol−1K−1), T is the
absolute temperature (K), σy is the flow stress (MPa) for a given strain, strain rate, and
temperature, and A1, A2, A3, n1, n2, α, and β = α n1 are dependent on the material.
The corresponding values are independent of the temperature and are obtained from the
stress–strain curves at different strain rates and temperatures by the regression method.
Combining Equations (6) and (7) allows expressing the flow stress σy as a function of the
Z parameter:

σy =
1
α

ln


(

Z
A

)1/n
+

[
1 +

(
Z
A

)2/n
]1/2

 (8)

To obtain the constitutive equation, all the parameters A, Q, α, and n must be deter-
mined for a given material. The strain has a significant nonlinear influence on the behavior
of the material by the strain hardening and softening mechanisms at high values of defor-
mation. A strain-dependent factor must, therefore, be taken into account in the Arrhenius
model, which leads to the definition of the modified Arrhenius model for which the A, Q,
α, and n parameters are expressed as a function of the strain ε by means of polynomial
functions of degree m (varying from 1 to 9) of the form:

A(ε) = exp
[
lnA0 + lnA1ε + lnA2ε2 + lnA3ε3 + · · ·+ lnAmεm

]
(9)

Q(ε) = Q0 + Q1ε + Q2ε2 + Q3ε3 + · · ·+ Qmεm (10)

α(ε) = α0 + α1ε + α2ε2 + α3ε3 + · · ·+ αmεm (11)

n(ε) = n0 + n1ε + n2ε2 + n3ε3 + · · ·+ nmεm (12)

The determination of the order m of the polynomials defining Equations (9)–(12)
depends on the ability of the model to represent the nonlinear dependence of the stress on
strain and its generalization. The values lnAi, αi, ni, and Qi (i = 0, 1, 2, 3, · · · , m) are the
coefficients of the polynomials used to determine using a regression method. Setting m = 9
gives the best results, and the corresponding parameters are reported in Table 5.
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Table 5. Parameter values of the Arrhenius flow law for the medium carbon steel.

αi Qi (×10−6) lnAi ni

α0 = 0.0407 Q0 = 0.467 lnA0 = 35.8092 n0 = 4.8217
α1 = −0.5167 Q1 = −0.6517 lnA1 = −58.822 n1 = 3.2814
α2 = 6.3912 Q2 = 7.6084 lnA2 = 740.3303 n2 = 71.5963
α3 = −47.3364 Q3 = −48.016 lnA3 = −5.0493× 103 n3 = −1.9562× 103

α4 = 220.0014 Q4 = 66.795 lnA4 = 1.1305× 104 n4 = 1.4461× 104

α5 = −654.4553 Q5 = 468.8898 lnA5 = 2.022× 104 n5 = −5.431× 104

α6 = 1.2421× 103 Q6 = −2.3032× 103 lnA6 = −1.5387× 105 n6 = 1.1761× 105

α7 = −1.4523× 103 Q7 = 4.3707× 103 lnA7 = 3.1798× 105 n7 = −1.4882× 105

α8 = 952.0619 Q8 = −3.9394× 103 lnA8 = −2.9725× 105 n8 = 1.0239× 105

α9 = −267.4994 Q9 = 1.397× 103 lnA9 = 1.0759× 105 n9 = −2.9621× 104

This modified form of the Arrhenius behavior law allows an accurate and reliable
prediction over a wide range of temperatures and strain rates. Equation (13) is finally used
to compute the flow stress σy from the strain ε, the strain rate .

ε, and the temperature T:

σy =
1

α(ε)
ln


 .

ε exp
(

Q(ε)
RT

)
A(ε)


1

n(ε)

+

1 +

 .
ε exp

(
Q(ε)
RT

)
A(ε)


2

n(ε)


1
2
 (13)

Figure 9 shows a comparison of the values predicted by the Arrhenius model and
the experimental values. The difference between the experimental and predicted values is
small. However, for the strain rate .

ε = 0.01 s−1 and for the two low temperature values,
the AR model is unable to predict the softening. For the AR model, EMAR = 3.56% and
ERMS = 2.18 MPa.

3.5. The PTM Model

The PTM model [39] is a generalized formulation of the MZA model presented in
Section 3.2. When establishing its formulation, the main shortcomings of the MZA model
were taken into account, in order to render the PTM model flexible for any type of material
studied because it removes the need for a limited number of parameters as in the MZA
model. Its construction is based on the use of polynomial functions, as is the case in the AR
model. Thus, the physical parameters’ dependent intrinsic functions of the PTM model
allow adjusting the model according to the degree selected for each of the 4 constituent
polynomials, which provides a good fit for each function. The equation describing the PTM
model is, therefore, given by:

σy =

(
q

∑
i=0

Aiε
pi

)
exp

[(
r

∑
j=0

Bjε
p j

)
(T − T0) +

(
s

∑
k=0

(
t

∑
l=0

Cl
kεpl

)
(T − T0)

k

)
ln
( .

ε
.
ε0

)]
(14)

where Ai, Bj, Cl
k are the parameters (Table 6) of the model to be identified using the pro-

cedure proposed in [39]. Quantities q, r, s, and t define the degree of the polynomials
used to describe the behavior of the material. The larger these quantities, the greater the
number of parameters that need to be identified for the PTM model. The determination of
the parameters of this model was performed thanks to the LMFIT Python library [51] (for
more details about this model, we refer the reader to our previous work [39]). Thus, all the
parameters of this model were calculated with q = 5, r = 5, s = 1, and t = 5.
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Figure 9. Comparison between the experimental (dots) and predicted (lines) flow stresses σy by the
Arrhenius model.

Figure 10 presents a comparison of the values predicted by the PTM model and
the experimental values. The PTM model is suitable for describing the flow behavior of
medium carbon steel, but for the two strain rates .

