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Abstract: The use of low frequency or DC (i.e., direct current) operation in the electroslag remelting
process may lead to the electrolysis of some oxides in the slag pool, which will adversely affect the
cleanliness of the electroslag ingot. In order to confirm this view, the effect of different power supply
modes on the oxygen content and inclusions in electroslag ingot has been studied by adopting the
self-designed electroslag remelting furnace as experimental equipment. The pulse heating inert gas
fusion-infra-red absorption method is used for analyzing oxygen content. The analysis of non-metallic
inclusion is conducted using an automatic SEM (i.e., scanning electron microscope) made by the
American ASPEX Company, where the inclusion type and the inclusion size are determined. Results
show that the oxygen content in the electroslag ingot increase significantly compared with that in the
consumable metal electrode, whether under the frequency of 50 Hz, low-frequency, or DC. When
DCSP (i.e., the consumable electrode is connected to the cathode of the DC power supply), DCRP (i.e.,
the consumable electrode is connected to the anode of the DC power supply), 2 Hz, 10 Hz, and 50 Hz
power supply modes are adopted, the oxygen content in electroslag ingot is 155.3 ppm, 100.4 ppm,
75.8 ppm, 66.3 ppm, and 43.2 ppm respectively. With the increase in oxygen content, the number
of inclusions in electroslag ingots increases significantly, and the increased inclusions are mainly
Al2O3 inclusions. Regardless of the power supply mode, the largest diameter of inclusion is less than
20 µm. The electrolysis of Al2O3 is the direct reason for the increase in oxygen in the electroslag
ingot when CaF2-Al2O3 slag is used. With the decrease in frequency, the electrolysis trend increases,
and the oxygen content and the number of inclusions also increase. However, most of the inclusions
are regenerated with the decrease in metal pool temperature and solidification, so the size is fine.

Keywords: electroslag remelting; low-frequency; DC; oxygen; inclusion; electrolysis

1. Introduction

The single-phase power supply with a frequency of 50 Hz is the most important
power supply mode for an electroslag furnace, including the single electrode, bifilar,
and coaxial conduction electroslag furnace. This power supply mode has been widely
used in the electroslag remelting process because of its convenient operation and simple
equipment. However, the single-phase and power supply mode with a frequency of 50 Hz
has very great electrical defects. In the process of electroslag remelting, the large current
output from the transformer forms a strong magnetic field that increases the resistance
and inductive reactance of the short network and results in an increase in the voltage loss
and the decrease in power factor, which will increase the consumption of electricity per
ton steel [1]. Especially when single electrode operation is adopted, the power factor is
generally only approximately 0.62–0.80. In addition, the single-phase power supply mode
with a frequency of 50 Hz increases the three-phase imbalance of the power system and
leads to serious harmonic pollution [2,3].

To overcome the disadvantages of single-phase power supply modes with a frequency
of 50 Hz, low-frequency power supply, as a new power supply mode, has attracted the
attention of metallurgists, and numerous basic research has been carried out [4–9]. With the
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decrease in power frequency, the electrical efficiency increases, and the three-phase balance
of the power system can be proved. In addition to low frequency, DC power is occasionally
introduced into the electroslag process, which is conducive to the improvement of electrical
efficiency. Although the low-frequency and DC operations have electrical advantages,
metallurgists pay more attention to their influence on the metallurgical quality of electroslag
ingot. Wang, Q et al. [10] analyze the effect of DC electroslag remelting on desulfurization by
numerical simulation and find the desulfurization ratio of DCRP is significantly higher than
that of DCSP. Through experimental research, Aksenov, I.A et al. [11] find that compared
with DC electroslag remelting, AC electroslag remelting has the highest desulfurization
rate, followed by DCRP, and DCSP has the worst desulfurization effect. However, the
changes in oxygen content and inclusions are not mentioned in the above studies. With
the development of modern secondary refining technology, the sulfur in the consumable
electrode can be easily removed in large quantities. Therefore, metallurgists are more
concerned about the change of oxygen and inclusions in the electroslag ingot caused by the
power supply mode. Armin Parr et al. [12,13] find that the distribution of different kinds of
inclusions in electroslag ingot is closely related to the power supply mode. Alec Mitchell
discusses the electrochemical aspects of the low-frequency and DC electroslag process, but
no more data on the oxygen and inclusions in electroslag ingots have been provided [14]. In
a previous study, authors found that when the power frequency is decreased, the oxygen
content in the electroslag ingot is significantly increased [15,16]. To further study the influence
of low-frequency and DC power supply mode on the cleanliness of electroslag ingot, the
electroslag remelting experiments are carried out using 304L stainless steel as the research
object based on the laboratory-scale experiment. The variation of oxygen and inclusion in
electroslag ingot prepared with different power supply modes are studied in detail.

