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Abstract: Ti-Co binary intermetallic compounds have attracted lots of attention due to their excellent
toughness and interesting anomalous ductility. However, systematic theoretical calculations of alloy
properties of different Ti-Co compounds have not been properly investigated yet. In this work, first-
principles calculations were performed to study the phase stability, mechanical properties bonding
characteristic and slip properties of five Ti-Co binary compounds. The negative enthalpy of formation
and cohesive energy showed that all the Ti-Co binary compounds were thermodynamically stable,
and TiCo is the most mechanically stable one. According to the elastic stability criterion, these
compounds are also mechanically stable. In addition, the mechanical anisotropy of Ti-Co compounds
was analyzed by the anisotropy index and the three-dimensional surface of Young’s modulus, where
Ti2Co shows the strongest anisotropy, and TiCo2(h) has weakest anisotropy. The phonon calculations
of these compounds also show that all five Ti-Co compounds are thermodynamically stable. The
density of states (DOS) and differential charge density distributions were analyzed to identify the
chemical bonding characteristics of the Ti-Co binary compounds, which exhibit metal and covalent-
like bonding and different magnetic properties. Finally, the plastic deformation mechanism of Ti-Co
compounds was understood by calculating the generalized stacking fault energy (GSFE) of different
slip systems. The anomalous ductility of TiCo and TiCo3 mainly arises from the complex slip system
and the lower slip energy barrier of the compounds.

Keywords: Ti-Co binary intermetallic compounds; phase stability; phonon properties; slip system;
first-principles

1. Introduction

Ti-Co binary intermetallic compounds have garnered extensive attention in the medi-
cal and aerospace industries due to their good oxidation resistance at high temperatures,
corrosion resistance, unique shape memory properties and good phase stability [1–7]. Ti-Co
alloys have been used extensively as implant alloys in dentistry and medicine for many
years [5,7,8]. Thus, Ti-based alloys with additions of cobalt show more strength and have
lower melting temperature, which can alleviate many casting problems [9]. The addition
of cobalt improves the corrosion resistance of titanium and its mechanical properties [10].
Ternary (Ti-Co)-based alloys have also been used in many applications [11,12]. Ti-Co alloys
are frequently used as coatings on other titanium alloys such as Ti6Al4V [13]. Such surface
modifications allow the improved durability of Ti6Al4V alloy due to the formation of
hard Ti-Co intermetallic particles. Ti-Co thin films are also used as diffusion barriers or
as an element in integrated circuits [14,15]. In high-temperature Co-based superalloys,
Ti-Co compounds are regarded as the only thermodynamically stable phases, because
Ti in Co-based superalloys can stabilize the γ′ phase at high temperatures, thereby im-
proving the high-temperature oxidation resistance and mechanical properties [2–4,6,16,17].
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Recently, many experimental and theoretical studies have been conducted to study the
phase diagram, preparation, thermodynamics and mechanical properties of Ti-Co binary
compounds [18–24]. Murray [18] systematically studied the phase diagram of Ti-Co. Cac-
ciamani et al. [24] and Davydov et al. [20] developed a thermodynamic database of Ti-Co
binary compounds system, and Xue et al. [21] prepared Ti-Co binary compounds by laser
melting deposition. According to the phase diagram [18,24], there are five intermetallic
compounds in the Ti-Co binary system: Ti2Co, TiCo, Laves phase C15 (TiCo2), Laves phase
C36 (TiCo2) and TiCo3. In terms of theoretical calculation, the crystal structure, electronic
structure and elastic properties of TiCo and TiCo3 have been extensively studied [25–29].
However, there have been no studies on Ti2Co, TiCo2(c) and TiCo2(h), and comparisons
of the phase stability, mechanical properties, thermodynamics and bonding characteristic
of these compounds still are lacking. For Ti-Co binary compounds, no studies have been
carried out to understand the thermodynamic stability of the structure of the phonon and
to study the mechanical properties of the phase structure by calculating the stacking fault
energy of different slip systems. The phonon properties of alloys provide information
on the vibrations of the lattice and it allows us to acquire a better understanding of the
microscopic properties of the material [30]. The GSFE surface quantifies the energy per
unit area required to shear a crystal on a potential slip plane parallel to the displacement
vector, which provides a significant insight into the mechanical properties [31]. The study
of phonons and GSFE allows the macroscopic properties of Ti-Co binary compounds to be
understood at the microscopic level.