ε = 0.01 s−1 and .
ε = 0.1 s−1, the prediction

is not very good. The deviation between the predicted values and the experimental
values for other strain rates is relatively low. For the PTM model, EMAR = 4.79% and
ERMS = 4.59 MPa, which is an overall worse performance than the AR model.

Table 6. Parameter values of the PTM flow law for the P20 steel.

Ai Bi Ci
0 Ci

1

A0 = 16.8529 B0 = −3.5418× 10−3 C0
0 = 0.1608 C0

1 = −1.9037× 10−5

A1 = 340.6451 B1 = −0.0132 C1
0 = −0.6202 C1

1 = 2.67× 10−3

A2 = −1.9594× 103 B2 = −4.4888× 10−3 C2
0 = 4.9516 C2

1 = −3.5788× 10−3

A3 = 4.836× 103 B3 = 0.2218 C3
0 = −13.1694 C3

1 = −0.0222
A4 = −5.5176× 103 B4 = −0.4988 C4

0 = 15.25 C4
1 = 0.0609

A5 = 2.4058× 103 B5 = 0.3211 C5
0 = −6.587 C5

1 = −0.0413
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Figure 10. Comparison between the experimental (dots) and predicted (lines) flow stresses σy by the
PTM model.

3.6. The Artificial Neural Network Model

Because of their predictive capacity and adaptability, artificial neural networks (ANNs)
are increasingly widely used today in many scientific fields. Their operation is based on a
training process, during which the principle of minimizing the error between the model’s
output and the training data allows the adjustment of the model’s parameters, as in any
machine training process.

Neural networks generally have two uses: classification and regression. The first is
the ability to classify data into different groups, for example to distinguish between images
of cats and dogs. The second corresponds to the universal approximation capacity of these
neural networks, which is of interest to us herein, and thus, to the ability, after training, to
predict the flow stress σy values according to the input data, akin to what is achieved by the
above-identified analytical models. The main difference is that this approximation is not
linked to a fixed mathematical formulation (as in the JC, MZA, AR, HS, and PTM analytical
models), but is only dependent on the data used for training, the number of layers, the
number of neurons per layer, and the activation functions associated with the neurons of
the network. A feed-forward ANN, as used in our application, contains an input layer,
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an output layer, and a number of hidden layers (2 in our case). Each layer of neurons is
connected to the one before it and the one after it by weighted connections. Thus, all the
neurons of the kth layer are connected to all the neurons of the (k− 1th) layer, as shown
in Figure 11.

Figure 11. Two hidden layers artificial neural network architecture with 3 inputs neurons (green) and
1 output neuron (red).

Any hidden layer k, containing n neurons, takes a weighted sum of the outputs
−→̂
y

of the immediately preceding layer (k − 1), containing m neurons, given by the follow-
ing equation:

y(k)i =
m

∑
j=1

w(k)
ij ŷ(k−1)

j + b(k)i , (15)

where y(k)i is the entry of the ith neuron of layer k, ŷ(k−1)
j is the output of the jth neuron

of layer (k− 1), w(k)
ij is the associated weight parameter between the ith neuron of layer k

and the jth neuron of layer (k− 1), and b(k)i is the associated bias of the ith neuron of layer
k. Those weights wij and bias bi, for each layer, are the training parameters of the ANN,
which we have to adjust during the training procedure described in Pantalé et al. [16,44].
For the proposed model, we selected the Sigmoid activation function, so that each neuron
in the hidden layer k provides an output value ŷ from the input value y of the same neuron
defined by Equation (15) according to the following equation:

ŷ =
1

1 + e−y (16)

No activation function was used for the output neuron of the ANN as usually done in
a regression ANN.

After some tests of different types of network architectures and in accordance with
previous works, a network structure with two hidden layers including 15 neurons for the
first hidden layer and 7 neurons for the second layer gave the best compromise between
prediction, training time, and model compactness. From a global architecture point of view,
the input layer is composed of 3 neurons (εp, .

ε, T) and the output layer is composed of a
single neuron corresponding to the σy flow stress. This architecture leads to a global model
with 180 parameters to be identified (60 for the first layer, 112 for the second layer, and 8
for the output layer).
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The Python program used for training the neural network was developed using the
specialized Python library, Tensorflow [54]. The Adaptive Moment Estimation (ADAM)
optimizer [55] was used for the training phase. The training data were those from the tests
presented in Section 2.2 and were composed of 21,000 quadruplets of (εp, .

ε, T, σy) values.
The training was performed on the basis of 5000 epochs of the experimental dataset. It took
40 min of training on a Dell XPS-13 7390 laptop running Ubuntu 22.04 LTS 64 bits with
16 GB of RAM and an Intel 4-core i7-10510U processor to obtain the converged parameters
of the ANN model. Figure 12 shows the evolution of the training error defined by the log10
of the ERMS during the training phase.

Figure 12. Convergence of the ANN model during the training phase.

As can be seen in this figure, after 5000 epochs, we can consider that we have reached
a stationary state of the model training, such that it is useless to continue with the train-
ing phase.

Once the training phase is over, the trained model can be used to predict the behavior of
the medium carbon alloy as a function of the input data, similarly to what was done with the
analytical models. One can either use the model directly by providing it with new input data or
retrieve the 180 parameters identified during the training and inject them into a mathematical
model based on Equations (15) and (16), which can be implemented in any language (e.g., in
FORTRAN for use on the Abaqus Explicit FEA code), as proposed in Pantalé et al. [16,44]. For
compactness, the parameters of the ANN model and the complete procedure to compute the
flow stress σy from the input data are provided in Appendix A.

As for the above-considered analytical models, Figure 13 shows a comparison between
the flow stresses predicted by the ANN model and the data measured during the hot
compression test.

