# Literature Review on Thermomechanical Modelling and Analysis of Residual Stress Effects in Wire Arc Additive Manufacturing

^{*}

## Abstract

**:**

## 1. Introduction

_{2}is actively used in the interpass cooling. The temperature in the building rises as the thermal mass increases with energy input. To track thermal gradients and ensure proper thermal management, non-contact thermal monitoring, that is, thermal imaging, can be used [23,24]. Heat input accumulation during layer deposition causes high RS in WAAM components. The results of RS developed in the products are defects such as delamination, cracks, distortion, and low fatigue life [25].

## 2. Materials and Methods

## 3. Thermomechanical Modeling of the WAAM Process

#### 3.1. Thermal Modeling

#### 3.2. Mechanical Modeling

## 4. Analysis of Residual Stress Effects in WAAM Components

#### 4.1. Method of Measuring Residual Stress during and after Processing

#### 4.2. Method of Minimizing Residual Stress and Distortion

- (1)
- (2)
- (3)
- dwell time after layer deposition [124];
- (4)
- machining between intermittent layers [108]; and
- (5)
- laser shock peening [114].

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Ding, J.; Williams, S.W. Thermo-mechanical Analysis of Wire and Arc Additive Manufacturing Process. Ph.D. Thesis, Cranfield University, Bedford, UK, 2012; pp. 40–187. [Google Scholar]
- Williams, S.W.; Martina, F.; Addison, A.C.; Ding, J.; Pardal, G.; Colegrove, P. Wire + Arc additive manufacturing. Mater. Sci. Technol.
**2016**, 32, 641–647. [Google Scholar] [CrossRef][Green Version] - Ho, A.; Zhao, H.; Fellowes, J.W.; Martina, F.; Davis, A.E.; Prangnell, P.B. On the origin of microstructural banding in Ti-6Al4V wire-arc based high deposition rate additive manufacturing. Acta Mater.
**2019**, 166, 306–323. [Google Scholar] [CrossRef] - Müller, J.; Grabowski, M.; Müller, C.; Hensel, J.; Unglaub, J.; Thiele, K.; Dilger, K. Design and parameter identification of wire and arc additively manufactured (WAAM) steel bars for use in construction. Metals
**2019**, 9, 725. [Google Scholar] [CrossRef][Green Version] - Chaturvedi, M.; Scutelnicu, E.; Rusu, C.C.; Mistodie, L.R.; Mihailescu, D.; Arungalai Vendan, S. Wire arc additive manufacturing: Review on recent findings and challenges in industrial applications and materials characterization. Metals
**2021**, 11, 939. [Google Scholar] [CrossRef] - Barath Kumar, M.D.; Manikandan, M. Assessment of Process, Parameters, Residual Stress Mitigation, Post Treatments and Finite Element Analysis Simulations of Wire Arc Additive Manufacturing Technique. Met. Mater. Int.
**2022**, 28, 54–111. [Google Scholar] [CrossRef] - Mansoor, O.; Wahdatullah, N.; Harshavardhana, N. Wire Arc Additive Manufacturing (WAAM) of Inconel 625 Alloy and its Microstructure and Mechanical Properties. Int. Res. J. Eng. Technol.
**2021**, 8, 1517–1528. [Google Scholar] - Rusteiko, A.C.; Angelo, J.D.; del Conte, E.G.D. Residual stress in metal arc additive manufacturing of mill knives cutting edges. Int. J. Adv. Manuf. Technol.
**2019**, 104, 4457–4464. [Google Scholar] [CrossRef] - Wu, Q.; Mukherjee, T.; De, A.; DebRoy, T. Residual stresses in wire-arc additive manufacturing—Hierarchy of influential variables. Addit. Manuf.
**2020**, 35, 101355. [Google Scholar] [CrossRef] - Ding, D.; Zhang, S.; Lu, Q.; Pan, Z.; Li, H.; Wang, K. The well-distributed volumetric heat source model for numerical simulation of wire arc additive manufacturing process. Mater. Today Commun.
**2021**, 27, 102430. [Google Scholar] [CrossRef] - Oyama, K.; Diplas, S.; M’hamdi, M.; Gunnæs, A.E.; Azar, A.S. Heat source management in wire-arc additive manufacturing process for Al-Mg and Al-Si alloys. Addit. Manuf.
**2019**, 26, 180–192. [Google Scholar] [CrossRef] - Saadatmand, M.; Talemi, R. Study on the thermal cycle of wire arc additive manufactured (WAAM) carbon steel wall using numerical simulation. Frat. Ed. Integrita Strutt.
**2020**, 14, 98–104. [Google Scholar] [CrossRef] - Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H.; Xu, J.; Norrish, J. A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement. J. Manuf. Process.
**2018**, 35, 127–139. [Google Scholar] [CrossRef] - Li, R.; Xiong, J.; Lei, Y. Investigation on thermal stress evolution induced by wire and arc additive manufacturing for circular thin-walled parts. J. Manuf. Process.
**2019**, 40, 59–67. [Google Scholar] [CrossRef] - Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing. Addit. Manuf.
**2018**, 23, 151–160. [Google Scholar] [CrossRef] - Shen, C.; Ma, Y.; Reid, M.; Pan, Z.; Hua, X.; Cuiuri, D.; Paradowska, A.; Wand, L.; Li, H. Neutron diffraction residual stress determinations in titanium aluminide component fabricated using the twin wire-arc additive manufacturing. J. Manuf. Process.
**2022**, 74, 141–150. [Google Scholar] [CrossRef] - Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. Wire-feed additive manufacturing of metal components: Technologies, developments and future interests. Int. J. Adv. Manuf. Technol.
**2015**, 81, 465–481. [Google Scholar] [CrossRef] - Köhler, M.; Hensel, J.; Dilger, K. Effects of thermal cycling on wire and arc additive manufacturing of al-5356 components. Metals
**2020**, 10, 952. [Google Scholar] [CrossRef] - Youheng, F.; Guilan, W.; Haiou, Z.; Liye, L. Optimization of surface appearance for wire and arc additive manufacturing of Bainite steel. Int. J. Adv. Manuf. Technol.
**2017**, 91, 301–313. [Google Scholar] [CrossRef] - Ou, W.; Mukherjee, T.; Knapp, G.L.; Wei, Y.; DebRoy, T. Fusion zone geometries, cooling rates and solidification parameters during wire arc additive manufacturing. Int. J. Heat Mass. Transf.
**2018**, 127, 1084–1094. [Google Scholar] [CrossRef] - Li, J.L.Z.; Alkahari, M.R.; Rosli, N.A.B.; Hasan, R.; Sudin, M.N.; Ramli, F.R. Review of wire arc additive manufacturing for 3d metal printing. Int. J. Autom. Technol.
**2019**, 13, 346–353. [Google Scholar] [CrossRef] - Evjemo, L.D.; Langelandsvik, G.; Moe, S.; Danielsen, M.H.; Gravdahl, J.T. Wire-arc additive manufacturing of structures with overhang: Experimental results depositing material onto fixed substrate. CIRP J. Manuf. Sci. Technol.