Therefore, the phase stability, mechanical properties, bonding characteristics and
slip properties of Ti-Co binary compounds were investigated using the first-principles
calculation in this study. The phonon properties of Ti-Co binary compounds were studied
by the frozen phonon method, and the generalized stacking fault energy (GSFE) was also
calculated by constructing different structural models of the alloys. The results of this work
can provide useful theoretical basis and prediction information for designing new Ti-Co
alloys in the future.

2. Computational Methods

First-principles calculations were carried out using density functional theory (DFT)
via the Vienna Ab initio simulation package (VASP) [32,33] with the projection augmented
plane wave (PAW) [34] method. The Perdew–Bourke–Emzerhof (PBE) [35] pseudopotential
in the form of generalized gradient approximation (GGA) was used to treat the exchange
correlation energy between electrons in Ti-Co alloy system. The valence electrons of Ti and
Co are 3p63d24s2 and 3s23p63d74s2, respectively. According to the convergence test, the
cutoff energy was set to 520eV. The equilibrium crystal structure and atomic positions of
each compound were relaxed using the conjugate gradient algorithm. The convergence
criteria of force and energy were 0.01 eV/Å and 10−6 eV, respectively. According to the
Ti-Co phase diagram [18,24], there are eight phases: hexagonal (α-Ti and TiCo2(h)), face-
centered cubic (Ti2Co, TiCo2(c) and TiCo3) and body-centered cubic (β-Ti, TiCo and α-Co)
lattice, whose crystal structures are shown in Figure 1. The Monkhorst–Pack scheme was
used for k-point sampling in the first irreducible Brillouin zone [36]: 12× 12× 5, 6× 6× 1,
4× 4× 4, 6× 6× 6, 8× 8× 8, 10× 10× 10, 8× 8× 8, 9× 9× 9 for each phase.
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Figure 1. Crystal structures of Ti-Co binary compounds. 
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Figure 1. Crystal structures of Ti-Co binary compounds.

3. Results and Discussion
3.1. Lattice Parameters and Phase Stability

Table 1 shows the calculated lattice parameters, density, cohesive energy and enthalpy
of formation of five Ti-Co binary compounds and Ti and Co, and it is shown that the lattice
parameters match well with the experimental and other calculated ones, with an error of
within 2%. The formation enthalpy and cohesive energy were used to characterize the
stability of the alloy, and these were [37]:
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where ∆Hr
(
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)
is the formation enthalpy of TixCoy, Ecoh

(
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)
is the cohesive en-

ergy of TixCoy, Etol
(
Tix Aly

)
is the total energy of TixCoy, and Ecoh(Ti) and Ecoh(Co) are the

cohesive energies of Ti and Co crystals, respectively, and Eiso(Ti) and Eiso(Co) is the energy
of a single atom. The formation enthalpy and cohesive energy of all Ti-Co compounds
are negative, indicating that these compounds are inherently thermodynamically stable.
The formation enthalpy and cohesive energy as functions of the Co content are shown
in Figure 2. The enthalpy of formation decreases initially, and then increased with the
Co content, agreeing well with previous experimental results [20,23], while the cohesive
energy increases with Co content, indicating a decreasing bonding strength between Ti and
Co. Moreover, the lowest enthalpy of formation was −0.385 eV/atom for TiCo, signifying
that TiCo is the most stable one in thermodynamics, followed by Ti2Co.
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Table 1. Crystal structure, density, cohesive energy, enthalpy of formation of Ti-Co phases, Ti and Co.