The experimental data and the ANN prediction correlate very well over the entire
range of data, and the predicted data can track the hardening and softening regions of the
hot deformed material well. For the ANN model, EMAR = 0.62% and ERMS = 0.38 MPa,
which is excellent. This model can be used to simulate the hot deformation of this type of
alloy with much greater reliability with respect to the actual material behavior than the
analytical models presented in the above sections.
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Figure 13. Comparison between the experimental (dots) and predicted (lines) flow stresses σy by the
3-15-7-1-sigmoid ANN model.

3.7. Comparison of Analytical and ANN Models

A summary of the coefficients for evaluating the high-temperature flow stress predic-
tion capability of the medium carbon alloy for all models presented in this work is reported
in Table 7.

Table 7. Accuracy coefficients for all the analyzed models.

Coefficients JC MZA HS AR PTM ANN

EMAR(%) 14.05 21.20 7.75 3.56 4.79 0.62
ERMS(MPa) 12.00 19.57 3.80 2.18 4.59 0.38

From Table 7, we can see that the ANN model has a much better predictive capacity
than all the analytical models presented in the above sections. Globally, the values of EMAR
and ERMS are six-times lower than with the best of the analytical models, i.e., the Arrhenius
model, quoted as reference in the context of the hot forming of alloys [56].
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The ANN, Arrhenius and PTM models are the only models that take into account
softening with the deformation of medium carbon at a low strain rate, unlike the other three
models, which only present an increase in the flow stress with the strain, irrespective of the
strain rate and temperature, hence their poor performance in predicting the behavior of
this material and, more particularly, at low strain rates. The parameters reported in Table 7
and the correlations that can be seen in Figures 6–10 and 13 allow concluding that the ANN
model is the most efficient of all the models presented when it comes to describing the
behavior of the medium carbon alloy for high-temperature deformation applications.

4. Interpolation and Extrapolation Capability of Models

In order to better compare the performances of the above analyzed models (the
five analytical models and the ANN based model), in this section, we present the ability of
each of these models to interpolate and extrapolate the results as a function of the strain
rate .

ε. The identification of the above-analyzed models was based on a set of experimental
data corresponding to six strain rates, five temperatures, and strains ranging from 0 to 0.7.
To test the training capacity and reliability of these models, we propose here to perform
the training of the models on only five strain rates by voluntarily omitting the strain rate
.
ε = 1 s−1 or .

ε = 5 s−1.
Thus, one of the omitted strain rates ( .

ε = 1 s−1) is within the range of strain rates
for model identification (0.001 s−1 to 5 s−1), and therefore, we can test the ability of the
models to interpolate the results from the other five strain rates and be able to quantify
any deviation from experimental values. On the other hand, since the omitted strain rate
( .
ε = 5 s−1) is outside the range of strain rates for the model identification (0.001 s−1 to 2 s−1),

we tested the ability of the models to extrapolate the results and quantify deviations with
the experimental values.

4.1. Interpolation Validation

For interpolation validation, the chosen omitted strain rate was .
ε = 1 s−1, and

those used for identification (or training for the ANN) were the five others, i.e.,
.
ε = [0.001, 0.01, 0.1, 2, 5] s−1. All models were re-identified from the same experimental
data on a dataset corresponding to five strain rates and five temperatures.

Figure 14 shows a comparison, for the strain rate .
ε = 1 s−1, of the flow stresses σy

calculated by the models (as a line) and the experimental results (as dots) for the five
analytical models and the neural network.

Table 8 shows the EMAR and ERMS deviations between the different models and the
experimental data calculated either for the five identified strain rates (lines referred as id.
.
ε), the six strain rates (lines referred as all .

ε), or only on the strain rate .
ε = 1 s−1.

Table 8. Accuracy coefficients of interpolation for all models with .
ε = 1 s−1.

Strain Rate Coefficients JC MZA HS AR PTM ANN

id. .
ε

EMAR(%) 13.79 20.22 8.57 3.96 5.10 0.70
ERMS(MPa) 11.83 19.00 3.97 2.29 4.73 0.38

.
ε = 1 s−1 EMAR(%) 14.87 27.79 3.74 1.46 3.16 2.47

ERMS(MPa) 12.02 23.67 3.10 1.46 2.65 2.77

all .
ε

EMAR(%) 14.42 28.90 7.55 3.45 4.90 0.96
ERMS(MPa) 11.86 19.86 3.84 2.17 4.45 1.18
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Figure 14. Comparison between the experimental (dots) and predicted (lines) flow stresses σy for
.
ε = 1 s−1.

In Figure 14, it can be seen that the first two models (JC and MZA) presented in this
study do not have the ability to reproduce the behavior of the material for the strain rate
.
ε = 1 s−1. Overall, the JC model gives better results than the MZA model for .

ε = 1 s−1,
which is reflected in Table 8 by a lower value of the EMAR and ERMS for the JC than for
the MZA model. Nevertheless, these values are higher than 10% for the JC model and
20% for the MZA model, which reflects the poor ability of these models to correctly model
the behavior of this material. This finding is in agreement with the previous findings of
Sections 3.1 and 3.2, which showed the inability of these models to take into account the
softening of the behavior visible at low strain rates and low temperatures.

From a general appearance point of view, the other four models, HS, AR, PTM, and
ANN, give globally similar results, with a higher reliability for the AR and ANN models
compared to the other two models. Table 8 shows a quantitative comparison of the EMAR
and ERMS for three different cases: the 5 identified strain rates, only the strain rate .

ε = 1 s−1,
and all 6 strain rates for these six models. It appears from this table that, while the two
models, AR and ANN, give equivalent (and excellent) results concerning the values of the
EMAR and ERMS for the strain rate .

ε = 1 s−1, the ANN model gives a globally better result
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across the entire strain rate spectrum, with values of EMAR = 0.96% and ERMS = 1.18 MPa,
respectively, that is to say, values that are approximately 2- to 3-times lower for the ANN
model than for the AR model.