**2022**, 38, 186–203. [Google Scholar] [CrossRef] - Wu, B.; Pan, Z.; Chen, G.; Ding, D.; Yuan, L.; Cuiuri, D.; Li, H. Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling. Sci. Technol. Weld. Join.
**2019**, 24, 484–494. [Google Scholar] [CrossRef][Green Version] - Baier, D.; Wolf, F.; Weckenmann, M.; Zaeh, M.F. Thermal process monitoring and control for a near-net-shape Wire and Arc Additive Manufacturing. Prod. Eng.
**2022**, 16, 811–822. [Google Scholar] [CrossRef] - Srivastava, S.; Garg, R.K.; Sachdeva, A.; Sharma, V.S. Distribution of Residual Stress in Wire-Arc Additively Manufactured Small-Scale Component: Single- Versus Multi-Level Heat Input. J. Manuf. Sci. Eng.
**2022**, 145, 021008. [Google Scholar] [CrossRef] - Veiga, F.; Suárez, A.; Artaza, T.; Aldalur, E. Efect of the Heat Input on Wire-Arc Additive Manufacturing of Invar 36 Alloy: Microstructure and Mechanical Properties. Weld. World
**2022**, 66, 1081–1091. [Google Scholar] [CrossRef] - Pixner, F.; Buzolin, R.; Schönfelder, S.; Theuermann, D.; Warchomicka, F.; Enzinger, N. Contactless temperature measurement in wire-based electron beam additive manufacturing Ti-6Al-4V. Weld. World
**2021**, 65, 1307–1322. [Google Scholar] [CrossRef] - Rodrigues, T.A.; Duarte, V.; Avila, J.A.; Santos, T.G.; Miranda, R.M.; Oliveira, J.P. Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical properties. Addit. Manuf.
**2019**, 27, 440–450. [Google Scholar] [CrossRef] - Nagasai, B.P.; Malarvizhi, S.; Balasubramanian, V. Effect of welding processes on mechanical and metallurgical characteristics of carbon steel cylindrical components made by wire arc additive manufacturing (WAAM) technique. CIRP J. Manuf. Sci. Technol.
**2022**, 36, 100–116. [Google Scholar] [CrossRef] - Ding, J.; Colegrove, P.; Mehnen, J.; Ganguly, S.; Almeida, P.M.S.; Wang, F.; Williams, S. Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts. Comput. Mater. Sci.
**2011**, 50, 3315–3322. [Google Scholar] [CrossRef][Green Version] - Cambon, C.; Rouquette, S.; Bendaoud, I.; Bordreuil, C.; Wimpory, R.; Soulié, F. Thermo-mechanical simulation of overlaid layers made with wire + arc additive manufacturing and GMAW-cold metal transfer. Weld. World
**2020**, 64, 1427–1435. [Google Scholar] [CrossRef] - Thapliyal, S. Challenges associated with the wire arc additive manufacturing (WAAM) of aluminum alloys. Mater. Res. Express.
**2019**, 6, 112006. [Google Scholar] [CrossRef] - Sikan, F.; Wanjara, P.; Gholipour, J.; Kumar, A.; Brochu, M. Thermo-mechanical modeling of wire-fed electron beam additive manufacturing. Materials
**2021**, 14, 911. [Google Scholar] [CrossRef] [PubMed] - Cui, J.; Yuan, L.; Commins, P.; He, F.; Wang, J.; Pan, Z. WAAM process for metal block structure parts based on mixed heat input. Int. J. Adv. Manuf. Technol.
**2021**, 113, 503–521. [Google Scholar] [CrossRef] - Chergui, A.; Villeneuve, F.; Béraud, N.; Vignat, F. Thermal simulation of wire arc additive manufacturing: A new material deposition and heat input modelling. Int. J. Interact. Des. Manuf.
**2022**, 16, 227–237. [Google Scholar] [CrossRef] - Tangestani, R.; Farrahi, G.H.; Shishegar, M.; Aghchehkandi, B.P.; Ganguly, S.; Mehmanparast, A. Effects of Vertical and Pinch Rolling on Residual Stress Distributions in Wire and Arc Additively Manufactured Components. J. Mater. Eng. Perform.
**2020**, 29, 2073–2084. [Google Scholar] [CrossRef][Green Version] - Geng, H.; Li, J.; Xiong, J.; Lin, X.; Zhang, F. Optimization of wire feed for GTAW based additive manufacturing. J. Mater. Process. Technol.
**2017**, 243, 40–47. [Google Scholar] [CrossRef] - Goulas, A.; Southcott-Engstrøm, D.; Friel, R.J.; Harris, R.A. Investigation of additive manufacture of extra-terrestrial materials. In Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference Reviewed Paper, Austin, TX, USA, 10–12 August 2015; pp. 2271–2281. [Google Scholar]
- Carter, W.; Masuo, C.; Nycz, A.; Noakes, M.; Vaughan, D. Thermal process monitoring for wire-arc additive manufacturing using IR cameras. In Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference Reviewed Paper, Austin, TX, USA, 8–10 August 2019; pp. 1812–1817. [Google Scholar]
- Israr, R.; Buhl, J.; Bambach, M. A study on power-controlled wire-arc additive manufacturing using a data-driven surrogate model. Int. J. Adv. Manuf. Technol.
**2021**, 117, 2133–2147. [Google Scholar] [CrossRef] - Yang, Y.; Zhou, X.; Li, Q.; Ayas, C. A computationally efficient thermo-mechanical model for wire arc additive manufacturing. Addit. Manuf.
**2021**, 46, 102090. [Google Scholar] [CrossRef] - Bui, M.C.; Pham, T.Q.D.; Tran, H.S.; Van Tran, X. Efficient prediction of thermal history in wire and arc-directed energy deposition combining machine learning and numerical simulation. Res. Sq.
**2022**, 23, 0–23. [Google Scholar] - Treutler, K.; Wesling, V. The current state of research of wire arc additive manufacturing (Waam): A review. Appl. Sci.
**2021**, 11, 8619. [Google Scholar] [CrossRef] - Srivastava, S.; Garg, R.K.; Sharma, V.S.; Sachdeva, A. Measurement and Mitigation of Residual Stress in Wire-Arc Additive Manufacturing: A Review of Macro-Scale Continuum Modelling Approach. Arch. Comput. Methods Eng.
**2021**, 28, 3491–3515. [Google Scholar] [CrossRef] - Cao, H.; Huang, R.; Yi, H.; Liu, M.L.; Jia, L. Asymmetric molten pool morphology in wire-arc directed energy deposition: Evolution mechanism and suppression strategy. Addit. Manuf.
**2022**, 59, 03113. [Google Scholar] [CrossRef] - Zhou, Z.; Shen, H.; Lin, J.; Liu, B.; Sheng, X. Continuous tool-path planning for optimizing thermo-mechanical properties in wire-arc additive manufacturing: An evolutional method. J. Manuf. Process.
**2022**, 83, 354–373. [Google Scholar] [CrossRef] - Derekar, K.S. Aspects of Wire Arc Additive Manufacturing (WAAM) of Alumnium Alloy 5183. Ph.D. Thesis, Coventry University, Coventry, UK, 2020; pp. 1–227. [Google Scholar]
- Kumar, N.; Bhavsar, H.; Mahesh, P.V.S.; Srivastava, A.K.; Bora, B.J.; Saxena, A.; Dixit, A.R. Wire Arc Additive Manufacturing—A revolutionary method in additive manufacturing. Mater. Chem. Phys.