2. Experimental Section
2.1. Experimental Equipment

The experiment is carried out on the laboratory-scale electroslag furnace, as shown in
Figure 1. A 100 kVA AC power supply (50 Hz) is available for the preparation of electroslag
ingots with a diameter of 50–120 mm, with a high voltage terminal of 380 V, a low voltage
terminal that ranges from 28–40 V, and a maximum current of 2500 A. The frequency conversion
unit is installed at the low-voltage terminal of transformer. The main circuit of frequency
conversion unit is composed of two reverse parallel single-phase bridge thyristor rectifiers.
By adjusting the length of the alternating conduction time of two rectifier circuits, the output
frequency can be adjusted between 0–10 Hz, either low-frequency output or DC output. By
adjusting the conduction angle of thyristor, the output voltage could be adjusted continuously
between 0 and the output voltage of transformer. The output end of frequency conversion unit
is connected to the consumable electrode and cooled copper baseplate. During the remelting
process, the voltage and frequency are fixed, and the current can reach the set value by adjusting
the moving speed of consumable electrode manually.Metals 2023, 13, x FOR PEER REVIEW 3 of 14 
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The waveform shown in Figure 2 can be obtained through the rectification of the
frequency conversion unit.
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2.2. Feedstock

The 304L austenitic stainless steel used in the experiment is prepared by 30 t EAF-AOD-
LF-CC process and then forged into the consumable metal electrode. The compositions of
electrode are shown in Table 1.

Table 1. Chemical compositions of the electrode material.

Elements C Si Mn P S Ni Cr Al O

wt% 0.019 0.41 1.18 0.037 0.0025 8.10 18.27 0.010 0.0025

The traditional slag that contains 30 wt%Al2O3-70 wt%CaF2 is used for the electroslag
remelting experiment, where Al2O3 and CaF2 are prepared by Sinopharm Chemical Reagent
Co., Ltd. The height of slag pool during remelting is about 50 mm (1200 g slag).

2.3. Experimental Parameters and Testing

A mold with an upper diameter of 95 mm, a bottom diameter of 105 mm (cone-shaped),
and a height of 250 mm is adopted. The diameter of consumable metal electrode is 50 mm.
The scale in electrode surface is removed by grinding prior to electroslag remelting. No
deoxidizer is added to the slag bath during the electroslag remelting process. The pressure
of cooling water is between 0.2 MPa and 0.3 MPa. All ingots are remelted in the atmospheric
environment.

Hot start is adopted for electroslag remelting. First, Al2O3 and CaF2 are mixed and
placed into a graphite crucible. Then, the graphite crucible is placed into a high-temperature
furnace at 1600°C for melting. After completely melting the slag, it is quickly taken out and
poured into the mold. The consumable electrode drops, and remelting begins.

In the previous study, the authors analyze the influence of power supply frequency
(50 Hz, 2 Hz, 1 Hz, 0.4 Hz, 0.1 Hz) on the cleanliness of electroslag ingots in detail [16].
In order to further clarify the influence of frequency on cleanliness, in addition to low-
frequency electroslag remelting, the DC electroslag remelting is supplemented in this paper,
and the experimental schemes are shown in Table 2.
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Table 2. Experimental schemes.

Experimental
Schemes

Remelting
Current/A

Remelting
Voltage/V

Power
Frequency/Hz

Power
Cycle/s

1 1400 20 10 0.1
2 1400 20 2 0.5
3 1400 20 DCSP *
4 1400 20 DCRP **
5 1800 28 50 0.02

* Consumable electrode is connected to cathode of DC power supply; ** Consumable electrode is connected to
anode of DC power supply.

