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Abstract: There is a trend in the automotive producers to require that foundries use more secondary
aluminum alloy ingots to reduce the CO2 footprint of car production. The merits of this trend
have been investigated in this study. Results have shown that requiring the use of more secondary
ingots while simultaneously reducing the elongation requirement of aluminum alloy die castings
is counterproductive, i.e., increases the CO2 footprint of the car over its useful life by not taking
advantage of the weight reduction possible. It is recommended that (i) foundries improve their
melt handling capabilities to reduce and minimize the entrainment damage made to the melt in the
melting and casting process chain, and (ii) automobile producers reduce the weight of die castings by
increasing requirements on elongation, to secure a reduced CO2-footprint in the designs, materials
usage and life-cycle of cars.
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1. Introduction

High pressure die casting (HPDC) is the most common process for producing large,
thin-walled castings. Although HPDC process is capable of producing large, complex and
thin-walled castings at high production rates, the process is known to entrain air as well
as surface oxides, which greatly impair mechanical properties and fatigue performance.
Nevertheless, there has been a growing trend to use more die castings in automotive
applications, especially after Tesla introduced the “megacasting” for Model Y [1], weighing
130 kg, to replace hundreds of parts used in the assembly of the rear structure of the car [2].
Other car companies are now trying to replicate the success of Tesla in its structural die
castings, which has accelerated innovation in casting equipment and casting processes.

Another driver in the automotive industry, especially in Europe, is the reduction of the
environmental impact of the cars produced. Here, weight reduction is one critical element,
especially during the transition for fossil-based electricity generation to a fully decarbonized
system [3]. Specifically, automotive industry has zoomed in on its aluminum usage [4]. By
requiring that secondary ingots be used along with primary ingots during the production of
aluminum castings, automotive companies are trying to increase the sustainability of their
products. This effort is aligned with the findings of Cecchel et al. [5] who showed that the
largest energy consumption in the production of an aluminum high-pressure die casting
for an automotive application was, by far, the use of primary aluminum. The wider use of
secondary ingots in automotive castings, however, lowered the expectations for ductility
from the final castings. It has been shown [6] secondary ingots have much higher number
density of defects than primary ingots because of entrainment damage [7] in liquid state.
Hence a specification of 1% elongation in as-cast condition has become the norm. Although
the carbon footprint of die castings has been studied before, to the authors’ knowledge, a
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study on the impact of low ductility expectations form die castings has not been conducted
before. This study is motivated to fill this gap.

2. Background

Tensile failure in metals can be considered as the outcome of a competition between
the processes of plastic deformation (shear flow) and fracture (tensile separation) [8]. If the
stress required to initiate permanent deformation by shearing of atomic planes is less than
the stress necessary to permanently separate atoms by tensile distortion of their atomic
bonds, flow occurs in preference to fracture. However, stress due to various sources of
stress concentrators, may reach the level necessary to initiate fracture. Plastic deformation
is a more preferable “failure” event, because plastic flow preceding fracture markedly
increases the work accompanying the fracture. The energy absorbed during a tensile test
can be written as:

Ψ =
∫ εf

0
σdε (1)

where Ψ is the strain energy density (MJ/m3), σ is true stress (MPa), ε is true strain and εf
is true fracture strain. One of the authors and his coworkers have analyzed stress-strain
curves of high quality Al-7Si-Mg [9], hot isostatically pressed (HIPed) Al-Cu-Mg [10] and
aerospace aluminum alloy castings [11], and determined that strain energy density can be
written as a function of elongation, eF (%) as:

Ψ = Ψ0eF (2)