**2022**, 285, 126144. [Google Scholar] [CrossRef] - Jafari, D.; Vaneker, T.H.J.; Gibson, I. Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts. Mater. Des.
**2021**, 202, 109471. [Google Scholar] [CrossRef] - Singh, C.P.; Sarma, R.; Kapil, S. The qualitative analysis of warpage on residual stresses in wire arc additive manufacturing. Mater. Today Proc.
**2022**, 62, 6619–6627. [Google Scholar] [CrossRef] - Feng, G.; Wang, H.; Wang, Y.; Deng, D.; Zhang, J. Numerical Simulation of Residual Stress and Deformation in Wire Arc Additive Manufacturing. Crystals
**2022**, 12, 803. [Google Scholar] [CrossRef] - Gornyakov, V.; Sun, Y.; Ding, J.; Williams, S. Efficient determination and evaluation of steady-state thermal-mechanical variables generated by wire arc additive manufacturing and high pressure rolling. Model. Simul. Mater. Sci. Eng.
**2022**, 30, 014001. [Google Scholar] [CrossRef] - Ahmad, S.N.; Manurung, Y.H.P.; Mat, M.F.; Minggu, Z.; Jaffar, A.; Pruller, S.; Leitner, M. FEM simulation procedure for distortion and residual stress analysis of wire arc additive manufacturing. IOP Conf. Ser. Mater. Sci. Eng.
**2020**, 834, 012083. [Google Scholar] [CrossRef] - Belhadj, M.; Werda, S.; Belhadj, A.; Kromer, R.; Darnis, P. Thermal analysis of wire arc additive manufacturing process. In Proceedings of the 24th International Conference on Material Forming 2021, Liège, Belgium, 14–16 April 2021; pp. 2018–2022. [Google Scholar]
- Montevecchi, F.; Venturini, G.; Scippa, A.; Campatelli, G. Finite Element Modelling of Wire-arc-additive-manufacturing Process. Procedia CIRP
**2016**, 55, 109–114. [Google Scholar] [CrossRef][Green Version] - Wu, B.; Ding, D.; Pan, Z.; Cuiuri, D.; Li, H.; Han, J.; Fei, Z. Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V. J. Mater. Process. Technol.
**2017**, 250, 304–312. [Google Scholar] [CrossRef] - Wu, B.; Pan, Z.; van Duin, S.; Li, H. Thermal Behavior in Wire Arc Additive Manufacturing: Characteristics, Effects and Control; Springer: Singapore, 2019. [Google Scholar]
- Dharmendra, C.; Shakerin, S.; Ram, G.D.J.; Mohammadi, M. Wire-arc additive manufacturing of nickel aluminum bronze/stainless steel hybrid parts interfacial characterization, prospects, and problems. Materialia
**2020**, 13, 100834. [Google Scholar] [CrossRef] - Park, J.; Lee, S.H. Cmt-based wire arc additive manufacturing using 316l stainless steel (2): Solidification map of the multilayer deposit. Metals
**2021**, 11, 1725. [Google Scholar] [CrossRef] - Geng, H.; Li, J.; Xiong, J.; Lin, X. Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy. Sci. Technol. Weld. Join.
**2017**, 22, 472–483. [Google Scholar] [CrossRef] - Ou, W.; Knapp, G.L.; Mukherjee, T.; Wei, Y.; DebRoy, T. An improved heat transfer and fluid flow model of wire-arc additive manufacturing. Int. J. Heat Mass. Transf.
**2021**, 167, 120835. [Google Scholar] [CrossRef] - Rosli, N.A.; Alkahari, M.R.; bin Abdollah, M.F.; Maidin, S.; Ramli, F.R.; Herawan, S.G. Review on effect of heat input for wire arc additive manufacturing process. J. Mater. Res. Technol.
**2021**, 11, 2127–2145. [Google Scholar] [CrossRef] - Li, F.; Chen, S.; Shi, J.; Zhao, Y.; Tian, H. Thermoelectric cooling-aided bead geometry regulation in wire and arc-based additive manufacturing of thin-walled structures. Appl. Sci.
**2018**, 8, 207. [Google Scholar] [CrossRef][Green Version] - Panchenko, O.; Kladov, I.; Kurushkin, D.; Zhabrev, L.; Ryl’kov, E.; Zamozdra, M. Effect of thermal history on microstructure evolution and mechanical properties in wire arc additive manufacturing of HSLA steel functionally graded components. Mater. Sci. Eng. A
**2022**, 851, 143569. [Google Scholar] [CrossRef] - Chen, S.; Xu, M.; Yuan, T.; Jiang, X.; Zhang, H.; Zheng, X. Thermal–microstructural analysis of the mechanism of liquation cracks in wire-arc additive manufacturing of Al–Zn–Mg–Cu alloy. J. Mater. Res. Technol.
**2022**, 16, 1260–1271. [Google Scholar] [CrossRef] - Sun, J.; Hensel, J.; Köhler, M.; Dilger, K. Residual stress in wire and arc additively manufactured aluminum components. J. Manuf. Process.
**2021**, 65, 97–111. [Google Scholar] [CrossRef] - Ríos, S.; Colegrove, P.A.; Martina, F.; Williams, S.W. Analytical process model for wire + arc additive manufacturing. Addit. Manuf.
**2018**, 21, 651–657. [Google Scholar] [CrossRef] - Derekar, K.; Lawrence, J.; Melton, G.; Addison, A.; Zhang, X.; Xu, L. Influence of Interpass Temperature on Wire Arc Additive Manufacturing (WAAM) of Aluminium Alloy Components. MATEC Web. Conf.
**2019**, 269, 05001. [Google Scholar] [CrossRef] - Scotti, F.M.; Teixeira, F.R.; da Silva, L.J.; de Araújo, D.B.; Reis, R.P.; Scotti, A. Thermal management in WAAM through the CMT Advanced process and an active cooling technique. J. Manuf. Process.
**2020**, 57, 23–35. [Google Scholar] [CrossRef] - Hönnige, J.; Colegrove, P.; Prangnell, P.; Ho, A.; Williams, S. The Effect of Thermal History on Microstructural Evolution, Cold-Work Refinement and {\alpha}/\b{eta} Growth in Ti-6Al-4V Wire + Arc AM. arXiv
**2018**, preprint. arXiv:1811.02903. [Google Scholar] - Kozamernik, N.; Bračun, D.; Klobčar, D. WAAM system with interpass temperature control and forced cooling for near-net-shape printing of small metal components. Int. J. Adv. Manuf. Technol.
**2020**, 110, 1955–1968. [Google Scholar] [CrossRef] - Singh, S.; Jinoop, A.N.; Tarun Kumar, G.T.A.; Palani, I.A.; Paul, C.P.; Prashanth, K.G. Effect of interlayer delay on the microstructure and mechanical properties of wire arc additive manufactured wall structures. Materials
**2021**, 14, 4187. [Google Scholar] [CrossRef] - Lopez, A.; Bacelar, R.; Pires, I.; Santos, T.G.; Sousa, J.P.; Quintino, L. Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Addit. Manuf.
**2018**, 21, 298–306. [Google Scholar] [CrossRef] - Köhler, M.; Sun, L.; Hensel, J.; Pallaspuro, S.; Kömi, J.; Dilger, K.; <monospace> </monospace>Zhang, Z. Comparative study of deposition patterns for DED-Arc additive manufacturing of Al-4046. Mater. Des.