After remelting, the samples of 15 mm × 15 mm × 15 mm and ϕ 5 mm × 100 mm
are cut off at 30 mm below the upper part of the electroslag ingot for inclusion and
oxygen content analysis. The analysis of non-metallic inclusion is carried out with an
automatic SEM made by American ASPEX Company, where the inclusion type and size are
determined at an area of approximately 60 mm2. JSM-6510LV SEM is used to further analyze
the distribution of elements in inclusion. After the surface of sample ofϕ 5 mm × 100 mm
is polished, the oxygen content is tested at three different positions of the sample, and the
average value of oxygen content at different positions is used as the final oxygen content
in electroslag ingot. In this paper, the pulse heating inert gas fusion-infra-red absorption
method is used to determine the oxygen content. Ca content is analyzed by inductively
coupled plasma-atomic emission spectrometry (ICP-AES), and others are analyzed by
electric spark direct reading spectrometry.

3. Experimental Results and Analysis
3.1. Variation of Oxygen Content in Electroslag Ingot with Different Power Supply Modes

Figure 3 shows the oxygen content in electroslag ingots with the frequency of 2 Hz,
frequency of 50 Hz, and DC operation. For comparison, the oxygen content in the electrode
is presented in Figure 3.
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Figure 3 shows that regardless of power supply modes, the oxygen content in the
electroslag ingot increases compared with that in the consumable electrode. However, the
increase in oxygen obviously varies with different power supply modes. When the power
frequency is 50 Hz, the oxygen content in the electroslag ingot increases to 43.2 ppm from
25 ppm in the consumable electrode. The oxygen contents with power frequencies of 10 Hz
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and 2 Hz are 66.3 ppm and 75.8 ppm, respectively. When DCRP is used for power supply,
the oxygen content increases to 100.4 ppm. When DCSP is used, the oxygen content sharply
increases to 155.3 ppm.

The above data suggest that the power supply mode has a very important effect on
the oxygen content in the electroslag ingot, and the order of its influence on oxygen content
is DCSP, DCRP, frequency of 2 Hz, and frequency of 50 Hz.

3.2. Inclusions in Electroslag Ingots with Different Power Supply Modes

In order to analyze the effect of power supply mode on the inclusion in electroslag
ingot, the number, type, and size distribution of inclusions in 304 L stainless steel ingot are
analyzed by an automatic SEM.

3.2.1. Number and Size of Inclusions

Figure 4 shows the distribution of inclusions with different sizes in electroslag ingots
prepared with various power supply modes, where the equivalent cycle diameter is used.
The figure shows that only 356 inclusions are in consumable electrodes because of the
low oxygen content. When the power frequency is 50 Hz, the number of inclusions in the
electroslag ingot increases to 758. When the frequencies are 10 Hz and 2 Hz, the number
of inclusions is 1166 and 1241, respectively. When DCRP mode is adopted, the number
of inclusions is similar to that at 2 Hz. When the DCSP mode is adopted, the number of
inclusions increases to more than 2500. The variation rule of the number of inclusions is
consistent with that of the oxygen content in Figure 3.
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Figure 4 also shows that regardless of the power supply modes, the diameter of most
inclusions is less than 6 µm, and the maximum diameter is less than 20 µm. However, the
maximum diameter of inclusions in the consumable electrode is 27.4 µm. In terms of the
number of inclusions, except for DCSP, the number of large inclusions with a diameter
greater than 9 µm at other power supply modes is less than that in consumable electrodes.

3.2.2. Inclusion Type

Power supply modes affect not only the number and size of inclusions but also the
types of inclusions, as shown in Figure 5.
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Figure 5 shows that the inclusions in the electroslag ingot are mainly Al2O3, followed
by other composite oxides and oxysulfides. Because the sulfides in electroslag ingots are
few, they are not listed separately. Due to the use of calcium treatment technology in
the smelting process of consumable electrodes, there are almost no Al2O3 inclusions in
consumable electrodes. The power supply modes have a significant effect on the number
of Al2O3 in the electroslag ingot. With the decrease in power supply frequency, the number
of Al2O3 inclusions gradually increases, and when DCSP mode is adopted, the number of
Al2O3 is the largest. Figure 6 presents the SEM-EDS diagram of Al2O3 inclusions.
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Figure 6 illustrates that the Al2O3 inclusions with irregular shapes are black, which do
not change much with the frequency. In addition to Al2O3 inclusions, the number of other
composite oxides, which include multiple elements, such as Al, Ca, Mg, Si, and Mn, are the
largest. However, the Al content among other composite oxides in ingots is the highest, as
shown in Figure 7b–f. The oxides in consumable electrodes are mainly calcium aluminate,
and the Ca content in inclusions is higher than the Al content (Figure 7a). Considering that
the S content in ingots is very low and the number of oxysulfides is small, they will not be
discussed in this work.
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3.2.3. Variation of Number and Size of Different Types of Inclusions