This shows the superior reliability of the ANN model over the five analytical models
presented in this study both in terms of the interpolation capability of the model and of the
overall behavior.

4.2. Extrapolation Validation

For the validation of the models’ ability to extrapolate, the omitted strain rate chosen
was .

ε = 5 s−1 and those used for identification were .
ε = [0.001, 0.01, 0.1, 1, 2] s−1. The

strain rate omitted in this analysis, therefore, has the highest value, which restricts the
training domain.

In this new identification configuration, Figure 15 shows a comparison, for strain rate
.
ε = 5 s−1, of the flow stresses σy computed by the models (as a line) and the experimental
results (as dots) for the five analytical models and the neural network.

Figure 15. Comparison between the experimental (dots) and predicted (lines) flow stresses σy for
.
ε = 5 s−1.
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Table 9 shows the EMAR and ERMS deviations between the different models and the
experimental data calculated either for the 5 identified strain rates (lines referred as id. .

ε),
the 6 strain rates (lines referred as all .

ε), or only on the strain rate .
ε = 5 s−1.

Table 9. Accuracy coefficients of extrapolation for all models with .
ε = 5 s−1.

Strain
Rate Coefficients JC MZA HS AR PTM ANN

id. .
ε

EMAR(%) 13.09 19.09 7.30 4.03 4.34 0.61
ERMS(MPa) 9.86 16.26 3.36 2.32 3.63 0.32

.
ε = 5 s−1 EMAR(%) 20.16 24.27 7.73 3.53 11.46 3.87

ERMS(MPa) 20.73 25.95 7.83 4.02 12.91 5.84

all .
ε

EMAR(%) 15.12 25.87 7.12 3.86 5.34 1.09
ERMS(MPa) 12.36 18.24 4.43 2.68 6.23 2.40

As presented in the previous section regarding the interpolation capability of the mod-
els, in Figure 15, it can be seen that the first two models, JC and MZA, in this study again do
not have the ability to correctly reproduce the material behavior for the strain rate .

ε = 5 s−1.
The JC model performs better than the MZA model for .

ε = 5 s−1, which is reflected in
Table 9 by a lower value of the EMAR and ERMS for JC than for MZA. Nevertheless, these
values are too large for proper use. Once again, it is the inability of these models to take
into account the softening of the behavior at low strain rates and low temperatures that is
at the origin of these values.

The other four models, HS, AR, PTM, and ANN, give better results with higher
reliability for the AR and ANN models than for the other two models. Table 9 shows a
comparison over all strain rates and over .

ε = 5 s−1 for these six models. The HS model
performs worse in extrapolation than the AR and ANN models, while the PTM model is
relegated to the last position in this ranking with values of the EMAR and ERMS greater than
10% for the strain rate .

ε = 5 s−1. The two models, AR and ANN, give the best results for
the values of the EMAR and ERMS for the strain rate .

ε = 5 s−1. This time, the AR model
performs a little better on the .

ε = 5 s−1 strain rate as compared to the ANN model, but the
latter gives a globally better result across the entire strain rate spectrum, with values of
EMAR = 1.09% and ERMS = 2.40 MPa, respectively.

We can, therefore, conclude from this part of the study that the AR model is the
best-performing of the five analytical models presented, which is in agreement with the fact
that it is widely used for thermomechanical processing, but the ANN model approach has
advantages over the AR model approach in that, overall, the ANN model is more faithful
to the experimental data than is the AR model, for all strain rates.

5. Conclusions

Experimental tests were performed on a Gleeble thermomechanical simulator for a
modified medium carbon alloy to investigate the applicability and predictive accuracy
of five analytical models and an artificial neural network model over a range of strains
(0.0–0.7), strain rates (0.001 s−1–5 s−1), and temperatures (1050 ◦C–1250 ◦C). The analytical
models selected for this study were the Johnson–Cook (JC) model [17], the Modified-Zerilli–
Armstrong (MZA) model [48], the Hansel–Spittle (HS) model [49], the Arrhenius (AR)
model [52], and the PTM model [39]. The ANN model selected was the one introduced by
Pantalé et al. [16]. An analysis of the data from the Gleeble trials and a comparison of the
six models proposed in this study against the experiments led to the following conclusions.

From an experimental point of view, it appeared from the tests carried out that the
flow stress σy increased with a decrease of the temperature T and an increase of the strain
rate .

ε due to the competitive appearance of the dynamic softening and work hardening
mechanisms. The dynamic recrystallization (DRX) phenomenon, introduced through the
difference between the maximum and permanent strains, showed a partially complete
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microstructure evolution. Thus, at high strain rates, it is difficult to visualize the DRX
phenomenon on the flow curves due to the sensitivity of this phenomenon to the strain
rate. A study focused on an in-depth analysis of the microstructure of this steel alloy, and
its impact on mechanical properties is currently underway.

Five analytical models and an artificial-neural-network-based model were identified
for this alloy. Among the analytical models, the JC and MZA models proved inadequate to
reproduce the behavior of this material, while the HS, PTM, and AR models showed their
capabilities, presenting an acceptable EMAR error (from 3.5% to 7.7%). The AR model (with
a 3.56% error) proved superior to the other two, thus justifying its use in thermomechanical
processes. The ANN model was largely more accurate than the analytical models in
predicting the flow stress σy of medium carbon, with an EMAR = 0.62%.

To test the performance of each proposed model, a study was conducted to evaluate
the interpolation and extrapolation capability of the developed models. In the case of
interpolation, the HS, PTM, and AR models correlated well with the experiment, but the
ANN model was superior, with an error factor five-times lower than the AR model. For
data extrapolation, the HS, PTM, and AR models again correlated well with the experiment,
but the ANN model once again performed better globally.