The constant, Ψ0 was found to be 3.85 MJ/m3 for high quality Al-7Si-Mg alloy and
HIPed Al-Cu-Mg castings, and between 2.79 and 3.42 MJ/m3 for aerospace aluminum
alloy castings. Hence, elongation is an excellent estimate of the energy absorbed during
tensile fracture of aluminum alloys. Moreover, elongation of aluminum castings is mainly
determined by the strength of the alloy (intrinsic effect) and the density of defects in them
(extrinsic effect) [12–14]. Subsequently, one of the authors and his coworkers collected
hundreds of data points from the aerospace and premium castings literature for Al-7Si-Mg,
A206 and A201 [14–16] and plotted elongation versus yield strength, which is minimally
affected by structural defects. Analysis of these data from different components and
production lines showed that the highest elongation points formed a linear trend, as
presented in Figure 1, which can be written as:

eF(max)= β0−β1σY (3)

where β0 and β1 are alloy-dependent coefficients. For Al-Si-Mg cast alloys, β0 and β1
are 36.0 and 0.064 MPa−1, respectively. Equation (3) can be used to estimate the ductility
potential of aluminum and magnesium alloy castings [12,13].

The ductility potential was proposed [13,16] as a metric to determine structural quality.
Therefore, the quality index, QT, can then be found by:

QT =
eF

eF(max)
=

eF

β0−β1σY
(4)

The quality index, QT, is a measure of how much damage the metal has received
in the liquid state. The damage comes from the entrainment of surface oxide films as
well as air when liquid surface is disturbed. The entrainment mechanism results in the
creation of double oxide films, i.e., bifilms [7], with dry-side-to-dry-side contact. As a
result, no bonding can occur between these ceramic interfaces; they act as cracks in the
liquid. In contrast, the outer faces of the bifilm are in perfect atomic contact with the
matrix and serve as heterogeneous nucleation sites for intermetallics and the Si phase. The
simultaneous properties of zero and total bonding within the bifilm are unique features of
this defect [17]. The oxide-to-oxide interfaces ensure that such cracks remain stubbornly
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resistant to bonding, despite significant amounts of pressure during the casting process
and even hot isostatic pressing [18,19].

Today, a common practice to reduce the CO2-footprint is to mix secondary aluminum
with primary aluminum alloy ingots in the melt or to switch to secondary alloy solutions.
The current study is aimed to demonstrate that producing better quality material with
reduced levels of damage to the melt, that has taken place prior (preexisting damage in
ingots [6]), during handling and/or casting, offers an additional route to reducing the CO2
footprint. This matter is not primarily a question of primary or secondary materials, but
rather a foundry melt handling and quality assurance capability as illustrated by the large
spread in material performance found between the foundries, Figure 1.

Metals 2023, 13, x FOR PEER REVIEW 3 of 11 
 

 
Figure 1. Elongation plotted versus yield strength for cast Al-7%Si-Mg alloy specimens excised from 
production castings(redrawn from data reported previously [13]). 

eF(max) = β0-β1σY (3) 
where β0 and β1 are alloy-dependent coefficients. For Al-Si-Mg cast alloys, β0 and β1 are 
36.0 and 0.064 MPa−1, respectively. Equation (3) can be used to estimate the ductility po-
tential of aluminum and magnesium alloy castings [12,13]. 

The ductility potential was proposed [13,16] as a metric to determine structural qual-
ity. Therefore, the quality index, QT, can then be found by: 

QT=
eF

eF(max)

=
eF

β0-β1σY

 (4) 

The quality index, QT, is a measure of how much damage the metal has received in 
the liquid state. The damage comes from the entrainment of surface oxide films as well as 
air when liquid surface is disturbed. The entrainment mechanism results in the creation 
of double oxide films, i.e., bifilms [7], with dry-side-to-dry-side contact. As a result, no 
bonding can occur between these ceramic interfaces; they act as cracks in the liquid. In 
contrast, the outer faces of the bifilm are in perfect atomic contact with the matrix and 
serve as heterogeneous nucleation sites for intermetallics and the Si phase. The simulta-
neous properties of zero and total bonding within the bifilm are unique features of this 
defect [17]. The oxide-to-oxide interfaces ensure that such cracks remain stubbornly re-
sistant to bonding, despite significant amounts of pressure during the casting process and 
even hot isostatic pressing [18,19]. 

