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Abstract: This work addresses the lack of focus on verification and comparison of existing fatigue
damage accumulation and life prediction models on the basis of large and well-documented ex-
periment datasets. Sixty-four constant amplitude, 54 two-level block loading, and 27 three-level
block loading valid experiments were performed in order to generate an open-access, high-quality
dataset that can be used as a benchmark for existing models. In the future, more experiments of
various specimen geometries and loading conditions will be added. The obtained dataset was used
for a study comparing five (non)linear fatigue damage and life prediction models. It is shown how
the performance of several (non)linear damage models is strongly dependent on the considered
material dataset and loading sequence. Therefore, it is important to verify models with a broad set of
independent datasets, as many existing models show significant bias to certain datasets.

Keywords: fatigue; damage accumulation; experiments; metals; nonlinear damage; S-N curve;
rotating bending; endurance

1. Introduction

Fatigue design principles were formulated nearly 150 years ago, since the time of
Wöhler’s early work on constant amplitude fatigue. These principles formed the foundation
for the development of fatigue damage accumulation models that extended the S-N based
fatigue design principle to components and structures subjected to variable amplitude cyclic
loading. The linear damage rule (LDR), also called the Palmgren–Miner (PM) rule [1,2], is
the most commonly used fatigue damage accumulation rule. Since the work of Miner in
1945 [2], the PM rule has been benchmarked to various fatigue experiments of specimens
subjected to variable amplitude and block loading spectra. A comprehensive review of
many of these testing programs and their results was carried out by Schütz [3]. The
common conclusion of these experimental studies of lifetime estimations obtained with the
Palmgren–Miner rule tend to be non-conservative for high–low block loading sequences
(σa,i > σa,i+1) and conservative for low–high (σa,i < σa,i+1) block loading sequences [4]. For
stochastic load spectra, lifetime estimations that are extremely non-conservative are not
uncommon [3], up to a factor of 10 in some instances.

On a macroscopic level, load sequence and load interaction effects have been found to
lead to nonlinear fatigue damage accumulation. The inherent linear nature of the Palmgren–
Miner rule means that it cannot account for these effects. Consequently, the fatigue life
estimations obtained using the Palmgren-Miner rule are generally unsatisfactory [5]. Con-
siderable improvements have been made through the development of nonlinear damage
accumulation models, but many require various parameters to be determined through
extensive testing and have only been validated for very specific materials and loading
conditions. Therefore, the Palmgren–Miner rule remains the standard for fatigue design. In
1998, Fatemi and Yang [6] presented a comprehensive review of fatigue damage accumu-
lation and life prediction models. They highlighted the case-dependent performance of
many models. Since their work, many more nonlinear damage accumulation models have
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been published [7–9]. In 2021, authors of this paper published a review [10] that focused on
fatigue damage accumulation and life prediction models published after the work of Fatemi
and Yang. Most notably, new fatigue damage accumulation models are still published
each year. A few of the most recent examples are the works of Pavlou [11], Bjørheim [12],
Yu et al. [13], and Zhu et al. [14]. Nonetheless, an industry relevant breakthrough remains
largely absent.

One of the primary conclusions of the review paper [10] was that most fatigue damage
models have only been validated on relatively small experimental datasets. This makes it
impossible to judge their generic performance. This issue was also raised by Patil et al. [15],
who expressed their concern that many cumulative damage models have been and still
are being developed using very small and very specific datasets. This was confirmed
in the work of Hectors et al. [16]. These findings indicate that a focus shift from the de-
velopment of new models to verification and comparison of existing models using large
and well-documented experiment datasets is needed. Although this is in theory rather
straightforward, a comprehensive comparison is hampered by the extremely limited num-
ber of well-documented datasets of block loading and random loading fatigue experiments
available in the literature. The reasons are simple. Test specimens need to be machined to
meet fine tolerances and subsequently polished to strict surface roughness requirements
and, depending on the test conditions, experiments can last multiple days. Consequently,
extensive test programs take months and are often prohibitively expensive.

There is now also the emerging domain of machine learning-based fatigue life pre-
diction. Although this is currently mostly restricted to constant amplitude fatigue life
prediction, some researchers have attempted to develop machine learning and deep learn-
ing models for variable amplitude fatigue life prediction. These developments are also
further driving the need for extensive experiment datasets. In 2011, Gautham et al. [17] were
the first to investigate data-driven methods to predict fatigue strength. Agrawal et al. [18]
recognized the potential of this approach and decided to explore it further, which later led
to development of an online machine learning tool by Agrawal and Choudhary [19] with
the purpose of predicting the fatigue strength of steel. The fatigue strength prediction tool
developed by Agrawal and Choudhary [19] was mentioned in the paper of Bock et al. [20],
who reviewed the application of machine learning approaches for continuum mechanics.
They concluded that the synergy between data and materials science holds significant
potential. A similar conclusion was made by Sparks et al. [21] in their review paper on
machine learning for structural materials.