**2021**, 210, 110122. [Google Scholar] [CrossRef] - Jorge, V.L.; Teixeira, F.R. Pyrometrical Interlayer Temperature Measurement in WAAM of Thin Wall: Strategies, Limitations and Functionality. Metals
**2022**, 12, 765. [Google Scholar] [CrossRef] - Richter, A.; Gehling, T.; Treutler, K.; Wesling, V.; Rembe, C. Real-time measurement of temperature and volume of the weld pool in wire-arc additive manufacturing. Meas. Sensors
**2021**, 17, 100060. [Google Scholar] [CrossRef] - Mohebbi, M.S.; Kühl, M.; Ploshikhin, V. A thermo-capillary-gravity model for geometrical analysis of single-bead wire and arc additive manufacturing (WAAM). Int. J. Adv. Manuf. Technol.
**2020**, 109, 877–891. [Google Scholar] [CrossRef] - Artaza, T.; Suárez, A.; Veiga, F.; Braceras, I.; Tabernero, I.; Larrañaga, O.; Lamikiz, A. Wire arc additive manufacturing Ti6Al4V aeronautical parts using plasma arc welding: Analysis of heat-treatment processes in different atmospheres. J. Mater. Res. Technol.
**2020**, 9, 15454–15466. [Google Scholar] [CrossRef] - Srivastava, S.; Garg, R.K.; Sachdeva, A.; Sharma, V.S. A multi-tier layer-wise thermal management study for long-scale wire-arc additive manufacturing. J. Mater. Process. Technol.
**2022**, 306, 117651. [Google Scholar] [CrossRef] - Seow, C.E.; Coules, H.E.; Wu, G.; Khan, R.H.U.; Xu, X.; Williams, S. Wire + Arc Additively Manufactured Inconel 718: Effect of post-deposition heat treatments on microstructure and tensile properties. Mater. Des.
**2019**, 183, 108157. [Google Scholar] [CrossRef] - Vishnukumar, M.; Muthupandi, V.; Jerome, S. Effect of post-heat treatment on the mechanical and corrosion behaviour of SS316L fabricated by wire arc additive manufacturing. Mater. Lett.
**2022**, 307, 131015. [Google Scholar] [CrossRef] - Nadeem, M.F.; Ahmed, B. Thermo-Mechanical Modelling and Experimental Verification of Distortion and Residual Stress for S355J2G3 Plate Welded by using Different Filler. J. Sp. Technol.
**2019**, 9, 71–82. [Google Scholar] - Chen, S.; He, T.; Wu, X.; Lei, G. Synergistic effect of carbides and residual strain on the mechanical behavior of Ni-17Mo-7Cr superalloy made by wire-arc additive manufacturing. Mater. Lett.
**2021**, 287, 129291. [Google Scholar] [CrossRef] - Hejripour, F.; Binesh, F.; Hebel, M.; Aidun, D.K. Thermal modeling and characterization of wire arc additive manufactured duplex stainless steel. J. Mater. Process. Technol.
**2019**, 272, 58–71. [Google Scholar] [CrossRef] - Bonifaz, E.A. Modelling of Thermal Transport in Wire + Arc Additive Manufacturing Process. Lect. Notes Comput. Sci.
**2019**, 11539, 647–659. [Google Scholar] - da Silva, L.J.; Souza, D.M.; de Araújo, D.B.; Reis, R.P.; Scotti, A. Concept and validation of an active cooling technique to mitigate heat accumulation in WAAM. Int. J. Adv. Manuf. Technol.
**2020**, 107, 2513–2523. [Google Scholar] [CrossRef] - Jimenez, X.; Dong, W.; Paul, S.; Klecka, M.A.; To, A.C. Residual Stress Modeling with Phase Transformation for Wire Arc Additive Manufacturing of B91 Steel. Jom
**2020**, 72, 4178–4186. [Google Scholar] [CrossRef] - Zhang, X.; Wang, K.; Zhou, Q.; Ding, J.; Ganguly, S.; Grasso, M.; Williams, S. Microstructure and mechanical properties of TOP-TIG-wire and arc additive manufactured super duplex stainless steel (ER2594). Mater. Sci. Eng. A
**2019**, 762, 138097. [Google Scholar] [CrossRef] - Norrish, J.; Polden, J.; Richardson, I. A review of wire arc additive manufacturing: Development, principles, process physics, implementation and current status. J. Phys. D. Appl. Phys.
**2021**, 54, 473001. [Google Scholar] [CrossRef] - Bonifaz, E.A.; Palomeque, J.S. A mechanical model in wire + Arc additive manufacturing process. Prog. Addit. Manuf.
**2020**, 5, 163–169. [Google Scholar] [CrossRef] - Huang, H.; Ma, N.; Chen, J.; Feng, Z.; Murakawa, H. Toward large-scale simulation of residual stress and distortion in wire and arc additive manufacturing. Addit. Manuf.
**2020**, 34, 101248. [Google Scholar] [CrossRef] - Zhou, Z.; Shen, H.; Liu, B.; Du, W.; Jin, J.; Lin, J. Residual thermal stress prediction for continuous tool-paths in wire-arc additive manufacturing: A three-level data-driven method. Virtual Phys. Prototyp.
**2022**, 17, 105–124. [Google Scholar] [CrossRef] - Abusalma, H.; Eisazadeh, H.; Hejripour, F.; Bunn, J.; Aidun, D.K. Parametric study of residual stress formation in Wire and Arc Additive Manufacturing. J. Manuf. Process.
**2022**, 75, 863–876. [Google Scholar] [CrossRef] - Tang, S.; Wang, G.; Huang, C.; Li, R.; Zhou, S.; Zhang, H. Investigation, modeling and optimization of abnormal areas of weld beads in wire and arc additive manufacturing. Rapid Prototyp. J.
**2020**, 26, 1183–1195. [Google Scholar] [CrossRef] - Raut, L.P.; Taiwade, R.V. Wire Arc Additive Manufacturing: A Comprehensive Review and Research Directions. J. Mater. Eng. Perform.
**2021**, 30, 4768–4791. [Google Scholar] [CrossRef] - Hejripour, F.; Valentine, D.T.; Aidun, D.K. Study of mass transport in cold wire deposition for Wire Arc Additive Manufacturing. Int. J. Heat Mass Transf.
**2018**, 125, 471–484. [Google Scholar] [CrossRef] - Vimal, K.E.K.; Naveen Srinivas, M.; Rajak, S. Wire arc additive manufacturing of aluminium alloys: A review. Mater. Today Proc.
**2019**, 41, 1139–1145. [Google Scholar] [CrossRef] - Zhang, J.; Wang, X.; Paddea, S.; Zhang, X. Fatigue crack propagation behaviour in wire+arc additive manufactured Ti-6Al-4V: Effects of microstructure and residual stress. Mater. Des.
**2016**, 90, 551–561. [Google Scholar] [CrossRef] - Derekar, K.S.; Addison, A.; Joshi, S.S.; Zhang, X.; Lawrence, J.; Xu, L.; Melton, G.; Griffiths, D. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium. Int. J. Adv. Manuf. Technol.
**2020**, 107, 311–331. [Google Scholar] [CrossRef] - Derekar, K.S.; Ahmad, B.; Zhang, X.; Joshi, S.S.; Lawrence, J.; Xu, L.; Melton, G.; Addison, A. Effects of Process Variants on Residual Stresses in Wire Arc Additive Manufacturing of Aluminum Alloy 5183. J. Manuf. Sci. Eng. Trans. ASME
**2022**, 144, 1–13. [Google Scholar] [CrossRef] - Yildiz, A.S.; Koc, B.I.; Yilmaz, O. Thermal behavior determination for wire arc additive manufacturing process. Procedia Manuf.