Today, a common practice to reduce the CO2-footprint is to mix secondary aluminum 
with primary aluminum alloy ingots in the melt or to switch to secondary alloy solutions. 
The current study is aimed to demonstrate that producing better quality material with 
reduced levels of damage to the melt, that has taken place prior (preexisting damage in 
ingots [6]), during handling and/or casting, offers an additional route to reducing the CO2 
footprint. This matter is not primarily a question of primary or secondary materials, but 
rather a foundry melt handling and quality assurance capability as illustrated by the large 
spread in material performance found between the foundries, Figure 1. 

  

Figure 1. Elongation plotted versus yield strength for cast Al-7%Si-Mg alloy specimens excised from
production castings (redrawn from data reported previously [13]).

3. Ductility and Crashworthiness

During a crash, the kinetic energy of the vehicle is absorbed by the vehicle’s structure
as well as its passengers. For safety reasons, it is important to maximize the energy absorbed
by the vehicle (strain energy) while minimizing that absorbed by the passengers. For that
reason, kinetic energy should be converted into strain energy within 40 ms as the crash is
usually over within 100 ms [20].

There are several metrics that can be used as a measure of crashworthiness, one of
which is specific energy absorption, eS:

eS =

∫
Fdl
m

(5)

where the denominator represents the strain energy absorbed by the part (J) and m is mass
of the part (kg). Based on tensile test results for aluminum alloy castings, Equation (5) can
be written as:

eS =
Ψ
ρ

=
Ψ0eF

ρ
(6)

where ρ is density (kg/m3). One can argue that the deformation conditions between a
tensile test and crash would be different. Although this is true, a strong correlation between
the two can be easily expected. Hence, a structure with a high density of entrainment
defects (bifilms) can be expected to absorb a low level of energy in both tensile testing and
in a crash.
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Taking Ψ0 and density to be 3.85 MJ/m3 and 2700 kg/m3, respectively, specific energy
absorption can be plotted as a function of minimum elongation, i.e., the ductility require-
ment set by the automotive manufacturers, which is presented in Figure 2. The specific
energy absorption for 6063-T6 extrusions has been found [21] to be approximately 15 kJ/kg.
For aluminum alloy die castings to approach this level of eS, a minimum elongation of 10%
should be required by the automotive manufacturers. With the current elongation require-
ment of 1%, eS is only 1.4 kJ/kg for aluminum alloy die castings in automotive applications.
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Based on Equations (5) and (6), it can be shown that weight of the part is directly
correlated with the ductility of the casting for the part to absorb the same energy during
the crash; ∫

Fdl = m
Ψ0eF

ρ
(7)

Therefore, as the ductility of the casting increases, it would take less weight to reach
the same level of energy absorption.

4. Ductility and Fatigue Performance

Similar to crash testing, it has been shown that fatigue life can be correlated to the
total strain energy [22–25] such that cycles to failure can be estimated from the total strain
energy absorption potential of the component. Hence, a component with fewer entrainment
defects can be expected to have high ductility and a long fatigue life [26,27]. This correlation
between elongation and fatigue life has been demonstrated [28] recently. Subsequently,
Őzdes, and Tiryakioğlu [29,30] have developed a model to estimate fatigue life as a function
of elongation. The model is followed in this study.