However, the performance of machine learning models is limited to the training dataset
size. Therefore, the most pressing need is additional data. As researchers venture into the
development of data-driven variable amplitude fatigue life prediction models, the lack of
qualitative datasets becomes even more clear. Gan et al. [22] proposed a kernel extreme
learning machine (KELM) to estimate the remaining life of materials under two-step loading.
Although their model demonstrated a superior performance compared to conventional
damage accumulation theories, the database consisted of only 169 experimental results
covering nine different materials collected from various sources. This again implicitly
shows that the amount of suitable experimental data in the literature is limited. The
work of Gan et al. [22] inspired Gao et al. [23] to further investigate remaining fatigue
life prediction under two-step loading, comparing a number of machine learning models
to conventional fatigue damage accumulation models. They found that all the machine
learning models performed better than the conventional models. They used a dataset
containing 328 experimental results for 12 different materials. Due to the sparsity of fatigue
data and the cost and time requirements of fatigue tests, some researchers have started to
focus their efforts on minimizing the necessary dataset size for machine learning training
(e.g., [24,25]). Nonetheless, the primary factors influencing data-driven model performance
are the size and number of features in the training dataset.

Based on a review of the current literature, it is clear that there is a general lack of
experiment datasets, especially those that contain a detailed description of the individual
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test results. This work aims to address this gap in the literature through the development of
a well-documented dataset of block-loading experiments that can be used as a benchmark
for (nonlinear) cumulative fatigue damage models. The goal of this work is not to develop
a new cumulative damage or fatigue life prediction model, but to provide an open-access
database that can be used for that purpose. In addition, five conventional cumulative
damage models will be compared based on the newly obtained data. The results confirm
the concerns that have already been raised in the past regarding the need for independent
reassessment of cumulative damage and fatigue life prediction models and show the
importance of introducing new datasets.

2. Materials and Methods

An extensive experimental program was devised for this work. All material used
for the experimental program presented in this work was extracted from the web (at
mid-thickness) of a decommissioned crane runway girder. The first step was a full charac-
terization of the basic material properties. This was then followed by a full characterization
of the constant amplitude fatigue properties (i.e., the S-N curve and endurance limit).
Finally, a series of rotating bending fatigue experiments using two-level and three-level
block loading spectra were performed.

The dimensions and surface roughness of every specimen were meticulously charac-
terized and recorded. Knowledge of these features is expected to be essential for further
advancement of the state of the art for both conventional (non)linear damage accumula-
tion models and machine learning-based fatigue life estimation models as discussed in
the introduction.

2.1. Basic Material Characterization

All specimens tested within the scope of this work are made of A37JC steel, which is
equivalent to today’s S235 steel. The material characterization procedure and corresponding
results have been reported in detail in [26] and are summarized here for the sake of
completeness. Table 1 shows the chemical composition of the base metal. Tensile tests
were performed in compliance with ASTM E8-21 [27] on an MTS 1000 kN servo-hydraulic
testing rig. In total, six tensile specimens were extracted from two orthogonal directions,
parallel to the rolling direction (RD) of the web plate the direction transverse to the rolling
direction (TD), to characterize if the material exhibited any anisotropy. Detailed technical
drawings of the specimens and their original location in the girder are available in the
open-access dataset. Data of one tensile test were lost due to a data file corruption. Figure 1
shows the stress–strain curves obtained from the remaining five tensile tests. The raw
data are available in the accompanying open-access dataset. The Young’s modulus was
measured for one tensile specimen of each material direction. The measurements were
performed using two strain gauges, one at each side of the specimen, as recommended
by the National Physics Laboratory [28]. Table 2 shows the results of the tensile tests. No
significant differences in elastic–plastic properties were observed between the different
specimens and material directions.

Table 1. Chemical composition of the steel. All values in wt. %.

C Mn Si P S Cu Ni

0.09 0.66 0.14 0.027 0.013 0.02 0.04

Cr Mo Ti V Al Nb

0.02 <0.01 0.005 <0.001 0.035 <0.001

Finally, Vickers hardness maps were made using a Struers Duramin-40 Vickers hard-
ness testing machine and a load of 9.81 N. The average across the two orientations was
found to be 117.74 ± 8.39 HV1. The Poisson’s ratio of the base metal was not experimentally
obtained and was assumed to be 0.28.
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Figure 1. Stress–strain curves obtained from the tensile tests of the A37JC steel specimens.

Table 2. Mean and standard deviation (across specimen orientation) of tensile properties of the
base metal.

Tensile Property Mean and Standard Deviation

Ultimate strength, Su 388.4 ± 6.5 MPa
Yield strength (0.2% offset, Rp0,2) 272.1 ± 5.7 MPa
Upper yield point 294.5 ± 11.7 MPa
% Area reduction 56.8 ± 1.3%
Young’s modulus, E 207.4 ± 1.8 GPa

2.2. Fatigue Testing Setup and Specimen Configuration

In total of 160 specimens were extracted from the girder. Eighty specimens were
extracted parallel to the rolling direction (RD) of the web plate and 80 from the direction
transverse to the rolling direction (TD). The specimens were tested using an R.R. Moore
rotating bending fatigue test setup. In the end, 145 valid experimental test results were
obtained. For both material directions, the constant amplitude fatigue properties were
first determined. The remaining specimens were tested with two-level and three-level
block load sequences. Figure 2 shows a schematic of the test setup. All test specimens
were produced in accordance with the ISO1143:2010 [29] standard for rotating bar bending
fatigue. Figure 3 shows a technical drawing of the specimens that were produced.