**2020**, 54, 233–237. [Google Scholar] [CrossRef] - Pawlik, J.; Cieślik, J.; Bembenek, M.; Góral, T.; Kapayeva, S.; Kapkenova, M. On the Influence of Linear Energy/Heat Input Coefficient on Hardness and Weld Bead Geometry in Chromium-Rich Stringer GMAW Coatings. Materials
**2022**, 15, 6019. [Google Scholar] [CrossRef] [PubMed] - Shen, C.; Reid, M.; Liss, K.D.; Pan, Z.; Ma, Y.; Cuiuri, D.; <monospace> </monospace>Van Duin, S.; Li, H. Neutron diffraction residual stress determinations in Fe3Al based iron aluminide components fabricated using wire-arc additive manufacturing (WAAM). Addit. Manuf.
**2019**, 29, 100774. [Google Scholar] [CrossRef] - Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in components. Mater. Des.
**2012**, 35, 572–588. [Google Scholar] [CrossRef][Green Version] - Carpenter, K.; Tabei, A. On residual stress development, prevention, and compensation in metal additive manufacturing. Materials
**2020**, 13, 255. [Google Scholar] [CrossRef][Green Version] - Martina, F.; Roy, M.J.; Szost, B.A.; Terzi, S.; Colegrove, P.A.; Williams, S.W.; Withers, P.J.; Meyer, J.; Hofmann, M. Residual stress of as-deposited and rolled wire+arc additive manufacturing Ti–6Al–4V components. Mater. Sci. Technol.
**2016**, 32, 1439–1448. [Google Scholar] [CrossRef][Green Version] - Liu, C.; Lin, C.; Wang, J.; Wang, J.; Yan, L.; Luo, Y.; Yang, M. Residual stress distributions in thick specimens excavated from a large circular wire+arc additive manufacturing mockup. J. Manuf. Process.
**2020**, 56, 474–481. [Google Scholar] [CrossRef] - Hönnige, J.R.; Colegrove, P.A.; Ahmad, B.; Fitzpatrick, M.E.; Ganguly, S.; Lee, T.L.; Williams, S.W. Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling. Mater. Des.
**2018**, 150, 193–205. [Google Scholar] [CrossRef][Green Version] - Acevedo, R.; Sedlak, P.; Kolman, R.; Fredel, M. Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review. J. Mater. Res. Technol.
**2020**, 9, 9457–9477. [Google Scholar] [CrossRef] - Shaloo, M.; Schnall, M.; Klein, T.; Huber, N.; Reitinger, B. A Review of Non-Destructive Testing (NDT) Techniques for Defect Detection: Application to Fusion Welding and Future Wire Arc Additive Manufacturing Processes. Materials
**2022**, 15, 3697. [Google Scholar] [CrossRef] - Wang, X.; Wang, A. Finite element analysis of clamping form in wire and arc additive manufacturing. In Proceedings of the 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, 4–6 April 2017; pp. 1–5. [Google Scholar]
- Zhang, C.; Shen, C.; Hua, X.; Li, F.; Zhang, Y.; Zhu, Y. Influence of wire-arc additive manufacturing path planning strategy on the residual stress status in one single buildup layer. Int. J. Adv. Manuf. Technol.
**2020**, 111, 797–806. [Google Scholar] [CrossRef] - Jhavar, S. Wire Arc Additive Manufacturing: Approaches and Future Prospects; Woodhead Publishing: Sawston, UK, 2021. [Google Scholar]
- Sun, R.; Li, L.; Zhu, Y.; Guo, W.; Peng, P.; Cong, B.; Sun, J.; Che, Z.; Li, B.; Guo, C. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening. J. Alloys Compd.
**2018**, 747, 255–265. [Google Scholar] [CrossRef] - Hönnige, J.; Seow, C.E.; Ganguly, S.; Xu, X.; Cabeza, S.; Coules, H.; <monospace> </monospace>Williams, S. Study of residual stress and microstructural evolution in as-deposited and inter-pass rolled wire plus arc additively manufactured Inconel 718 alloy after ageing treatment. Mater. Sci. Eng. A.
**2021**, 801, 140368. [Google Scholar] [CrossRef] - Halisch, C.; Radel, T.; Tyralla, D.; Seefeld, T. Measuring the melt pool size in a wire arc additive manufacturing process using a high dynamic range two-colored pyrometric camera. Weld. World
**2020**, 64, 1349–1356. [Google Scholar] [CrossRef][Green Version] - Shen, H.; Lin, J.; Zhou, Z.; Liu, B. Effect of induction heat treatment on residual stress distribution of components fabricated by wire arc additive manufacturing. J. Manuf. Process.
**2022**, 75, 331–345. [Google Scholar] [CrossRef] - Tanvir, A.N.M.; Ahsan, M.R.; Ji, C.; Hawkins, W.; Bates, B.; Kim, D.B. Heat treatment effects on Inconel 625 components fabricated by wire + arc additive manufacturing. Int. J. Adv. Manuf. Technol.
**2019**, 103, 3785–3798. [Google Scholar] [CrossRef] - Huang, J.; Li, Z.; Yu, S.; Yu, X.; Fan, D. Real-time observation and numerical simulation of the molten pool flow and mass transfer behavior during wire arc additive manufacturing. Weld. World
**2022**, 66, 481–494. [Google Scholar] [CrossRef] - Donoghue, J.; Antonysamy, A.A.; Martina, F.; Colegrove, P.A.; Williams, S.W.; Prangnell, P.B. The effectiveness of combining rolling deformation with Wire-Arc Additive Manufacture on β-grain refinement and texture modification in Ti-6Al-4V. Mater. Charact.
**2016**, 114, 103–114. [Google Scholar] [CrossRef] - Yang, Y.; Jin, X.; Liu, C.; Xiao, M.; Lu, J.; Fan, H.; Ma, S. Residual stress, mechanical properties, and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted wire and arc additive manufacturing. Metals
**2018**, 8, 934. [Google Scholar] [CrossRef][Green Version] - Colegrove, P.A.; Coules, H.E.; Fairman, J.; Martina, F.; Kashoob, T.; Mamash, H.; Cozzolino, L.D. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. J. Mater. Process. Technol.
**2013**, 213, 1782–1791. [Google Scholar] [CrossRef] - Li, R.; Xiong, J. Influence of interlayer dwell time on stress field of thin-walled components in WAAM via numerical simulation and experimental tests. Rapid. Prototyp. J.
**2019**, 25, 1433–1441. [Google Scholar] [CrossRef] - Montevecchi, F.; Venturini, G.; Grossi, N.; Scippa, A.; Campatelli, G. Heat accumulation prevention in Wire-Arc-Additive-Manufacturing using air jet impingement. Manuf. Lett.
**2018**, 17, 14–18. [Google Scholar] [CrossRef] - Nagamatsu, H.; Sasahara, H. Improvement of Cooling Effect and Dimensional Accuracy of Wire and Arc Additive Manufactured Magnesium Alloy by Active-Cooling-Based Contacting Copper Blocks. J. Manuf. Mater. Process.
**2022**, 6, 27. [Google Scholar] [CrossRef] - Maurya, A.K.; Yeom, J.T.; Kang, S.W.; Park, C.H.; Hong, J.K.; Reddy, N.S. Optimization of hybrid manufacturing process combining forging and wire-arc additive manufactured Ti-6Al-4V through hot deformation characterization. J. Alloys Compd.
**2022**, 894, 162453. [Google Scholar] [CrossRef] - Chi, J.; Cai, Z.; Wan, Z.; Zhang, H.; Chen, Z.; Li, L.; Li, Y.; Peng, P.; Guo, W. Effects of heat treatment combined with laser shock peening on wire and arc additive manufactured Ti17 titanium alloy: Microstructures, residual stress and mechanical properties. Surf. Coatings Technol.