The change in fatigue life, Nf, with stress amplitude, σa, is known to follow the Basquin
law [31]:

σa= σ′fN
b

f (8)

where σ′f is the strength coefficient (MPa) and b is the Basquin exponent. The exponent
has been shown by Kun et al. [32] to be a measure of the degradation taking place at
the micro-level. Based on this finding, Őzdes, and Tiryakioğlu [29,30] investigated the
relationship between both parameters of the Basquin equation and QT, based on seventy
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two S-N curves of cast aluminum alloys reported in the literature. After combining with
Equation (4), the model that they developed is as follows:

b = −0.136 exp(−1 .236
eF

β0 − β1σY
) (9)

σ′f
ST(max)

= 0.405
eF

β0−β1σY
+0.280 (10)

where
ST(max)= 185.7 + 0.558σY (11)

based on the results reported previously [13]. This model can be used to estimate the fatigue
life at a stress ratio of R = −1. For different mean stress conditions, the Walker equation can
be used with the Walker exponent as a function of the quality index, Equation (4) [33].

This model has been applied to the scenario where yield strength requirement is
100 MPa and the minimum elongation is 1.0%. The estimated S-N curve for this elongation
requirement is provided in Figure 3. Note that at a yield strength of 100 MPa, the ductility
potential of Al-Si-Mg alloys approaches 30%. Hence a minimum elongation requirement of
1% is well below what the metal is capable of providing if there are no entrainment defects.
The shift in S-N curves with increasing minimum elongation requirement is also shown in
Figure 3. Note that fatigue strength at 106 cycles significantly increases if the elongation is
enhanced from eF = 1% to 10%, as demonstrated previously [30].
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It can be assumed that the design strength of aluminum castings, σD, is a fraction of
the estimated fatigue strength σf (at 1 million cycles), such that,

σD= a σf (12)

where a is an arbitrary number lower than 1.0. To estimate the effect of the minimum
elongation requirement on the weight of the casting, design strength can be normalized by
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the value for eF(min) = 1.0% and can be plotted as a function of the minimum elongation
requirement, which is presented in Figure 4. Note that design strength can be doubled
if the minimum elongation requirement is raised from 1.0% to 7.5%. This provides the
potential to reduce the weight of the casting up to 50%.
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We can now analyze the relationship between the minimum elongation requirement
and the casting weight to meet the same crashworthiness and fatigue performance re-
quirements of the part. The reduction in weight (∆W), normalized with its weight at
eF(min) = 1.0%, is presented in Figure 5. Note that fatigue performance is the limiting factor
between the two criteria.
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5. The Environmental Impact of Elongation Requirements

We can now look into the environmental impact of the minimum elongation require-
ment, specifically the amount of CO2 emission that can be reduced by increasing this
requirement and therefore expecting foundries to produce castings with higher struc-
tural integrity.

For this purpose, we will make several assumptions:
The weight of the electric automobile is 2000 kg. This weight is well within the range

of electric cars.
The weight of the die casting is 200 kg. Although this number is slightly higher than

what we can expect now (~150 kg), the trend in aluminum casting use in automobiles [34]
shows that this assumption will be justified in a few years.

The minimum yield strength and elongation requirements are assumed to be 100 MPa
and 1%, respectively. These assumptions are based on the interviews made by the authors
with the users and producers of automotive die-castings. The 1% elongation requirement
is a typical number for many non-critical components, and therefore, may be considered
low for structural components. However, the methodology presented in this study can be
adjusted easily to a higher elongation requirement for structural components. It should
be noted that the maximum elongation recorded in Figure 1 is 27% for a yield strength of
150 MPa. Therefore, there still remains much more potential for improvement beyond what
is demonstrated in this study.

The electric consumption of this car is 0.2 kWh/km, which is average consumption
rate of electric cars [35].

The CO2 emission to produce electricity is 375 g CO2/kWh. This number is near
the midpoint among countries in Europe, and lies between that of Germany (349 g
CO2/kWh [36]) and of United States (388 g CO2/kWh [37]). It is also assumed that
the number remains constant over time.