Figure 2. Schematic illustration of the R.R. Moore rotating bending fatigue setup.

It is well known that high cycle fatigue life is significantly influenced by the sur-
face roughness. To minimize the effect of the surface roughness on the test results, the
ISO1143:2010 [29] standard requires a mean surface roughness, Ra, less than 0.2µm with a
final polishing direction along the test specimen axis. The specimens were manufactured
on a CNC lathe, reaching an average as-machined roughness Ra of approximately 0.8µm.
To obtain the required surface roughness, all specimens were manually polished with
consecutively increasing grit sizes on a small-scale lathe. The first four polishing steps
were performed using SiC-paper of 180, 240, 320, and 400 grit. Then a final polishing
step with a P600 3MTM TrizactTM abrasive was performed. Before testing, each specimen
was visually inspected for scratches. If no scratches were found, the roughness of the
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specimen was measured at an arbitrary location using a Taylor Hobson Talysurf CCI 6000
white light interferometer to confirm if the surface roughness was satisfactory. Figure 4
shows one of the surface profile measurement results: Ra = 0.156µm and Sa,rough = 0.176µm
were obtained. Sa,rough is the areal extrapolation of Ra. All roughness profile amplitude
parameters were determined using a Gaussian filter with a cut-off wavelength of 0.8 mm in
accordance with ISO3274:1996 [30].

Figure 3. Illustration showing the specimen dimensions used in the experimental testing program,
in accordance with ISO1143:2010 [29]. All dimensions are given in mm; the surface roughness is
indicated in µm.

The final step was measuring the actual dimension of the specimen before testing and
after polishing. The length was measured to an accuracy of 0.01 mm. The diameter was
measured at three positions along the gauge length to an accuracy of 1µm with a Mitutoyo
external micrometer. The smallest diameter value was then used to determine the required
weight that had to be added to achieve the desired nominal stress amplitude.

Figure 4. Surface profile measurement example of one of the tested fatigue specimens. Measurement
performed with a white light interferometer.

2.3. Constant Amplitude Fatigue Properties

The data generation required for constructing an S-N curve was performed in accor-
dance with ISO12107:2012 [31]. The consulted ISO standard discourages replicate data
generation, recommending that the tests be allocated in double logarithmic stress level
increments, as this allows one to define if the response is linear or curvilinear. The reason
for this is that fatigue results tend to demonstrate more scatter at low stress levels, and
double logarithmic spacing locates more specimens in the higher life regimes.

To define the lower bound limit that would result in failure within a reasonable
time frame, the number of cycles corresponding to a run-out test was defined as 107.
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The endurance limit was determined using the staircase method as described by the
ISO12107:2012 [31] standard. In this work, a stress amplitude step size of 2.5 MPa was used.
Exploratory research requires a total of 15 valid tests to be performed such that a mean
value and standard deviation of the endurance limit can be determined. The majority of
the tests were performed at 66.7 Hz (4000 rpm). However for large stress amplitudes, initial
trials showed that the specimen could reach temperatures high enough to influence the
failure mechanism, thus requiring a reduced test frequency going as low as 500 rpm. On
the contrary, a number of tests actually required a minimum of 33.3 Hz (2000 rpm), as lower
test frequencies induced resonance effects that caused plastic deformation due to strong
vibrations of the weight plate stack.

All valid results were post-processed in accordance with ISO12107:2012 [31]. A de-
tailed example of the post-processing method can also be found in [16]. Figures 5 and 6
show the experimental data that were obtained from the constant amplitude rotating bend-
ing experiments. The individual test results are reported in Tables A1 and A2 and can also
be download from the open-access database as detailed in the data availability statement at
the end of this paper. Each data point corresponds to a single test where failure occurred
before 107 cycles. For stress amplitudes above 260 MPa, a sudden considerable reduction in
the fatigue strength was observed. Visual inspection of the fracture surfaces showed that
the failure mechanism of these specimens was more closely related to low cycle fatigue than
high cycle fatigue. Since the focus of this test program is high cycle fatigue, the remaining
test specimens were allocated to stress levels below 260 MPa.

Staircase test series were performed separately for the two material directions. The
staircase test results were post-processed as described in the aforementioned standard. A
mean fatigue strength of 233.75 ± 1.13 MPa was obtained for the vertical material direction
and 227.5 ± 3.83 MPa for the horizontal material direction.

Figure 5. S-N curve obtained from the rotating bending experiments (R = −1) for the specimens
extracted from the transverse direction.

Figure 6. S-N curve obtained from the rotating bending experiments (R = −1) for specimens
extracted from the rolling direction.

The dash-dotted lines in Figures 5 and 6 represent the ±2 standard deviation (SD)
interval, with the lower bound (LB) generally used as a design curve. Standard deviations
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of the least-squares fit are shown in the figures. Equations (1)–(6) are the equations for
the best fit, lower, and upper bound confidence S-N curves for the transverse and rolling
directions, respectively.