Phase
Space
Group

Strukturbericht
Designation

Lattice Parameters ρ
(g/cm3)

Ecoh
(eV/atom)

∆Hr
(eV/atom)a (Å) b (Å) c (Å)

β-Ti Im3m A2 3.25 3.25 3.25 4.58 −6.88 0
3.31 a 3.31 a 3.31 a

α-Ti P63/mmc A3 2.94 2.94 4.65 4.62 −6.88 0
2.95 a 2.95 a 4.68 a

Ti2Co Fd3m 11.22 11.22 11.22 5.82 −6.53 −0.32
11.30 b 11.30 b 11.30 b

TiCo Pm3m B2 2.92 2.92 2.92 6.71 −6.45 −0.39
2.99 b 2.99 b 2.99 b

TiCo2(c) Fd3m C15 6.63 6.63 6.63 7.52 −6.20 −0.29
6.72 b 6.72 b 6.72 b

TiCo2(h) P63/mmc C36 4.70 4.70 15.29 7.48 −6.21 −0.29
4.73 b 4.73 b 15.43 b

TiCo3 Pm3m L12 3.60 3.60 3.60 7.95 −6.07 −0.27
3.61 b 3.61 b 3.61 b

α-Co Fm3m A1 3.52 3.52 3.52 8.97 0
3.55 c 3.55 c 3.55 c

a Exp. in [38]; b exp. in [24]; c exp. in [39].
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Figure 2. Calculated formation enthalpy and cohesive energy of intermetallic compounds in Ti-Co
binary system (adopted from [20,23]).

3.2. Elastic Properties

The elastic constants of the Ti-Co binary compounds phase were evaluated according
to the method adopted by Wang and Ye [40]. By applying a series of strain values (δ =±0.03,
±0.06, ±0.09, ±0.012, ±0.015 and ±0.018), the elastic constant was derived by quadratic
polynomial fitting to the resulting total energy change. Table 2 shows the elastic constants
(Cij) of five Ti-Co compounds. The calculated results were in good agreement with the pre-
vious experiments [26,41]. According to Bob-Huang’s lattice dynamics theory [42,43], the
crystals are mechanically stable only if C11 > 0, C44 > 0, C11 > |C12| and (C11 + 2C12) > 0
for cubic crystal systems (i.e., Ti2Co, TiCo, TiCo2(c), TiCo3) and C44 > 0, C11 > |C12| and
(C11 + 2C12)C33 > 2C2

13 for hexagonal systems (i.e., TiCo2(h)). Table 2 shows that the elastic
constants of the five compounds all met the corresponding stability criteria, indicating that
they are mechanically stable.
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Table 2. Calculated elastic constants of Ti-Co binary compounds.

Phases C11(GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)

Ti2Co 155.0 128.7 85.8
TiCo 220.1 137.9 70.3

203 a 129 a 68 a

TiCo2(c) 280.0 135.1 100.4
TiCo2(h) 358.8 131.7 118.9 366.0 93.8

TiCo3 236.2 149.1 113.7
228 a 148 a 129 a

a Exp. in [26].

Using the elastic matrices of single crystals, the bulk modulus (B), shear modulus
(G), Young’s modulus (E) and Poisson’s ratio (ν) of polycrystals can be calculated via the
Voigt–Reuss–Hill (VRH) scheme [44]. For cubic crystal systems [42]:

BV = BR =
C11 + 2C12

3
(3)

GV =
(C11 − C12 + 3C44)

5
(4)

GR =
5(C11 − C12)C44

4C44 + 3(C11 − C12)
(5)

For hexagonal crystal systems [42]:

BV =
2(C11 + C12) + 4C13 + C33

9
(6)

GV =
M + 12C44 + 12C66

30
(7)

BR =
C2

M
(8)

GR =
5
(
C2C44C66

)
2[3BVC44C66 + C2(C44 + C66)]

(9)

M = C11 + C12 + 2C33 − 4C13 (10)

C2 = (C11 + C12)C33 − 2C2
13 (11)

The bulk modulus (B), shear modulus (G), Young’s modulus (E) and Poisson’s ratio
(ν) can be calculated by [42]:

BVRH =
(BV + BR)

2
(12)

GVRH =
(GV + GR)

2
(13)

E =
9BVRHGVRH

3BVRH + GVRH
(14)

υ =
3BVRH − 2GVRH

2(3BVRH + GVRH)
(15)

where V and R were calculated using the Voigt and Reuss methods, respectively. After the
bulk and shear modulus are obtained, the Vickers hardness Hv can be estimated by the
empirical formula proposed by Chen [45]:

Hv = 2
(

K2G
)0.585

− 3 (16)
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where K is the Proctor ratio (i.e., GVRH/BVRH). The shear modulus (G), bulk modulus
(B), Young’s modulus (E), Poisson’s ratio (υ), B/G ratio and Vickers hardness (Hv) of the
compounds are shown in Table 3. For polycrystals, the bulk modulus of solids reflects the
atomic bonding strength [46]. TiCo2(h) has the highest bulk modulus, and Ti2Co has the
lowest bulk modulus, indicating that the TiCo2(h) exhibits the highest atomic bond strength.
The shear modulus represents the relationship between reversible deformation resistance
and shear stress [47]. TiCo2(h) has the highest shear modulus and exhibits the highest
reversible deformation resistance, followed by TiCo2(c), while Ti2Co presents the lowest
reversible deformation resistance. In general, compounds with small B/G ratios (less than
1.75) are usually brittle, while compounds with higher B/G ratios (greater than 1.75) show
more ductility [48]. All Ti-Co compounds have a B/G greater than 1.75, indicating that
Ti-Co compounds show strong metallic characters and good ductility. Young’s modulus is
a physical quantity used to measure the stiffness of a material [49]. Therefore, TiCo2(h) has
the highest hardness value. Meanwhile, Poisson’s ratio is also used to assess the brittleness
and ductility of compounds, where the compounds exhibit ductility for υ values higher than
0.26 and brittleness for values lower than 0.26. Poisson’s ratios of these five compounds
are greater than 0.26, indicating that they are all ductile compounds. In conclusion, Ti-Co
binary compounds show good toughness and ductility.

Table 3. Polycrystalline bulk modulus (BVRH), shear modulus (GVRH), Young’s modulus (E), Pois-
son’s ratio (ν), B/G ratio and Vickers hardness (Hυ) of Ti-Co binary compounds.

Phase BVRH(GPa) GVRH(GPa) E(GPa) ν B/G HV(GPa)

Ti2Co 137.5 41.7 113.7 0.362 3.294 1.397
TiCo 165.3 56.7 152.6 0.346 2.916 3.066

TiCo2(c) 183.4 88.1 227.8 0.293 2.082 8.649
TiCo2(h) 202.5 99.3 256.0 0.289 2.039 9.798

TiCo3 178.1 77.4 202.8 0.310 2.302 6.601

The Debye temperature is related to some physical properties of compound, such as
elasticity, hardness and specific heat. In addition, sound velocity can be used to evaluate
the thermochemical properties and bonding behavior of compounds [50]. The Debye
temperature is calculated by [51]:

ΘD =
h

kB

[
3n
4π

(
NAρ

M

)]1/3
νm (17)

where h is Planck’s constant, kB is Boltzmann’s constant, NA is Avogadro’s constant, n is
the number of atoms per unit, ρ is the density of the compound, M is the molecular weight
and vm is the average speed of sound. The average sound velocity vm, longitudinal sound
velocity vl and transverse sound velocity vt are calculated by [51]:

νm =

[
1
3

(
2
ν3

t
+

1
ν3

l

)]− 1
3

(18)

νl =


(

B + 4
3 G
)

ρ


1
2

(19)

νt =

(
G
ρ

) 1
2

(20)

The calculated values of Debye temperature and sound velocity of five Ti-Co binary
compounds are shown in Table 4. It is generally believed that Debye temperature reflects
the chemical bonding strength in the crystal structure [52]. Debye temperatures of TiCo2(c)
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and TiCo2(h) are higher than those of other compounds, so the bonding strength and
stiffness of these two compounds are greater. Meanwhile, the higher Debye temperature
means greater relevant thermal conductivity. Therefore, TiCo2(c) and TiCo2(h) have better
thermal conductivity than the other compounds do.

Table 4. Longitudinal sound velocity (vl , m/s), transverse sound velocity (vt, m/s), average sound
velocity (vm, m/s) and Debye temperature (ΘD, K) of Ti-Co binary compounds.