**2020**, 396, 125908. [Google Scholar] [CrossRef] - Vazquez, L.; Rodriguez, M.N.; Rodriguez, I.; Alvarez, P. Influence of post-deposition heat treatments on the microstructure and tensile properties of ti-6al-4v parts manufactured by cmt-waam. Metals
**2021**, 11, 1161. [Google Scholar] [CrossRef] - da Silva, L.J.; Ferraresi, H.N.; Araújo, D.B.; Reis, R.P.; Scotti, A. Effect of thermal management approaches on geometry and productivity of thin-walled structures of er 5356 built by wire + arc additive manufacturing. Coatings
**2021**, 11, 1141. [Google Scholar] [CrossRef] - Ding, D.; Wu, B.; Pan, Z.; Qiu, Z.; Li, H. Wire arc additive manufacturing of Ti6AL4V using active interpass cooling. Mater. Manuf. Process.
**2020**, 35, 845–851. [Google Scholar] [CrossRef] - Vázquez, L.; Rodríguez, N.; Rodríguez, I.; Alberdi, E.; Álvarez, P. Influence of interpass cooling conditions on microstructure and tensile properties of Ti-6Al-4V parts manufactured by WAAM. Weld. World
**2020**, 64, 1377–1388. [Google Scholar] [CrossRef] - Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H.; Fei, Z. The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy. J. Mater. Process. Technol.
**2018**, 258, 97–105. [Google Scholar] [CrossRef][Green Version] - Geng, H.; Li, J.; Gao, J.; Lin, X. Theoretical model of residual stress and warpage for wire and arc additive manufacturing stiffened panels. Metals
**2020**, 10, 666. [Google Scholar] [CrossRef] - Graf, M.; Hälsig, A.; Höfer, K.; Awiszus, B.; Mayr, P. Thermo-mechanical modelling of wire-arc additive manufacturing (WAAM) of semi-finished products. Metals
**2018**, 8, 1009. [Google Scholar] [CrossRef][Green Version] - Mishurova, T.; Sydow, B.; Thiede, T.; Sizova, I.; Ulbricht, A.; Bambach, M.; Bruno, G. Residual stress and microstructure of a Ti-6Al-4V wire arc additive manufacturing hybrid demonstrator. Metals
**2020**, 10, 701. [Google Scholar] [CrossRef] - Huang, W.; Wang, Q.; Ma, N.; Kitano, H. Distribution characteristics of residual stresses in typical wall and pipe components built by wire arc additive manufacturing. J. Manuf. Process.
**2022**, 82, 434–447. [Google Scholar] [CrossRef] - Khaled, H.; Abusalma, J. ODU Digital Commons Parametric Study of Residual Stresses in Wire and Arc Additive Manufactured Parts. Ph.D. Thesis, Old Dominion University, Norfolk, VA, USA, 2020. [Google Scholar]
- Gordon, J.V.; Haden, C.V.; Nied, H.F.; Vinci, R.P.; Harlow, D.G. Fatigue crack growth anisotropy, texture and residual stress in austenitic steel made by wire and arc additive manufacturing. Mater. Sci. Eng. A.
**2018**, 724, 431–438. [Google Scholar] [CrossRef] - Heigel, J.C.; Michaleris, P.; Reutzel, E.W. Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V. Addit. Manuf.
**2015**, 5, 9–19. [Google Scholar] [CrossRef] - Ahmad, B.; Zhang, X.; Guo, H.; Fitzpatrick, M.E.; Neto, L.M.S.C.; Williams, S. Influence of Deposition Strategies on Residual Stress in Wire + Arc Additive Manufactured Titanium Ti-6Al-4V. Metals
**2022**, 12, 253. [Google Scholar] [CrossRef] - Hoye, N.; Li, H.J.; Cuiuri, D.; Paradowska, A. Measurement of residual stresses in titanium aerospace components formed via additive manufacturing. Mater. Sci. Forum
**2014**, 777, 124–129. [Google Scholar] [CrossRef] - Ma, Y.; Hu, Z.; Tang, Y.; Ma, S.; Chu, Y.; Li, X.; Luo, W.; Guo, L.; Zeng, X.; Lu, Y. Laser opto-ultrasonic dual detection for simultaneous compositional, structural, and stress analyses for wire + arc additive manufacturing. Addit. Manuf.
**2020**, 31, 100956. [Google Scholar] [CrossRef] - Wu, Q.; Mukherjee, T.; Liu, C.; Lu, J.; DebRoy, T. Residual stresses and distortion in the patterned printing of titanium and nickel alloys. Addit. Manuf.
**2019**, 29, 100808. [Google Scholar] [CrossRef] - Zavdoveev, A.; Pozniakov, V.; Baudin, T.; Kim, H.S.; Klochkov, I.; Motrunich, S.; Heaton, M.; Aquier, P.; Rogante, M.; Denisenko, A.; et al. Optimization of the pulsed arc welding parameters for wire arc additive manufacturing in austenitic steel applications. Int. J. Adv. Manuf. Technol.
**2022**, 119, 5175–5193. [Google Scholar] [CrossRef] - Doumenc, G.; Couturier, L.; Courant, B.; Paillard, P.; Benoit, A.; Gautron, E.; Girault, B.; Pirling, T.; Cabeza, S.; Gloaguen, D.; et al. Investigation of microstructure, hardness and residual stresses of wire and arc additive manufactured 6061 aluminium alloy. Materialia
**2022**, 25, 101520. [Google Scholar] [CrossRef] - Hönnige, J.R.; Colegrove, P.A.; Ganguly, S.; Eimer, E.; Kabra, S.; Williams, S. Control of residual stress and distortion in aluminium wire + arc additive manufacture with rolling. Addit. Manuf.
**2018**, 22, 775–783. [Google Scholar] [CrossRef][Green Version] - Li, K.; Klecka, M.A.; Chen, S.; Xiong, W. Wire-arc additive manufacturing and post-heat treatment optimization on microstructure and mechanical properties of Grade 91 steel. Addit. Manuf.
**2021**, 37, 101734. [Google Scholar] [CrossRef] - Cadiou, S.; Courtois, M.; Carin, M.; Berckmans, W.; Le Masson, P. 3D heat transfer, fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (Cmt-Waam). Addit. Manuf.
**2020**, 36, 101541. [Google Scholar] [CrossRef] - Kumar, M.D.B.; Manikandan, M. Evaluation of Microstructure, Residual Stress, and Mechanical Properties in Different Planes of Wire + Arc Additive Manufactured Nickel-Based Superalloy. Met. Mater. Int.
**2022**, 28, 3033–3056. [Google Scholar] [CrossRef] - Béraud, N.; Chergui, A.; Limousin, M.; Villeneuve, F.; Vignat, F. An indicator of porosity through simulation of melt pool volume in aluminum wire arc additive manufacturing. Mech. Ind.
**2022**, 23, 1–8. [Google Scholar] [CrossRef] - Manokruang, S. Phenomenological Model of Thermal Effects on Weld Beads Geometry Produced by Wire and Arc Additive Manufacturing (WAAM) Supasit Manokruang. Ph.D. Thesis, Université Grenoble Alpes, Gières, France, 2022. [Google Scholar]
- Adebayo, A.; Ekiti, A. Characterisation of integrated WAAM and machining processes. Ph.D. Thesis, Cranfield University, Bedford, UK, 2013; p. 2020. [Google Scholar]