Sa,TD = 600.75 N−0.0.066573 (1)

Sa,TD,95%LB = 588.61 N−0.066573 (2)

Sa,TD,95%UB = 613.15 N−0.066573 (3)

Sa,RD = 649.95 N−0.072684 (4)

Sa,RD,95%LB = 642.52 N−0.072684 (5)

Sa,RD,95%UB = 657.47 N−0.072684 (6)

2.4. Block Loading Experiments
2.4.1. Test Program

In total, 81 specimens were tested under block loading. Of these, 54 specimens were
subjected to two-level block loading series and 27 specimens to three-level block loading
series. Twenty-nine of the two-level block loading tests were high-to-low (H–L) load tests
and 25 were low-to-high (L–H) tests. Four of the H–L loaded specimens failed before
the end of the first block. Technically, these can be considered to be constant amplitude
experiments. In this work, these were, however, not considered in any of the following
analyses, but they are reported in the appendices under two-level block loading for the
sake of clarity. In addition, four specimens that were supposed to be subjected to three-
level block loading failed in the second block. These were considered to be two-level
block loading experiments in the model comparison study in Section 3 but are reported in
Appendix C, which contains the results of the three-level block loading experiments.

Most fatigue datasets involving block loading that can be found in the open literature
typically comprise experiments that were conducted with one or multiple blocks that had
stress amplitudes corresponding to constant amplitude fatigue lives below 104 cycles. This
corresponds to the low cycle fatigue regime. Since this work is solely focused on high cycle
fatigue, stress amplitudes in the two- and three-level block loading test plans were defined
to be consistent with those in the high cycle fatigue regime; i.e., stress amplitudes were
chosen such that the corresponding constant amplitude fatigue life of each block’s stress
amplitude was larger than 104 cycles. All stress levels in the block loading tests were thus
well below the yield point of the A37JC steel. More specifically, five test stress amplitudes,
equally spaced between 260 MPa and 235 MPa, were chosen for this testing program.

For the two-level block loading experiments, the specimens were fatigued at a single
stress amplitude (in rotating bending) to a desired percentage of total life as determined
using Miner’s rule and the S-N curves given in Equations (1) and (4). The specimens were
then run to failure (fully fractured) or until the second load block exceeded 107 cycles at
the final stress amplitude.

The three-level block loading experiments were performed similarly. The theoretically
consumed fatigue life of the first two blocks, assuming linear damage accumulation, was
the same. Finally, the test was run at a final stress amplitude until failure or the limit of
107 cycles.

2.4.2. Two-Level Block Loading: Results & Discussion

The results of the H–L experiments are reported in Tables A3 and A4, and the results
of the L–H experiments are reported in Tables A5 and A6. The tables can be found in
Appendix B. Overall, the experimental results are in line with the expectations based on
previous experimental studies found in the literature regarding the tendency of Miner’s
rule to be conservative for L–H loading and non-conservative for H–L loading. This can be
seen in Figure 7, which shows the remaining cycle ratio n2/N2 as a function of the applied
cycle ratio n1/N1. If points lay below the dashed line corresponding to Miner’s rule, it
means that life predictions based on Miner’s rule are non-conservative and vice versa for
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points laying above the dashed line. Not all tests followed the observed tendencies for L–H
and H–L loading. Although some deviations are to be expected due to the scatter inherent
in metal fatigue, it is remarkable that the (247, 235) load block tests showed completely
opposite results. The (247, 235) sequence with n1/N1 = 0.25 did not even result in failure.
The latter could perhaps be classified as an outlier, but this does not explain the results of
the other two (247, 235) sequence tests. At this stage, there is no conclusive evidence to
identify why the tests of the (247, 235) sequence are not in line with general trends. This
can most likely be attributed to the inherent scatter in fatigue life.

Figure 7. H–L (left) and L–H loading (right) experimental results. The dashed line corresponds to
Palmgren–Miner’s rule. A distinction is made between specimens extracted from the transverse (TD)
and rolling direction (RD).

The prediction of a model can only be as accurate as the data that are used for predic-
tion. To account for the scatter that is inherent to fatigue, Figure 8 shows a comparison
between Palmgren–Miner’s rule prediction and the experimental data, with error bars that
correspond to the predictions based on the upper and lower bound 95% confidence interval
S-N curves (Equations (2), (3), (5), and (6)). For the observations where the error bars inter-
sect with the linear damage curve, the predictions can be considered adequate. Notably,
the majority of the observations do not intersect with the linear damage curve. Surely this
shows that Palmgren–Miner’s rule is not able to predict the damage accumulation behavior
of the tested material.

Due to the shallow slope of the S-N curve that was obtained from the constant am-
plitude fatigue experiments, the range of stress amplitudes suitable for this study on high
cycle fatigue was limited. As the difference between the largest possible stress amplitude
ratio σa1/σa2 = 260/235 and the smallest ratio σa1/σa2 = 242/235 is rather limited, the
study of the influence of load interaction effects was challenging. For a future study, it is
advised to use a steel grade where high cycle fatigue is the governing damage mechanism
for a wider range of stress levels.