Phase ΘD vm vl vt

Ti2Co 366.4 3.016 5.760 2.678
TiCo 411.3 3.266 5.991 2.906

TiCo2(c) 494.0 3.820 6.325 3.423
TiCo2(h) 519.4 3.942 6.491 3.534

TiCo3 388.0 3.285 5.600 2.937

3.3. Mechanical Anisotropy

Crystals can show different physical and chemical properties in different directions.
The microcracks and lattice distortion in materials are usually closely related to the mechan-
ical anisotropy of materials [53,54]. Therefore, the general elastic anisotropy index (AU),
isotropic percentage of compressibility (AG and AB) and shear anisotropy factor (A1, A2
and A3) of all Ti-Co binary compounds were calculated by [53]:

AU = 5
GV
GR

+
BV
BR
− 6 ≥ 0 (21)

AB =
GB − GB
GB + GB

× 100% (22)

AG =
GV − GR
GV + GR

× 100% (23)

A1 =
4C44

C11 + C33 − 2C13
for (100) plane (24)

A2 =
4C55

C22 + C33 − 2C23
for (010) plane (25)

A3 =
4C66

C11 + C22 − 2C12
for (001) plane (26)

where, BV , BR, GV and GR are the shear modulus and bulk modulus calculated using the
Voigt and Reuss methods.

Ranganathan et al. [54] used AU to describe the anisotropy of materials. The greater
the value of AU is, the greater the mechanical anisotropy of the materials is. The ma-
terials with AU of 0 are generally considered to be isotropic. The values of anisotropy
index are shown in Table 5. In comparing the values of AU , Ti2Co has the strongest me-
chanical anisotropy, followed by TiCo3, which also exhibits strong mechanical anisotropy.
TiCo2(h) shows the lowest mechanical anisotropy. In addition, AG can be used to eval-
uate the elastic anisotropy of materials in shear mode. Ti2Co had the largest AG value
of 0.3596%, indicating that Ti2Co exhibits the strongest shear modulus anisotropy, and
TiCo2(h) exhibits the lowest shear modulus anisotropy, with an AG value of 0.0064%. The
general elastic anisotropy and shear modulus anisotropy followed the same trend in the
Ti-Co binary compounds. The order of mechanical anisotropy of Ti-Co compounds is
Ti2Co > TiCo3 > TiCo > TiCo2(c) > TiCo2(h). The values of AU and AG indicate that the
mechanical properties of Ti-Co binary compounds are anisotropic. To understand the
mechanical anisotropy of Ti-Co binary compounds more intuitively, the three-dimensional
model was used to describe the mechanical modulus. Using the code developed by Ro-
main et al. [55], the elastic constant can be used to draw the three-dimensional anisotropic
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function of Young’s modulus of Ti-Co binary compounds. The cubic crystal systems are
the most symmetrical ones among all crystal systems, and their Young’s moduli in any
direction can be expressed as:

1
E
= S11 − 2

(
S11 − S12 −

S44

2

)(
l2
1 l2

2 + l2
2 l2

3 + l2
1 l2

3

)
(27)

hexagonal crystal systems can be expressed as:

1
E
= S11

(
1− l2

3

)2
+ S33l4

3 + (S44 + 2S13)
(

1− l2
3

)
l2
3 (28)

where l1, l2 and l3 are the direction cosines, and Sij is the elastic compliance constants. In
spherical coordinates, l1 = sinθcosϕ, l2 = sinθsinϕ and l3 = cosθ, and the three-dimensional
surface of Young’s modulus of Ti-Co binary compounds can be drawn (Figure 3). The
Young’s modulus of five Ti-Co binary compounds is anisotropic. Ti2Co had the most
anisotropic Young’s modulus, while the contour of TiCo2(h) Young’s modulus was spherical,
showing a smallest anisotropic Young’s modulus. The anisotropy of Young’s modulus of
the other three compounds was between those of TiCo2(h) and Ti2Co. Considering the
crystal structure of TiCo2(h) (hexagonal lattice), the isotropic Young’s modulus of TiCo2(h)
is easy to understand. However, Ti2Co is a complex face-centered cubic phase, so it showed
a more anisotropic profile of Young’s modulus.

Table 5. Calculated shear anisotropy factors (A1, A2 and A3), universal anisotropy index (AU) and
anisotropy index (AB and AG) of the Ti-Co binary compounds.