Identifying the parameters of an ANN model from experimental data requires more
time than identifying the parameters of analytical models (about 40 minutes on a work-
ing laptop), but as shown by Pantalé et al. [16,44], implementing an ANN model in a
computational code is straightforward.
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Appendix A

We report hereafter the computing process and the 180 coefficients of the artificial
neural network ANN-3-15-7-1-sigmoid model used in Section 3.6. In order to use this
model, we describe hereafter the details of the procedure to compute the flow stress σy

from the input variables εp, .
ε, and T. This process can be decomposed into three phases:

• We first have to normalize the input values of the ANN xi within the range [0, 1]
to avoid an ill-conditioned system, as presented by many other authors in the liter-
ature [41,57]. Therefore, the three components of the input vector −→x are obtained
from the plastic strain εp, the plastic strain rate .

εp, and the temperature T using the
following expressions:

−→x =


x1 = εp−[εp ]min

[εp ]max−[εp ]min

x2 = ln(
.
ε/

.
ε0)−[ln(

.
ε/

.
ε0)]min

[ln(
.
ε/

.
ε0)]max−[ln(

.
ε/

.
ε0)]min

x3 = T−[T]min
[T]max−[T]min

(A1)

where [ ]min and [ ]max are the boundaries of the range of the corresponding field:
εp ∈ [0.0, 0.7],

.
ε ∈

[
0.001 s−1, 5.0 s−1], T ∈ [1050 ◦C, 1250 ◦C], and σ ∈ [1.311 MPa,

153.739 MPa]. The reference strain rate is .
ε0 = 0.001 s−1.

• Then, we compute the output s of the ANN from the input vector −→x using the
following three equations:

−→y 1 =
[
1 + exp

(
−w1 ·−→x −

−→
b 1

)]−1
(A2)

−→y 2 =
[
1 + exp

(
−w2 ·−→y 1 −

−→
b 2

)]−1
(A3)

s = −→w T ·−→y 2 + b (A4)

• Finally, the flow stress σy can be obtained from the output s of the ANN using the
following equation:

σy = ([σ]max − [σ]min)s + [σ]min (A5)

Conforming to the computing process proposed by Equations (A1)–(A5), we report
hereafter the 180 coefficients of the ANN-3-15-7-1-sigmoid model used in Section 3.6. The
weight matrix for the first hidden layer w1 is a 15× 3 matrix:

w1 =



2.2206 −3.7555 −6.7246
−4.8598 5.7431 −5.8538

2.3099 3.3325 −5.1795
2.0475 0.8006 −1.4259
8.8358 −6.0362 0.8226
−1.2613 −0.9274 −2.3725
−0.3561 6.5032 −10.7573
−11.7226 −2.0455 1.2248

3.1066 26.5580 18.6540
−0.5150 −5.6922 1.0104
−6.4755 8.4888 −2.4459
−1.8791 −0.5380 2.2295
−6.0206 1.2776 0.2169

0.2619 −4.7974 −1.1282
−27.1456 −0.5327 −0.5303


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The biases of the first hidden layer
−→
b1 is a 15-component vector:

−→
b 1 =



5.9164
−1.9074
−2.6837
−1.0954
−0.9509

3.1682
−4.3964

0.6343
−5.0676

2.0228
1.1267
−0.9671
−0.6263

2.3110
−0.3037


The weight matrix for the second hidden layer w2 is a 7× 15 matrix:

wT
2 =



−0.5783 1.2724 0.5747 0.6449 −4.2203 −0.2380 0.2591
−0.4852 5.2807 0.8888 −8.2324 −2.0075 −0.6474 −1.0787

4.4499 −0.0137 0.1657 0.3198 4.9765 −1.2503 0.8219
1.7571 0.7730 0.0208 −1.3316 −0.8945 −0.7284 −0.1831
−1.0866 0.1330 −0.8615 −0.1283 0.2218 −0.1772 −2.7458
−0.3925 1.3994 0.0630 −1.8397 −1.1047 −1.9839 0.5767
−0.2121 0.9977 1.2028 −9.6525 0.5520 0.1062 −0.0409
−1.1518 −1.6402 −4.1501 −1.0759 0.4749 −2.8350 0.9225
−1.1453 −0.2173 −0.1382 0.8264 −0.5125 0.1882 −0.8654
−4.3301 −0.3711 −7.4305 3.5926 −9.6217 −1.2375 1.6171

2.3907 −1.0085 −0.8828 −1.1891 0.9947 1.1178 −1.0953
−1.5955 1.6313 0.4916 0.1906 −1.9216 −1.4140 1.3827
−1.6985 1.4277 −3.4462 −8.3777 −1.2132 −1.2158 2.8512
−1.9954 −2.0159 −8.3455 −0.5205 0.2942 −1.3337 0.2026

4.3040 −0.7164 −1.0859 3.4294 −23.8003 12.5859 7.3721


The biases of the second hidden layer

−→
b2 is a seven-component vector:

−→
b 2 =



0.7534
0.9473
0.6055
−0.7793
−1.0305
−1.5779
−0.1471


The weight vector for the output layer −→w is a seven-component vector:

−→w =



0.1920
0.3406
0.3839
−0.2880

1.2047
−1.4126
−0.2215


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The bias of the output layer b is a scalar:

b = 0.1178

References
1. Chadha, K.; Shahriari, D.; Tremblay, R.; Bhattacharjee, P.P.; Jahazi, M. Deformation and recrystallization behavior of the cast

structure in large size, high strength steel ingots: Experimentation and modeling. Metall. Mater. Trans. A 2017, 48, 4297–4313.
[CrossRef]

2. Chadha, K.; Ahmed, Z.; Aranas, C., Jr.; Shahriari, D.; Jahazi, M. Influence of strain rate on dynamic transformation of austenite in
an as-cast medium-carbon low-alloy steel. Materialia 2018, 1, 155–167. [CrossRef]