2.4.3. Three-Level Block Loading: Results and Discussion

The results of the three-level block loading experiments are reported in Tables A7 and A8
(see Appendix C). It can be seen that Palmgren–Miner’s rule is not consistently conservative
or non-conservative. There are a number of very non-conservative results. On four occa-
sions, the tests even resulted in failure before the end of the second load block. Each of these
cases started with an H–L type sequence, where non-conservative estimations are to be
expected. Nonetheless, these are very non-conservative (failure as early as ∑ ni/Ni = 0.48).
It can be seen that for both the High–Middle–Low (H–M–L) sequences in Table A8, the
first two blocks were the same. The first two blocks both had a stress amplitude ratio
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σa1/σa2 = 260/235. For the considered material, this corresponds to the largest possible
stress amplitude ratio within the high cycle fatigue region. This strongly supports the idea
that the stress amplitude ratio between subsequent loading blocks affects the severity of
the non-linear effects.

Figure 8. Comparison between the experimental two-level block loading data and Palmgren–Miner’s
rule (dashed line), accounting for scatter on the fatigue life by considering the upper and lower bound
95% confidence interval S-N curves. A distinction is made between specimens extracted from the
transverse (TD) and rolling direction (RD).

For the H–M–L sequence, intuitively ∑ ni/Ni < 1 would be expected, analogue to
a two-block H–L sequence. However, it is observed that this is not the case for all the
experiments. More experiments of this type would be needed to make more profound
conclusions. The results for the L–M–H tests are in line with the results from the two-block
loading experiments. For the L–M–H experiments in Table A8, the experimental fatigue
life of the third block is more than double the fatigue life as predicted by Miner for all
three tests. The results suggest that Miner’s rule tends to be conservative for the L–M–H
loading sequence.

Both the M–H–L and the M–L–H sequences show considerable scatter. Clear sequence
effects cannot be identified. An extensive test program will be required to gauge how the
stress amplitude ratio σa,i/σa,i+1 between the subsequent blocks and the length of each
block influence the fatigue damage accumulation rate.
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3. Model Comparison
3.1. Overview

In this section, the new experimental data are used to benchmark five (non)linear
damage accumulation models and fatigue life prediction models. They were selected based
on their prominence in the literature and simplicity regarding implementation. The latter
remains one of the most important criteria for practicing engineers. A summary of the
selected models can be found in [16]; for a detailed overview, the reader is referred to the
original publications. The five selected models are Palmgren–Miner’s rule, the damage
curve approach (DCA) by Manson and Halford [4], the modified damage curve approach
(Mod. DCA) by Gao et al. [32], the fatigue driving stress (FDS) approach by Kwofie and
Rahbar [33], and the damage stress model proposed by Mesmacque et al. [34]. All models
are compared following the recommendations proposed in [16]. The analysis results are
discussed separately for the two-level and three-level block loading experiments.

3.2. Two-Level Block Loading Comparison

Table 3 shows the percentage of non-conservative (n2P/N2 > n2E/N2) model estima-
tions (P) for the L–H and H–L loading datasets separately, considering all experiments
(E). All damage model predictions tend to the conservative side for L–H loading and to
the non-conservative side for H–L loading. This is an important observation in a design
context. Furthermore, the results in Table 3 also show that, for a considerable number of
experiments, the results do not conform to these general observations. Thus, nonlinear
damage models that inherently include this behavior can never achieve good predictions
for all experimental results. Deviations from the almost universally agreed upon tendency
of H–L to result in non-conservative Palmgren–Miner’s rule estimations and vice versa for
L–H cannot be captured.

Comparing the results of the five considered damage accumulation models reported
in Table 3, it can be observed that the Palmgren–Miner rule produces the most conservative
predictions for L–H loading but the most non-conservative predictions for H–L loading.
It is notable that none of the models performs considerably better than its counterparts.
It should be noted that these results differ from those published in [16], where the same
models were compared to experimental data already available in the literature. Hence,
this confirms that the performance of these models can differ substantially for different
experimental datasets.

Table 3. Percentage of non-conservative model estimations (n2P/N2 > n2E/N2) for each model, for
the two-level block loading experiments. Exp = experiments, Est = model estimation.

Palmgren–Miner DCA Mod. DCA FDS DSM

L–H 30.77 42.31 42.31 34.62 34.62
H–L 80.77 69.23 73.08 76.92 76.92

To assess the model performance with respect to lifetime estimations that are consis-
tently as close as possible to the real fatigue lifetime, a number of statistical measures are
determined and compared. Seven conventional statistical metrics are considered. Four are
relative to the experimental results, and three are absolute measures. The Max(n2P/n2E),
Mean(n2P/n2E), std(n2P/n2E), and RMSE(n2P/n2E) are the maximum value, mean value,
standard deviation, and root mean square error of the estimated lifetime over the experi-
mental lifetime, respectively. Ideally, the mean is close to one, the maximum is close to the
mean, and the standard deviation and RMSE are close to zero. The Mean(n2P/n2E) and
RMSE(n2P/n2E) are both measures of average model prediction error. For determination
of the RMSE, the errors are squared before they are averaged; i.e., the RMSE more signif-
icantly penalizes larger errors. Since for fatigue lifetime estimation, larger errors can be
considered disproportionately worse than small errors, the RMSE is the more important
error measure in this case. It is, however, less intuitive than the Mean(n2P/n2E), which is
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why the latter is also included. Apart from the relative measures, the mean and maximum
absolute prediction errors and the absolute RMSE are reported to clearly quantify the
prediction errors.