Phase AU AG A1 A2 A3

Ti2Co 5.5247 0.3596 6.5247 6.5247 6.5247
TiCo 1.7105 0.0348 1.7105 1.7105 1.7105

TiCo2(c) 1.3858 0.0127 1.3816 1.3816 1.3816
TiCo2(h) 0.8261 0.0064 0.7704 0.7704 0.8261

TiCo3 2.6108 0.1066 2.6108 2.6108 2.6108Metals 2023, 13, x FOR PEER REVIEW 9 of 17 
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3.4. Phonon Properties

Phonon dispersion can accurately reveal the phonon behavior of crystal structure [56].
The phonon spectra and the density of states of five structures of Ti-Co binary compounds
were calculated by the supercell method. The force constants were calculated in the
finite displacement method [30] using the PHONOPY code [57]. The phonon spectra
of Ti-Co binary compounds along the highly symmetric path and the corresponding
projected phonon density of states are shown in Figure 4. All five compounds show no
imaginary frequencies throughout the Brillouin zone and can, therefore, be shown to be
thermodynamically stable. These five compounds basically vibrate in the frequency range
of 0~12THz. It is obvious that the frequency range of TiCo2(c) and TiCo2(h) is wider than
that of other compounds. The highest frequency of TiCo2(c) and TiCo2(h) can reach up
to 12 THz. For both alloys, the Co atom vibrates in the full frequency range and the Ti
atom vibrates in the range of 0–8 THz. The C atom has an important contribution in all
phonon modes, whereas the O atom mainly plays a role in the low frequency region and the
intermediate frequency region. For TiCo3, the Co atom also vibrates in the full frequency
range, but the Ti atom mainly vibrates the high frequency region. For Ti2Co and TiCo, the
Ti atom mainly vibrates in the high-frequency region and Co atom mainly vibrates in the
low-frequency region. In general, the vibration frequency of Ti atom is higher than that of
Co atom, mainly because the atomic mass of Ti atom is greater than that of Co atom.
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3.5. Bonding Characteristic

To understand the bonding characteristics of Ti-Co binary compounds, the total density
of state (TDOS) and partial density of state (PDOS) of the five compounds are shown in
Figure 5. Spin polarization was considered in the calculations. For all five compounds,
the spin-up and spin-down TDOS at Fermi energy (EF) levels are greater than zero, which
means that these compounds have metallic features. Interestingly, the Fermi energy level
of TiCo3 is located at the top of the valence band in the spin-up region, which is a semi-
metallic property. In addition, TDOS has a deep valley close to the Fermi level in every
Ti-Co compound, which is called pseudo energy gap. It is generally believed that the
pseudo energy gap reflects the strength of covalent-like bonds of the system [58]. The wider
the pseudo energy gap is, the stronger the covalence is. Thus, the covalent-like bonding
of TiCo and Ti2Co are relatively strong, while the covalent-like bonds of TiCo2(h) and
TiCo2(c) are relatively weak. It is generally believed that the stronger the covalent-like
bond is, the more stable the compound is [58]. Therefore, TiCo and Ti2Co are more stable,
while TiCo2(h) and TiCo2(c) are less stable. This is in good agreement with the calculated
formation enthalpies. DOS near the Fermi level mainly contributes to the directional
chemical bonding between Ti atoms and Co atoms. The local density of states of Fermi
level also mainly comes from d of Ti and Co atoms. On the contrary, Ti-s, p and Co-s, p
states have no obvious contribution. Therefore, strong d-d hybridization is the main reason
for the formation of the pseudo energy gap, and the covalent-like bond of Ti-Co alloy is
also derived from d-d electron interaction. As the Co content increases, the proportion of
Co-d at Fermi level also increases.
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Due to Co atoms, most Ti-Co binary compounds are spin polarized [59]. The degree
of polarization can be calculated by the fractional difference between the two spin states of
the Fermi level (EF) [60]:

P =
N↑(EF)− N↓(EF)

N↑(EF) + N↓(EF)
(29)

where N↑(EF) and N↓(EF) represent DOS with Fermi-level spin-up and spin-down, respec-
tively. When P is zero, it indicates paramagnetic and antiferromagnetic properties [60].
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When P is non-zero, it indicates ferromagnetic properties. So, TiCo and TiCo2(h) show
obvious ferromagnetism; the DOS values of Ti2Co and TiCo2(c) spin-up and spin-down
are symmetrical, so these two compounds are non-magnetic. Conversely, in the spin-up
DOS of TiCo3, there is a section of the energy gap, and the Fermi energy level intersects
the spin-down DOS and is in the energy range of the spin-up DOS. Thus, TiCo3 is spin
polarized, and it exhibits ferrimagnetism.