3. Murugesan, M.; Jung, D.W. Two flow stress models for describing hot deformation behavior of AISI-1045 medium carbon steel at
elevated temperatures. Heliyon 2019, 5, e01347. [CrossRef]

4. Murugesan, M.; Sajjad, M.; Jung, D.W. Hybrid machine learning optimization approach to predict hot deformation behavior of
medium carbon steel material. Metals 2019, 9, 1315. [CrossRef]

5. Chadha, K.; Tian, Y.; Bocher, P.; Spray, J.G.; Aranas, C., Jr. Microstructure evolution, mechanical properties and deformation
behavior of an additively manufactured maraging steel. Materials 2020, 13, 2380. [CrossRef]

6. Sripada, J.; Tian, Y.; Chadha, K.; Saha, G.; Jahazi, M.; Spray, J.; Aranas, C., Jr. Effect of hot isostatic pressing on microstructural
and micromechanical properties of additively manufactured 17–4PH steel. Mater. Charact. 2022, 192, 112174. [CrossRef]

7. Tian, Y.; Chadha, K.; Aranas, C. Deformation-Induced Strengthening Mechanism in a Newly Designed L-40 Tool Steel Manufac-
tured by Laser Powder Bed Fusion. Acta Metall. Sin. (Engl. Lett.) 2022, 36, 21–34. [CrossRef]

8. Tavakoli, M.; Mirzadeh, H.; Zamani, M. Ferrite recrystallisation and intercritical annealing of cold-rolled low alloy medium
carbon steel. Mater. Sci. Technol. 2019, 35, 1932–1941. [CrossRef]

9. Ebrahimi, G.; Momeni, A.; Kazemi, S.; Alinejad, H. Flow curves, dynamic recrystallization and precipitation in a medium carbon
low alloy steel. Vacuum 2017, 142, 135–145. [CrossRef]

10. Shi, D.; Zhang, F.; He, Z.; Zhan, Z.; Gao, W.; Li, Z. Constitutive equation and dynamic recovery mechanism of high strength cast
Al-Cu-Mn alloy during hot deformation. Mater. Today Commun. 2022, 33, 104199. [CrossRef]

11. Zeng, S.; Hu, S.; Peng, B.; Hu, K.; Xiao, M. The constitutive relations and thermal deformation mechanism of nickel aluminum
bronze. Mater. Des. 2022, 220, 110853. [CrossRef]

12. Rudra, A.; Das, S.; Dasgupta, R. Constitutive modeling for hot deformation behavior of Al-5083+ SiC composite. J. Mater. Eng.
Perform. 2019, 28, 87–99. [CrossRef]

13. Jia, B.; Chen, P.; Rusinek, A.; Zhou, Q. Thermo-viscoplastic behavior of DP800 steel at quasi-static, intermediate, high and
ultra-high strain rates. Int. J. Mech. Sci. 2022, 226, 107408. [CrossRef]

14. Costa, S.L.; Mendonça, J.P.; Peixinho, N. Study on the impact behaviour of a new safety toe cap model made of ultra-high-strength
steels. Mater. Des. 2016, 91, 143–154. [CrossRef]

15. Rudnytskyj, A.; Simon, P.; Jech, M.; Gachot, C. Constitutive modelling of the 6061 aluminium alloy under hot rolling conditions
and large strain ranges. Mater. Des. 2020, 190, 108568. [CrossRef]

16. Pantalé, O.; Tize Mha, P.; Tongne, A. Efficient implementation of nonlinear flow law using neural network into the Abaqus
Explicit FEM code. Finite Elem. Anal. Des. 2022, 198, 103647. [CrossRef]

17. Johnson, G.R.; Cook, W.H. A constitutive model and data for materials subjected to large strains, high strain rates, and high
temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983;
pp. 541–547.

18. Chadha, K.; Shahriari, D.; Jahazi, M. An approach to develop Hansel–Spittel constitutive equation during ingot breakdown
operation of low alloy steels. In Frontiers in Materials Processing, Applications, Research and Technology; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 239–246. [CrossRef]

19. Zerilli, F.J.; Armstrong, R.W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys.
1987, 61, 1816–1825. [CrossRef]

20. Jia, Z.; Guan, B.; Zang, Y.; Wang, Y.; Lei, M. Modified Johnson–Cook model of aluminum alloy 6016-T6 sheets at low dynamic
strain rates. Mater. Sci. Eng. A 2021, 820, 141565. [CrossRef]

21. Liu, X.; Ma, H.; Fan, F. Modified Johnson–Cook model of SWRH82B steel under different manufacturing and cold-drawing
conditions. J. Constr. Steel Res. 2021, 186, 106894. [CrossRef]

22. Jia, B.; Zhang, Y.; Rusinek, A.; Xiao, X.; Chai, R.; Gu, G. Thermo-viscoplastic behavior and constitutive relations for 304 austenitic
stainless steel over a wide range of strain rates covering quasi-static, medium, high and very high regimes. Int. J. Impact Eng.
2022, 164, 104208. [CrossRef]

23. Bai, J.; Huo, Y.; He, T.; Bian, Z.; Ren, X.; Du, X. Comparison of Five Different Models Predicting the Hot Deformation Behavior of
EA4T Steel. J. Mater. Eng. Perform. 2022, 31, 8169–8182. . [CrossRef]

24. Zhu, H.; Ou, H. Constitutive modelling of hot deformation behaviour of metallic materials. Mater. Sci. Eng. A 2022, 832, 142473.
[CrossRef]