Table 4 summarizes the statistical analysis of the lifetime estimations for the two-block
loading. The Palmgren–Miner rule performs worst for all calculated statistical metrics with
the exception of the maximum absolute error. Conversely, the DCA and Mod. DCA are
found to be the best performing models. In comparison to the results reported in [16],
the discrepancies between the different models’ performance are smaller in this work.
However, the overall model performance ranking is the same as in [16].

Table 4. Statistical analysis of the selected damage accumulation model estimations for two-level
block loading sequences presented in Section 2.4.2.

Model PM DCA Mod. DCA FDS DSM

Max(n2P/n2E) 8.91 5.97 6.22 8.03 7.42
Mean(n2P/n2E) 1.50 1.29 1.31 1.44 1.39
std(n2P/n2E) 1.49 0.99 1.03 1.34 1.22
RMSE(n2P/n2E) 0.48 0.44 0.44 0.47 0.46
Mean absolute error [cycles] 315,998 256,369 260,029 294,885 287,407
Max. absolute error [cycles] 1,503,473 1,599,966 1,595,884 1,541,720 1,529,970
RMSE(n2P) [cycles] 439,351 404,956 406,566 424,709 420,337

P = Prediction, E = Experimental, RMSE = Root Mean Square Error, std = Standard Deviation.

3.3. Three Level Block Loading

The statistical analysis of the three-level block loading experiments is summarized in
Table 5. Compared to the two-level block loading, where the DSM model was one of the
worst performing models, it actually performed best for the three-level block loading. This
was also observed in [16]. Hence, for future studies that consider multi-level block loading
spectra, the DSM should definitely be considered.

Notably, the FDS approach performs worse than Miner’s rule. The part of the FDS
damage function that accounts for interaction effects occurring when the stress level
changes is based on the fatigue strength corresponding to the very first stress level that is
applied to the specimen. Thus, even when the stress level changes from that of the second
load block to that of the third load block, the interaction effect is based on the fatigue
strengths corresponding to the first and third block stress levels. According to the authors
of this paper, this makes no physical sense.

The Palmgren–Miner rule still exhibits considerably larger maximal and mean values
and a standard deviation of (n3P/n3E), compared to the DSM, DCA, and Mod. DCA. It
does exhibit the lowest absolute errors, and the RMSE (n3P/n3E) of Palmgren–Miner’s
rule is a shared best value. This shows that for block loading spectra with both high–low
and low–high interactions, the non-linearity effects could even out. However, much larger
datasets are required to make definitive conclusions on this.

Overall, the DCA and Mod. DCA still perform better than the Palmgren–Miner rule.
It should be noted that the Mod. DCA, which should obviously be an improvement on the
original DCA, performs worse (albeit slightly) than the orginal DCA for both the two- and
three-level block loading test series of the presented dataset.

Figure 9 shows the predicted versus experimental remaining fatigue life for the third
loading block. It shows that there are considerable differences between the fatigue lifetime
estimation of the studied models for individual cases. Overall, most of the model predic-
tions are within 50% of the experimental results. It can also be seen in the figure that, for
most experiments, the DSM is clearly the best performing model, which of course agrees
with the descriptive statistics reported in Table 5.
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Table 5. Statistical analysis of the selected damage accumulation model predictions based on the
newly generated three-level block loading dataset.

Metric Miner DCA Mod. DCA FDS DSM

Max(n3P/n3E) 4.69 4.22 4.33 4.89 4.02
Mean(n3P/n3E) 1.75 1.57 1.59 1.76 1.55
std(n3P/n3E) 1.55 1.31 1.33 1.55 1.24
RMSE(n3P/n3E) 0.29 0.31 0.30 0.29 0.29
Mean absolute error [cycles] 150,056 179,794 176,271 158,482 155,694
Max. absolute error [cycles] 1,082,126 1,219,470 1,204,285 1,108,759 1,187,200
RMSE(n3P) 265,102 303,412 299,319 274,531 282,386

P = Prediction, E = Experimental, RMSE = Root Mean Square Error, std = Standard Deviation.

Figure 9. Predicted versus experimental remaining fatigue life for the third loading block.

4. Conclusions

This paper presented an experimental study of nonlinear fatigue damage accumulation
followed by a comparative study of five fatigue damage accumulation and life prediction
models. In this work, 145 valid rotating bending fatigue experiments were performed.
Of these, 82 were block loading experiments, providing a considerable addition to the
open-source state of the art. The main findings are summarized below.

• The two- and three-level block loading experiments showed that, even accounting for
scatter on fatigue life by using the upper and lower bound 95% confidence intervals
of the S-N curves, Miner’s linear damage accumulation rule is not able to adequately
describe the observed damage accumulation behavior, resulting in both conservative
and non-conservative predictions.

• A comparative study of five prominent fatigue damage accumulation models showed
that Miner’s rule is consistently the worst performing model. It was found that for two-
level block loading, the damage curve approach of Manson and Halford performed
best. For three-level block loading, the DSM model of Mesmacque et al., which was
one of the worst performing models for two-level block loading, performed best. This
indicates that future experimental research should focus on multi-level block loading
compared to two-level block loading. The latter, however, remains an important
benchmark for gaining insight into the fundamental understanding of load sequence
and load interaction effects.