**Figure 1.**Thermal cycle analysis of the WAAM process (Reprinted with permission from ref. [28]. Copyright 2019 Elsevier, License Number-5462710771792).

**Figure 3.**Illustration of (

**a**) parameters of heat source volume with double ellipsoidal shape and (

**b**) heat source movements and activation approach of mesh elements in the simulations (Reprinted from ref. [11]. Copyright 2019, Elsevier, in accordance with CC BY license, open access).

**Figure 4.**The relationship between defects and materials in WAAM processes (Reprinted with permission from ref. [13]. Copyright 2018, Elsevier, License Number-5479380307471).

**Figure 5.**Categories of residual stress measurement methods (Reprinted with permission from ref. [104]. Copyright 2011. Elsevier, License Number-5481390488471).

**Figure 6.**SEM fracture morphologies of specimens before and after LSP. (

**a**–

**d**) before LSP, and (

**e**–

**h**) after LSP. (Reprinted with permission from ref. [114]. Copyright 2018. Elsevier, License Number-5479380909594).

**Figure 7.**(

**a**) Illustration of the combination of a rolling step sequentially with layer deposition and minimizing RS in the WAAM process (Reprinted with permission from ref. [121]. Copyright 2018. Elsevier, in accordance with CC BY license, Open access); and (

**b**) Schematic illustration of rolling on printing and with clamps equipment (Reprinted with permission from ref. [122]. Copyright 2013. Elsevier, License Number-5493060104979).

**Figure 8.**(

**a**) The archetype of the proposed cooling system and (

**b**) the geometric parameters of the jet-impingement model (Reprinted with permission from ref. [124]. Copyright 2018. Elsevier, License Number-5493050332263).

**Figure 9.**Collection of post-processing methods after WAAM (Reprinted with permission from ref. [48]. Copyright 2022. Elsevier, License Number-5493060104979).

Arc Welding | Focus Area | Specific Area of the Study | Citation (Year) |
---|---|---|---|

EBM | Microstructure, macrostructure, and mechanical properties | Effect of heat input in WAAM process | [62] (2021) |

GMAW | Geometric accuracy, productivity, and microstructure | Geometry regulation of thermoelectric cooling-aided bead in WAAM of thin-walled structures | [63] (2018) |

CMT and C-GMAW mode | Microstructure transformations and mechanical properties | Thermal effect on evolution of microstructure and mechanical properties in WAAM components | [64] (2022) |

GT-WAAM | Influences of heat accumulation, surface oxidation, and bead geometries in building direction | Heat accumulation effects on the arc characteristics and metal transfer behavior in WAAM | [56] (2017) |

GMA-AM | Multi-track depositions for different processing conditions for defect formation | Improving fluid flow and heat transfer model of WAAM | [61] (2021) |

GT-WAAM | Heat accumulation effect on microstructure and mechanical properties of AM products | Heat impact on microstructure deposited and mechanical properties by WAAM | [15] (2018) |

GMAW and PAW | Analysis of wall geometry, metallography, and mechanical properties. | Heat input effect on WAAM of Invar: microstructure and mechanical properties | [26] (2022) |

GMAW-CMT | Assumption of thermomechanical analysis | Method of computing temperature and RS in WAAM component | [31] (2020) |

S/N | Methods | Parameters | Effect on Printed Parts | References |
---|---|---|---|---|

1 | Clamping form (on edge and corner in the transverse and longitudinal direction) | Edges and corner clamping form force; longitudinal and transverse clamping form force | Reduce defects (RS and distortion) | [111,122] |

2 | Laser shock peening | Shallow thickness and size of microscopic voids | Ductile fracture existed in the specimen after LSP | [114,127] |