The useful life of the electric car is 500,000 km. In cars with internal combustion
engines, powertrains limit the useful life. In electric cars, it is the battery that limits the
car’s useful life. Recent research [38] has shown that 1.6 million kilometers is possible,
with the latest findings updated to 6.4 million kilometers [39]. Although the useful life of
an electric car is generally assumed to be 250,000 km, we consider this number to be too
low in light of (i) the recent findings on battery life outlined above, (ii) the fact that some
companies already offer factory warranties exceeding 150,000 km, and (iii) the finding [40]
that none of the batteries produced by one automotive manufacturer in the last 12 years
have been reported to have reached the end of their lives, delaying the plans for their
recycling. Therefore, we think that 500,000 is a good, yet conservative estimate.

Weight is directly related to the design strength of the casting, such that the product of
weight and design strength is constant.

The overall CO2 emission for operating the car is directly related to its weight.
We will not analyze the CO2 footprint of aluminum casting production for simplicity

and assume that it will remain constant regardless of the minimum elongation requirement.
All foundries prepare their melts from 50% primary and 50% secondary aluminum

alloy ingots commonly in the form of in-house returns.
Based on these assumptions, we can calculate the following for the current state of

1.0% minimum elongation requirement:
A useful life of 500,000 km means that this electric car is expected to spend 100 GWh

over its life span.
This results in additional CO2 emissions of 37.5 metric tons into the atmosphere due

to the operation of the car.
The Aluminum Association lists the carbon footprint of primary and secondary alu-

minum as 8450 g CO2/kg and 530 g CO2/kg [41]. Foundries are usually required to have
a 50-50 mixture of primary and secondary ingots in their production. Therefore, a 200 kg
casting adds 898 kg of CO2 into the atmosphere. The CO2 savings accomplished by using
secondary ingot is 792 kg of CO2.



Metals 2023, 13, 513 8 of 10

We can now analyze how increasing the minimum elongation requirement can affect
the overall CO2 emission due to both material and operation of the car. The results are
presented in Figure 6. As can be expected, reduction in emissions will be mostly due to the
operation of the car. Note that the reduction in CO2 emission due to use of secondary ingot
is lower than the one that would be accomplished by increasing the minimum elongation
requirement to 3% (967 kg CO2/car). Hence, requiring a lower elongation from castings so
that secondary ingot can be used instead of primary ingot at best is ineffective in reducing
CO2 emissions per car, and at worst results in more CO2 emitted into the atmosphere per
car. Moreover, a minimum elongation requirement of 10% will reduce the CO2 contribution
of the car by more than 2.5 metric tons.
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These results clearly demonstrate the importance of minimizing entrainment defects
not only during the production but throughout the supply chain for aluminum castings.
The technology to remove the oxide skins and not allow them into the metals exists currently.
Moreover, high quality ingots are becoming more available. Careful production techniques
that eliminate melt transfers will add greatly to the improvement of the structural quality.
Finally, air and surface entrainment during casting production can and should be minimized
though process development and engineering.

6. Conclusions

Today, a common practice to reduce the CO2-footprint is to mix secondary aluminum
with primary aluminum alloy ingots in the melt or to switch to secondary alloy solutions.
The current study demonstrated that producing better quality material with reduced levels
of damage to the melt during handling and casting offers an additional route to reducing
the CO2 footprint.

It was concluded [3] that weight reduction was possibly more important than electri-
fication of the driveline in the transition from fossil-fuel based electricity to sources with
no CO2 emissions. This is confirmed by the currently performed analysis. The current
study clearly illustrates the means to achieve this weight reduction with relatively simples
means including.
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Increase of the foundries melt handling capabilities to reduce and minimize the
entrainment damage made to the melt in the melting and casting process chain.

Ensure that weight reduction using increased requirements on elongation to secure a
reduced CO2-footprint in the designs, materials usage and life cycle of cars.
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17. Campbell, J.; Tiryakioğlu, M. Fatigue Failure in Engineered Components and How It Can Be Eliminated: Case Studies on the

Influence of Bifilms. Metals 2022, 12, 1320. [CrossRef]
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