• The main objective of this study was to create a comprehensive and reliable open-access
database comprising high-quality data. Access to all the raw experimental data is
available via the link provided in the data availability statement at the end of this paper.
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The authors plan to continue augmenting this dataset with additional experimental
findings in the future, thereby aiding the development of data-driven methods for
fatigue life prediction. While the size of dataset currently presented is still insufficient,
the authors intend to set a precedent for data collection and reporting standards.
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Appendix A. Experimental Results Constant Amplitude Loading

Table A1. Experimental results constant amplitude loading, specimens extracted from the trans-
verse direction.

Stress Amplitude [MPa] Cycles to Failure Test Frequency [RPM]

186.06 Run-out 4000
230.02 Run-out 4000
230.09 Run-out 4000
232.39 Run-out 4000
232.40 Run-out 4000
232.44 1,727,054 4000
232.48 Run-out 4000
232.48 Run-out 4000
232.64 Run-out 4000
232.76 Run-out 4000
234.83 2,077,810 4000
234.84 1,328,522 4000
234.98 1,072,703 4000
235.02 502,629 4000
235.13 7,292,489 4000
235.21 Run-out 4000
235.31 918,216 4000
235.61 705,992 4000
237.80 1,655,916 4000
240.08 1,068,136 4000
242.53 956,867 4000
245.35 495,745 3000
246.43 607,824 2000
247.38 384,489 4000
250.21 425,629 4000
252.35 659,037 1500
255.19 603,090 2000
260.15 288,380 2000
265.12 105,487 4000
273.02 87,287 3000
282.26 67,402 3000
311.15 36,145 500

Run-out: Stopped at 107 cycles without failure.

https://doi.org/10.17605/OSF.IO/6Y5SD
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Table A2. Experimental results constant amplitude loading, specimens extracted from the
rolling direction.

Stress Amplitude [MPa] Cycles to Failure Test Frequency [RPM]

222.67 Run-out 4000
224.86 1,634,316 4000
224.97 Run-out 4000
224.99 Run-out 4000
225.19 Run-out 4000
227.26 1,411,137 4000
227.26 Run-out 4000
227.46 Run-out 4000
227.53 Run-out 4000
227.55 3,407,330 4000
229.93 2,468,304 4000
229.95 Run-out 4000
229.95 Run-out 4000
230.00 1,241,237 4000
230.00 3,099,455 4000
232.43 1,755,321 4000
234.80 2,323,842 4000
234.98 904,263 4000
236.99 424,037 4000
237.36 812,867 4000
239.25 802,647 4000
243.26 693,499 4000
256.02 216,364 4000
260.59 414,138 1500
265.33 175,072 1500
269.98 226,824 1000
274.72 127,698 1000
279.69 124,317 500

Run-out: Stopped at 107 cycles without failure.

Appendix B. Experimental Results Two-Level Block Loading

Table A3. Experimental results H–L block loading, specimens extracted from the transverse direction.

σa1 [MPa] σa2 [MPa] n1E [Cycles] n2E [Cycles] n1

N1

n2E

N2
∑

niE

Ni

260 235 73,001 678,288 0.25 0.51 0.76
260 235 145,370 396,487 0.50 0.30 0.80
260 235 218,053 160,192 0.75 0.12 0.87
254 235 103,219 477,423 0.25 0.36 0.61
254 235 136,246 282,973 0.33 0.21 0.55
254 235 206,433 280,271 0.50 0.21 0.71
254 235 309,651 66,195 0.75 0.05 0.80
247 235 157,057 Run-out 0.25 N/A N/A
247 235 314,115 2,016,315 0.50 1.52 2.00
247 235 471,171 619,827 0.75 0.47 1.22
242 235 213,537 416,096 0.25 0.31 0.57
242 235 427,070 229,793 0.50 0.17 0.67
242 235 640,604 253,396 0.75 0.19 0.94

Run-out: Stopped at 107 cycles without failure, N/A: Not Applicable.
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Table A4. Experimental results H–L block loading, specimens extracted from the rolling direction.

σa1 [MPa] σa2 [MPa] n1E [Cycles] n2E [Cycles] n1

N1

n2E

N2
∑

niE

Ni

245 235 75,045 675,049 0.11 0.56 0.67
260 235 33,135 864,860 0.11 0.72 0.83
245 235 150,092 2,433,365 0.22 2.03 2.26
260 235 66,266 772,804 0.22 0.65 0.87
245 235 225,134 Run-out 0.33 N/A N/A
260 235 99,399 380,673 0.33 0.32 0.65
245 235 300,179 921,984 0.44 0.77 1.22
260 235 132,531 487,419 0.56 0.41 0.97
245 235 375,223 173,245 0.56 0.15 0.70
245 235 450,268 507,730 0.67 0.42 1.09
260 235 198,797 146,335 0.67 0.12 0.78
245 N/A 343,558 * N/A 0.78 N/A 0.51
245 N/A 177,815 * N/A 0.78 N/A 0.26
260 N/A 218,995 * N/A 0.78 N/A 0.73
260 N/A 159,496 * N/A 0.78 N/A 0.54

*: Failed in first block. Run-out: Stopped at 107 cycles without failure, N/A: Not Applicable.

Table A5. Experimental results L–H block loading, specimens extracted from the transverse direction.