In addition, the differential charge density distribution is defined as the electron
difference between an isolated atom and its bonding state, which gives information about
the bonding properties [61]. The atomic (001) plane was chosen to illustrate the electron
transfer properties of Ti-Co binary compounds in Figure 6. The shape characteristics of
the differential charge density distributions around Ti and Co atoms show that the charge
is mainly transferred from Co atoms to Ti atoms. Therefore, the binding mode of Ti-Co
compounds is mainly determined by the Ti-Co bond. Some electrons are clearly out of
domain in the interstitial region between Ti and Co atoms, implying the presence of metal
and covalent-like bonds. For TiCo and TiCo3, there is a cross-shaped, red region around
the Ti atoms, which means that the Ti atoms forms bonds with the Co atoms within this
region. For Ti2Co, TiCo2(h) and TiCo2(c), a triangular red region forms around the Ti
atom, indicating that Ti and Co atoms are mainly covalently bonded to each other. The
more electron interactions there are between atoms in a compound composed of transition
metals, the more stable the crystal structure is. The accumulation of a large number of
electrons between adjacent atoms in TiCo, with large electron interactions, makes TiCo
the most stable phase. This result is consistent with the enthalpy results. In addition, the
charge transfer in Ti2Co indicates the highest binding force, which is consistent with the
cohesion energy.
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3.6. Slip Properties

The GSFE curve for the slip system provides an indication of the plastic deformation
behaviors of the alloy [31]. Mulay et al. [61] studied the deformation mechanism in the
B2-type phase (TiCo) through the analysis of g · b using the transmission electron micro-
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scope and the grain orientation axis (IGMA) obtained by electron backscatter diffraction and
found that {011}〈100〉 and {001}〈100〉 are the main slip systems under low stress. In the
process of strain hardening transformation, the secondary slip mechanism is activated and
three slip systems,

{
110
}
〈111〉, {110}〈001〉 and

{
110
}
〈110〉, are generated, thus providing

five independent slip systems, which meet the von Mises criterion of polycrystalline ductil-
ity [62]. The L12-type phase (TiCo3) is an ordered face-centered cubic structure. For this
phase, slip mainly occurs on the {111} plane. Previous studies have shown that the L12-type
phase will generate antiphase boundaries (APB), superlattice intrinsic stacking faults (SISF)
and composite stacking faults (CSF) on the {111} plane [63,64]. By sliding on the {111}
plane, a perfect a

{
110
}
〈111〉 dislocation can be dissociated into two a/2

{
110
}
〈111〉 partial

dislocations and one APB energy value or into two a/3{111}
〈
211
〉

partial dislocations and
one SISF energy value. It can be expressed as [63,64]:

a
[
110
]
→ a/2

[
110
]
+ APB + a/2

[
110
]

(30)

a
[
110
]
→ a/3

[
211
]
+ SISF + a/3

[
121
]

(31)

the a/2
{

110
}
〈111〉 partial dislocations can be further dissociated into two a/6{111}

〈
211
〉

partial dislocations to form CSF energy, which can be expressed as [63,64]:

a
[
110
]
→ 6/a

[
121
]
+ CSF + 6/a

[
211
]
+ APB + 6/a

[
121
]
+ CSF + 6/a

[
211
]

(32)

For Ti2Co and Laves phase C15-type TiCo2(c) alloys with fcc structures, only the slip
system

{
110
}
〈111〉 common to FCC structure was considered [65,66]. One

{
110
}
〈111〉

dislocation can be dissociated into two
{

110
}
〈111〉 partial dislocations and one intrinsic

stacking fault (ISF), which is expressed as:

a
[
110
]
→ a/2

[
110
]
+ ISF + a/2

[
110
]

(33)

Hexagonal Laves phase C36 undergoes plastic deformation on different slip systems. It
is able to slip along the basal plane {0001}, prismatic plane {1100} and pyramidal plane {1101}
under the slip system, and it may also cross-slip to different slip systems [65,67]. Among
them, the GSFE associated with TiCo2(h) in the basal and prismatic planes is calculated.