3 | Post-deposition heat treatments | Process parameters (travel speed, arc length, wire feed, current, and voltage) with single- and multi-weld beads. | Reduces anisotropy, increases elongation, mixed sub grain is visible | [124,128] |

4 | Post-process heat treatment | Temperature, material design, and other parameters | Grain refinement and improvement of material strength minimize residual stress, control hardness | [13,117] |

5 | Interpass Rolling | Temperature and the volume of the weld pool | Minimizes microstructural anisotropy via plastic deformation of the deposit; grain refinement; uniform layer height; increase in wall width; enhances the mechanical properties | [5,76,117,118] |

6 | Thermal monitoring | Distance of welding torch and parent material, temperature of the molten pool, weld pool area, and wavelength | Uniform microstructure, improved material properties, and reduced defects of parts | [24,39,129] |

7 | Active interpass cooling | Travel speed, cooling gas flow rate, and cooling time | Improved microhardness and mechanical strength, more fine-grained, more grain boundary high-density dislocations, and attain isotropic property | [71,130,131,132] |

8 | Vertical and pinch rolling processes | Rolling depth, curvature depth of the roller, roller shape, transverse displacement, rolling direction, and roller thickness | Refines the grains, minimizes voids, and enhances the mechanical properties | [36,54,72] |

9 | Interpass cold rolling | Deposited layer thickness, radius of roller, loads | Brings more homogeneous, large columnar grains; improves mechanical properties | [13,115] |

Feedstock Materials | Methods | Results and Explanation | Reference |
---|---|---|---|

Carbon steel | Numerical approach: ABAQUS software 2019 | An increasing number of deposited layers increases the peak temperature. Preheating a substrate increases the peak temperature of the first layer and decreases its average cooling speed. The thermal behavior of deposited layers is mainly affected by the travel speed | [12] |

AZ31-magnesium and G4Si1 (1.5130) for stainless steel materials. | FE software MSC Marc 2017 and experimental tests | Examined distortions, temperature fields, and mechanical properties. A uniform wall geometry can be formed using a continuous welding path with same temperature distribution | [53,134] |

316 L stainless steel and Iron Aluminide (Fe_{3}Al) | Neutron diffraction and numerical analysis | Temperature and RS fields were computed at each time stage and more reliable RS results were obtained from the acquired neutron diffraction | [31,103,135] |

Stainless steels 308LSi and 304 | Thermomechanical coupling analysis model | RS in both structures and their relationship with the deposition height and shape were simulated; measured RS validated with simulation | [136] |

A36 steel | DFLUX in ABAQUS analysis and experimental test | Both thermal and mechanical models were validated with the experimental data | [137] |

Stainless steel alloy 304L | FEA software ABAQUS 2017 | Influences of roller design, rolling load, and friction coefficient on plastic strain and RS distributions were analyzed and elucidated | [138] |

Ti-6Al-4V | Experimental test (Neutron diffraction) and FEA | Contour method of RS measurements and micro-hardness measurements were in good agreement away from the baseplate. The results indicate that a measurement-based convection model is requisite to produce accurate simulation results. Built the single-bead walls with different process situations; RS was significantly minimized after substrate removing | [2,30,106,139,140,141] |

ER70S-6 commonly used welding wire | X-ray and neutron diffraction | The warpage and hardness have a direct relation with measured RS | [50] |

Aluminum, silicon, and copper | Laser opto-ultrasonic dual-detection approach | Detected compositions of elemental, defects of structural, and RS in Al-alloy components during WAAM processes. LOUD detection holds the promise of becoming an effective testing method for WAAM processes to ensure quality control and process feedback | [142] |

Aluminum and its alloys | Taguchi method and ANNOVA analysis: three process parameters: wire feed rate, gas flow rate, and welding speed | The correlations between the process variables and response variables were developed using the multiple regression method. Shows fine-grained microstructure and how it improves the properties of the modeled wall. | [143,144] |

AA6061, Aluminum | Neutron diffraction | RS measurements show tensile stresses (up to 130 MPa) in the built parts and compressive stresses (up to -80 MPa) in the substrate. Less copper in solid solution with aluminum, showing greater precipitation and so, potentially paying to improve the strength of the material. | [145,146] |

Stainless steel | Numerical modeling software such as MSC Marc 2019/Mentat | The outcome of this research is to develop an effective procedure to analyze the distortion and RS of WAAM of stainless steel. | [53,93] |

Grade 91 steel (P91) | Post-WAAM heat treatment process | The microstructure is optimized with a very fine martensite lath and rational prior austenite grain size (PAGS). | [147] |

304 Stainless steel | COMSOL–5.4 Multiphysics software | Simulated the build-up of the wall. To validate this model, the dimensions of the melt pool and the shape of the deposit calculated for the first layer were compared to experimental data given by macrographs and high-speed videos. | [148] |

Aluminum alloys | Experiments measure temperature results (thermal cycles, etc.) | Variation in the beam height can affect the measurement and longitudinal RS distribution in both the beam and the substrate, while that can only influence the transverse RS in the substrate but not in the beam nearly | [32,66] |

Ti17 Titanium alloy | Post-treatment technique combining laser shock peening and heat treatment | Enhance the mechanical performance of WAAM parts by changing their microstructure and RS distribution | [127] |

Nickel-based super alloys | X-ray, optical, and scanning electron microscopy | Studied the microstructure, RS, and mechanical properties | [149] |

Ti-6Al-4V and Inconel 718 | Hole-drilling method, theoretical and experimentally | RS and distortion were minimized by printing with short track lengths among the three patterns investigated for both alloys. The strain parameter exactly predicted the effects of WAAM parameters on distortion when the detailed thermomechanical calculations cannot be carried out | [19,143] |

Aluminum | Finite element model and experiments | Predicted the melt pool volume as an indicator of the porosity rate | [150] |

Ti-6Al-4V | Thermocouple measurements and numerical simulation | Measured and predicted temperatures, RS, and distortion profiles indicated that the model is quite reliable for grain morphology, predicting the cooling rates and the microstructure | [33] |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gurmesa, F.D.; Lemu, H.G.
Literature Review on Thermomechanical Modelling and Analysis of Residual Stress Effects in Wire Arc Additive Manufacturing. *Metals* **2023**, *13*, 526.
https://doi.org/10.3390/met13030526

**AMA Style**

Gurmesa FD, Lemu HG.
Literature Review on Thermomechanical Modelling and Analysis of Residual Stress Effects in Wire Arc Additive Manufacturing. *Metals*. 2023; 13(3):526.
https://doi.org/10.3390/met13030526

**Chicago/Turabian Style**

Gurmesa, Fakada Dabalo, and Hirpa Gelgele Lemu.
2023. "Literature Review on Thermomechanical Modelling and Analysis of Residual Stress Effects in Wire Arc Additive Manufacturing" *Metals* 13, no. 3: 526.
https://doi.org/10.3390/met13030526