σa1 [MPa] σa2 [MPa] n1E [Cycles] n2E [Cycles] n1

N1

n2E

N2
∑

niE

Ni

235 260 331,857 199,470 0.25 0.69 0.94
235 260 663,712 344,260 0.50 1.18 1.69
235 260 995,571 340,910 0.75 1.17 1.92
235 254 331,857 268,888 0.25 0.65 0.90
235 254 663,713 258,245 0.50 0.63 1.13
235 254 995,569 282,793 0.75 0.68 1.44
235 247 331,856 432,468 0.25 0.69 0.94
235 247 663,712 469,699 0.50 0.75 1.24
235 247 995,570 963,602 0.75 1.53 2.27
235 242 331,858 944,726 0.25 1.11 1.36
235 242 663,713 654,593 0.50 0.77 1.26
235 242 995,571 605,047 0.75 0.71 1.47

Table A6. Experimental results L–H block loading, specimens extracted from the rolling direction.

σa1 [MPa] σa2 [MPa] n1E [Cycles] n2E [Cycles] n1

N1

n2E

N2
∑

niE

Ni

235 245 133,002 438,514 0.11 0.65 0.76
235 260 133,002 210,924 0.11 0.71 0.82
235 245 266,288 667,807 0.22 0.99 1.21
235 260 266,285 181,286 0.22 0.61 0.83
235 245 399,429 983,971 0.33 1.45 1.79
235 260 399,429 95,080 0.33 0.32 0.65
235 245 532,574 530,954 0.44 0.79 1.23
235 260 532,573 171,816 0.44 0.58 1.02
235 245 665,714 1,259,287 0.56 1.87 2.43
235 260 665,714 168,263 0.56 0.57 1.12
235 245 798,859 199,786 0.67 0.30 0.96
235 260 798,859 168,169 0.67 0.56 1.23
235 245 932,002 552,328 0.78 0.82 1.59
235 260 932,003 187,170 0.78 0.63 1.41
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Appendix C. Experimental Results Three-Level Block Loading

Table A7. Experimental results three-level block loading, specimens extracted from the trans-
verse direction.

Type σa1 σa2 σa3 n1E n2E n3E
n1

N1

n2E

N2

n3E

N3
∑

niE

Ni

H–L–M 260 235 242 95,945 438,050 187,988 0.33 0.33 0.22 0.88
H–L–M 260 235 254 95,943 438,050 252,269 0.33 0.33 0.61 1.27

H–M–L 260 254 235 95,945 136,246 540,687 0.33 0.33 0.41 1.07
H–M–L 260 242 235 95,945 235,057 * N/A 0.33 0.28 N/A 0.61
H–M–L 260 242 235 95,945 281,866 430,011 0.33 0.33 0.32 0.98

L–M–H 235 254 260 438,052 136,246 89,913 0.33 0.33 0.31 0.97
L–M–H 235 242 260 483,053 281,866 107,603 0.36 0.33 0.37 1.06

L–H–M 235 260 242 438,050 95,943 161,885 0.33 0.33 0.19 0.85
L–H–M 235 260 254 438,050 95,943 165,100 0.33 0.33 0.40 1.06

M–H–L 254 260 235 136,246 95,945 1,532,312 0.33 0.33 1.15 1.82
M–H–L 242 260 235 281,867 95,945 57,539 0.33 0.33 0.04 0.70

M–L–H 254 235 N/A 136,246 282,973 * N/A 0.33 0.22 N/A 0.55
M–L–H 242 235 260 281,869 438,050 129,246 0.33 0.33 0.44 1.11

*: Failed in second block. N/A: Not Applicable.

Table A8. Experimental results three-level block loading, specimens extracted from the rolling direction.

Type σa1 σa2 σa3 n1E n2E n3E
n1

N1

n2E

N2

n3E

N3
∑

niE

Ni

H–L–M 260 235 251 98,405 367,498 * N/A 0.33 0.31 N/A 0.64
H–L–M 260 235 242 98,405 176,340 * N/A 0.33 0.15 N/A 0.48

H–M–L 260 243 235 98,405 249,490 561,935 0.33 0.33 0.47 1.14
H–M–L 260 251 234 98,405 159,776 201,720 0.33 0.33 0.17 0.83

L–H–M 235 260 251 395,435 98,405 31 158 0.33 0.33 0.06 0.72
L–H–M 235 260 242 395,435 98,405 247 761 0.33 0.33 0.33 0.99

L–M–H 243 251 260 249,490 159,776 212,263 0.33 0.33 0.71 1.37
L–M–H 235 251 260 395,435 159,776 254,015 0.33 0.33 0.85 1.51
L–M–H 235 243 260 395,435 249,490 208,317 0.33 0.33 0.70 1.35

M–H–L 243 260 235 249,490 98,405 138,319 0.33 0.33 0.12 0.78
M–H–L 251 260 234 159,776 98,405 492,782 0.33 0.33 0.41 1.07

M–L–H 243 235 260 249,490 395,435 72,283 0.33 0.33 0.24 0.90
M–L–H 251 243 260 159,776 249,490 106,540 0.33 0.33 0.36 1.02
M–L–H 251 235 260 159,776 395,435 275,069 0.33 0.33 0.92 1.59

*: Failed in second block. N/A: Not Applicable.
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