GSFE is defined as the fault energy related to the rigid displacement of one half of
an ideal crystal relative to the other half along the Bernstein vector on the slip plane [68].
Under periodic boundary conditions, a fault plane can be generated by the rigid movement
of part of a supercell. GSFE was calculated according to different slip systems along a
specific slip direction, as shown in the Figure 7. The GSFE (EGSF) value was calculated
by [69]:

EGSF =
Eu − E0

S
(34)

where Eu is the total energy of the supercell after sliding vector u along the slip plane (from
0.1 to 1.0; the step size is 0.1), E0 is the total energy of the perfect supercell and S is the
cross-sectional area of the slip plane. In the GSFE calculation, the atoms were fixed along
the x and y directions and completely relaxed along the z direction to obtain a reasonable
and stable energy value. Meanwhile, there was a 10 Å vacuum region along the slip plane
(z direction).
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Figure 7a shows that different energy distributions of GSFE obtained by sliding along
the {111} plane of TiCo3 in different directions, and the calculated results are in good
agreement with the previous work [70]. It shows that the plane defect on the {111} plane is
shown as EAPB > ECSF > ESISF, and it has a high slip energy barrier (unstable stacking fault
energy EUS

GSF) and plane defect energy (stable stacking fault energy EST
GSF), which gives the

L12-type alloy TiCo3 more strength. The complex slip mode is also the reason for the high
ductility of TiCo3. Figure 7b shows the distribution of GSFE of B2-type alloy TiCo. These
five slip systems are the most important independent slip systems of TiCo, meeting the von
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Mises criterion of polycrystalline ductility. The slip energy barrier and plane defect energy
of these five slip systems are relatively low, especially for the three slip systems, {011}〈100〉,
{110}〈001〉 and

{
110
}
〈110〉; the slip energy barrier is about 210 mJ/m3, while the plane

defect energy is only about 60 mJ/m3. In B2-type intermetallic compounds, such as Co-Zr,
Ti-Co [27], Ag-Y and Cu-Y [71], all exhibit good ductility, while the low slip barrier and
planar defects in the slip system of TiCo can provide a satisfactory explanation for the high
ductility observed in TiCo. Figure 7c shows the partial slip systems of TiCo2(h). Figure 7d,e
show the slip of TiCo2(c) and Ti2Co on the {111} plane, respectively, which is the most
common slip mode of face-centered cubic structure. It is shown that the slip barrier and
plane defect energy of TiCo2(c) are both very high, indicating that dislocation movement of
TiCo2(c) crystal structure is quite difficult, which increases the strength of TiCo2(c).

4. Conclusions

In this work, the phase stability, mechanical properties, bonding characteristics and
slip properties of five Ti-Co binary compounds (Ti2Co, TiCo, TiCo2(c), TiCo2(h) and TiCo3)
were systematically studied using the first-principles calculation. The following conclusions
can be drawn:

(1) According to thermodynamic and the elastic standards and phonon properties calcu-
lated by the frozen phonon method, the five Ti-Co compounds are thermodynamically
stable, and TiCo has the lowest enthalpy of formation and is the most stable phase.

(2) Ti2Co shows the strongest anisotropy, and TiCo2(h) has the weakest anisotropy. The
three-dimensional surface of the general anisotropy index and Young’s modulus
indicate that the magnitude relationship of mechanical anisotropy is Ti2Co > TiCo3 >
TiCo > TiCo2(c) > TiCo2(h).

(3) The calculations of bonding characteristic and differential charge density distributions
show that Ti-Co compounds are composed of metallic and covalent-like bonds. TiCo
shows stronger covalent-like bonding characteristics. Additionally, TiCo and TiCo2(h)
are ferromagnetic, TiCo3 is ferromagnetic, and Ti2Co and TiCo2(c) are non-magnetic.

(4) The calculated stacking fault energy of the slip systems shows that the anomalous
ductility of Ti-Co compounds mainly comes from the complex slip systems and the
lower slip energy barrier of the compounds.
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