25. Sim, K.H.; Ri, Y.C.; Jo, C.H.; Kim, O.J.; Kim, R.S.; Pak, H. Modified Zerilli–Armstrong and Khan-Huang-Liang constitutive models
to predict hot deformation behavior in a powder metallurgy Ti-22Al-25Nb alloy. Vacuum 2022, 210, 111749. . [CrossRef]

http://doi.org/10.1007/s11661-017-4177-8
http://dx.doi.org/10.1016/j.mtla.2018.04.006
http://dx.doi.org/10.1016/j.heliyon.2019.e01347
http://dx.doi.org/10.3390/met9121315
http://dx.doi.org/10.3390/ma13102380
http://dx.doi.org/10.1016/j.matchar.2022.112174
http://dx.doi.org/10.1007/s40195-022-01461-z
http://dx.doi.org/10.1080/02670836.2019.1655862
http://dx.doi.org/10.1016/j.vacuum.2017.05.010
http://dx.doi.org/10.1016/j.mtcomm.2022.104199
http://dx.doi.org/10.1016/j.matdes.2022.110853
http://dx.doi.org/10.1007/s11665-018-3813-9
http://dx.doi.org/10.1016/j.ijmecsci.2022.107408
http://dx.doi.org/10.1016/j.matdes.2015.11.082
http://dx.doi.org/10.1016/j.matdes.2020.108568
http://dx.doi.org/10.1016/j.finel.2021.103647
http://dx.doi.org/10.1007/978-981-10-4819-7_20
http://dx.doi.org/10.1063/1.338024
http://dx.doi.org/10.1016/j.msea.2021.141565
http://dx.doi.org/10.1016/j.jcsr.2021.106894
http://dx.doi.org/10.1016/j.ijimpeng.2022.104208
http://dx.doi.org/10.1007/s11665-022-06828-y
http://dx.doi.org/10.1016/j.msea.2021.142473
http://dx.doi.org/10.1016/j.vacuum.2022.111749


Metals 2023, 13, 633 27 of 28

26. Li, H.Y.; Wang, X.F.; Duan, J.Y.; Liu, J.J. A modified Johnson Cook model for elevated temperature flow behavior of T24 steel.
Mater. Sci. Eng. A 2013, 577, 138–146. [CrossRef]

27. Zhang, D.N.; Shangguan, Q.Q.; Xie, C.J.; Liu, F. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6
aluminum alloy. J. Alloys Compd. 2015, 619, 186–194. [CrossRef]

28. Zhou, Q.; Ji, C.; Zhu, M.Y. Research on several constitutive models to predict the flow behaviour of GCr15 continuous casting
bloom with heavy reduction. Mater. Res. Express 2019, 6, 1265f2. [CrossRef]

29. Ovesy, M.; Aeschlimann, M.; Zysset, P.K. Explicit finite element analysis can predict the mechanical response of conical implant
press-fit in homogenized trabecular bone. J. Biomech. 2020, 107, 109844. [CrossRef]

30. Niu, D.; Zhao, C.; Li, D.; Wang, Z.; Luo, Z.; Zhang, W. Constitutive modeling of the flow stress behavior for the hot deformation
of Cu-15Ni-8Sn alloys. Front. Mater. 2020, 7, 577867. [CrossRef]

31. Lennon, A.M.; Ramesh, K.T. On the performance of modified Zerilli–Armstrong constitutive model in simulating the metal-cutting
process. J. Manuf. Process. 2017, 28, 253–265. [CrossRef]

32. Cheng, C.; Mahnken, R. A modified Zerilli–Armstrong model as the asymmetric visco-plastic part of a multi-mechanism model
for cutting simulations. Arch. Appl. Mech. 2021, 91, 3869–3888. [CrossRef]

33. Gurusamy, M.; Palaniappan, K.; Murthy, H.; Rao, B.C. A Finite Element Study of Large Strain Extrusion Machining Using
Modified Zerilli–Armstrong Constitutive Relation. J. Manuf. Sci. Eng. 2021, 143, 101004. [CrossRef]

34. Derazkola, H.A.; García Gil, E.; Murillo-Marrodán, A.; Méresse, D. Review on Dynamic Recrystallization of Martensitic Stainless
Steels during Hot Deformation: Part I—Experimental Study. Metals 2021, 11, 572. [CrossRef]

35. Wang, Y.; Yang, B.; Gao, M.; Guan, R. Deformation behavior and dynamic recrystallization during hot compression in homoge-
nized Al–6Mg–0.8 Mn alloys. Mater. Sci. Eng. A 2022, 840, 142953. [CrossRef]

36. Miao, J.; Sutton, S.; Luo, A.A. Deformation microstructure and thermomechanical processing maps of homogenized AA2070
aluminum alloy. Mater. Sci. Eng. A 2022, 834, 142619. [CrossRef]

37. Rudnytskyj, A.; Varga, M.; Krenn, S.; Vorlaufer, G.; Leimhofer, J.; Jech, M.; Gachot, C. Investigating the relationship of hardness
and flow stress in metal forming. Int. J. Mech. Sci. 2022, 232, 107571. [CrossRef]

38. Ji, H.; Duan, H.; Li, Y.; Li, W.; Huang, X.; Pei, W.; Lu, Y. Optimization the working parameters of as-forged 42CrMo steel
by constitutive equation-dynamic recrystallization equation and processing maps. J. Mater. Res. Technol. 2020, 9, 7210–7224.
[CrossRef]

39. Tize Mha, P.; Tongne, A.; Pantalé, O. A generalized nonlinear flow law based on modified Zerilli–Armstrong model and its implementa-
tion into Abaqus/Explicit FEM Code. World J. Eng. Technol. 2022, 10, 334–362. . [CrossRef]

40. Wu, Z.; Liu, Z.; Li, L.; Lu, Z. Experimental and neural networks analysis on elevated-temperature mechanical properties of
structural steels. Mater. Today Commun. 2022, 32, 104092. [CrossRef]

41. Stoffel, M.; Bamer, F.; Markert, B. Deep convolutional neural networks in structural dynamics under consideration of viscoplastic
material behaviour. Mech. Res. Commun. 2020, 108, 103565. [CrossRef]

42. Ashtiani, H.R.; Shahsavari, P. A comparative study on the phenomenological and artificial neural network models to predict hot
deformation behavior of AlCuMgPb alloy. J. Alloys Compd. 2016, 687, 263–273. [CrossRef]

43. Stoffel, M.; Bamer, F.; Markert, B. Neural network based constitutive modeling of nonlinear viscoplastic structural response.
Mech. Res. Commun. 2019, 95, 85–88. [CrossRef]

44. Pantalé, O. Development and Implementation of an ANN Based Flow Law for Numerical Simulations of Thermo-Mechanical
Processes at High Temperatures in FEM Software. Algorithms 2023, 16, 56. [CrossRef]

45. Galos, J.; Das, R.; Sutcliffe, M.P.; Mouritz, A.P. Review of balsa core sandwich composite structures. Mater. Des. 2022, 221, 111013.
[CrossRef]

46. Phaniraj, M.P.; Lahiri, A.K. The applicability of neural network model to predict flow stress for carbon steels. J. Mater. Process.
Technol. 2003, 141, 219–227. [CrossRef]

47. Zhu, Y.; Chen, Y.; Hou, D.; Wang, Z. Thermal effect on dislocation interactions in magnesium alloy. Materialia 2022, 26, 101579.
[CrossRef]

48. Samantaray, D.; Mandal, S.; Borah, U.; Bhaduri, A.K.; Sivaprasad, P.V. A thermo-viscoplastic constitutive model to predict
elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel. Mater. Sci. Eng. A 2009, 526, 1–6. [CrossRef]

49. Hensel, A.; Spittel, T. Kraft- und Arbeitsbedarf Bildsamer Formgebungsverfahren; Deutscher Verlag für Grundstoffindustrie: Leipzig,
Germany, 1978.

50. El Mehtedi, M.; Spigarelli, S.; Gabrielli, F.; Donati, L. Comparison Study of Constitutive Models in Predicting the Hot Deformation
Behavior of AA6060 and AA6063 Aluminium Alloys. Mater. Today Proc. 2015, 2, 4732–4739. [CrossRef]

51. Newville, M.; Stensitzki, T.; Allen, D.B.; Rawlik, M.; Ingargiola, A.; Nelson, A. LMFIT: Non-Linear Least-Square Minimization and
Curve-Fitting for Python; Astrophysics Source Code Library: 2016; ascl:1606.014. Available online: https://ascl.net (accessed on
9 February 2023).

52. Sellars, C.; McTegart, W. On the mechanism of hot deformation. Acta Metall. 1966, 14, 1136–1138. [CrossRef]
53. Zener, C.; Hollomon, J.H. Effect of Strain Rate Upon Plastic Flow of Steel. J. Appl. Phys. 1944, 15, 22–32. [CrossRef]
54. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A

System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, Savannah, GA, USA, 2–4 November 2016; USENIX Association: Berkeley, CA, USA, 2016; pp. 265–283.

http://dx.doi.org/10.1016/j.msea.2013.04.041
http://dx.doi.org/10.1016/j.jallcom.2014.09.002
http://dx.doi.org/10.1088/2053-1591/ab52c2
http://dx.doi.org/10.1016/j.jbiomech.2020.109844
http://dx.doi.org/10.3389/fmats.2020.577867
http://dx.doi.org/10.1016/j.jmapro.2017.06.011
http://dx.doi.org/10.1007/s00419-021-01982-6
http://dx.doi.org/10.1115/1.4050652
http://dx.doi.org/10.3390/met11040572
http://dx.doi.org/10.1016/j.msea.2022.142953
http://dx.doi.org/10.1016/j.msea.2022.142619
http://dx.doi.org/10.1016/j.ijmecsci.2022.107571
http://dx.doi.org/10.1016/j.jmrt.2020.04.078
http://dx.doi.org/10.4236/wjet.2022.102021
http://dx.doi.org/10.1016/j.mtcomm.2022.104092
http://dx.doi.org/10.1016/j.mechrescom.2020.103565
http://dx.doi.org/10.1016/j.jallcom.2016.04.300
http://dx.doi.org/10.1016/j.mechrescom.2019.01.004
http://dx.doi.org/10.3390/a16010056
http://dx.doi.org/10.1016/j.matdes.2022.111013
http://dx.doi.org/10.1016/S0924-0136(02)01123-8
http://dx.doi.org/10.1016/j.mtla.2022.101579
http://dx.doi.org/10.1016/j.msea.2009.08.009
http://dx.doi.org/10.1016/j.matpr.2015.10.006
https://ascl.net
http://dx.doi.org/10.1016/0001-6160(66)90207-0
http://dx.doi.org/10.1063/1.1707363


Metals 2023, 13, 633 28 of 28

55. Kingma, D.P.; Lei, J. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980. https://doi.org/10.48550/arXiv.
1412.6980.

56. Liang, P.; Kong, N.; Zhang, J.; Li, H. A Modified Arrhenius-Type Constitutive Model and its Implementation by Means of the
Safe Version of Newton–Raphson Method. Steel Res. Int. 2022, 94, 2200443. [CrossRef]

57. Lin, Y.; Zhang, J.; Zhong, J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel.
Comput. Mater. Sci. 2008, 43, 752–758. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.1002/srin.202200443
http://dx.doi.org/10.1016/j.commatsci.2008.01.039

	Introduction
	Materials and Experiments
	Experimental Procedure
	Compression Tests' Results

	Identification of Constitutive Flow Laws' Parameters
	The Johnson–Cook Model
	The Modified-Zerilli–Armstrong Model
	The Hansel–Spittel Model
	The Arrhenius Model
	The PTM Model
	The Artificial Neural Network Model
	Comparison of Analytical and ANN Models

	Interpolation and Extrapolation Capability of Models
	Interpolation Validation
	Extrapolation Validation

	Conclusions
	Appendix A
	References