Figure 8 shows the variation in the number and size of different types of inclusions
with various power supply modes.
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It can be seen from Figure 8 that regardless of the power supply modes and type of
inclusions, the diameter of inclusion in ingots is mainly less than 6 µm. However, the
number of large inclusion changes obviously with the change of frequency. The large
inclusions in the consumable electrode are mainly calcium aluminate, and the diameter of
six inclusions is larger than 15 µm. The maximum diameter of the inclusions is 27.4 µm.
When the power frequency is 10 Hz, the diameters of all Al2O3 are less than 12 µm, and
the diameters of oxysulfides are less than 9 µm. The diameter of other composite oxides
that contain Al is larger, but the maximum diameter does not exceed 15 µm. When the
power frequency decreases to 2 Hz, the diameter of all Al2O3 and oxysulfides are less than
9 µm, and the maximum diameter of other composite oxides is less than 12 µm. When the
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power frequency is 50 Hz, the diameters of all Al2O3 are less than 9 µm, the diameter of
all oxysulfides is less than 12 µm, but the maximum diameter of composite oxide is more
than 15 µm. When DCSP mode is adopted, the maximum diameter of Al2O3 does not
exceed 12 µm, the maximum diameter of oxysulfide is more than 20 µm, and the composite
oxides that contain Al do not exceed 15 µm. However, the number of inclusions increases
obviously. When the DCRP mode is adopted, the maximum diameter of Al2O3 does not
exceed 9 µm. The maximum diameter of the oxysulfide and composite oxides that contain
Al does not exceed 12 µm.

The above results show that regardless of the power supply modes, the diameter of
Al2O3 in the electroslag ingot is smaller. Although the number of inclusion, especially
Al2O3, in electroslag ingot increases significantly, no obvious change is observed in the
diameter of the inclusions.

4. Discussion

The experimental results in Section 3 show that the power supply mode has a great
effect on the cleanliness of the electroslag ingot. In the electroslag remelting process, the
parameters, including current, voltage, slag composition, slag amount, and atmosphere,
are the same. Hence, the cleanliness of the electroslag ingot is considered directly related to
the power frequency.

Notably, the frequency is the power supply parameter of the electroslag furnace, which
is only the inducement for the increase in oxygen content. During the remelting process,
the consumable electrode inserted in the slag pool is melted layer by layer. Therefore, the
increase in oxygen content must come from the slag pool. In addition, a marked difference
is observed in the Al content in electroslag ingots, as shown in Table 3.

Table 3. Chemical composition of electroslag ingots.

Experimental
Schemes

Power Supply
Mode

Chemical Composition/%

C Si Mn P S Cr Ni Al O Ca

Electrode / 0.019 0.411 1.175 0.037 0.0025 18.27 8.10 0.010 0.0025 0.0027
1 10 Hz 0.021 0.404 1.131 0.037 0.0027 17.92 7.86 0.028 0.0066 0.0005
2 2 Hz 0.023 0.391 1.120 0.037 0.0023 18.11 7.89 0.029 0.0076 0.0006
3 DCSP 0.030 0.393 1.121 0.038 0.0031 18.00 7.95 0.095 0.0155 0.0005
4 DCRP 0.023 0.396 1.114 0.037 0.0029 18.10 7.98 0.037 0.0100 0.0006
5 50 Hz 0.022 0.395 1.126 0.036 0.0020 18.19 8.07 0.018 0.0043 0.0005

Table 3 shows that when the different power supply modes are used for remelting,
the Al content in ingots changes significantly. When the power frequency is 50 Hz, the Al
content in the electroslag ingot increases to 0.018% from 0.01% in the consumable electrode.
When the power frequency is 10 Hz and 2 Hz, the Al content increases to 0.028% and
0.029%, respectively. The Al content further increases to 0.037% after remelting with the
DCRP power supply mode. The Al content increases sharply to 0.095% when the DCRP
power supply mode is adopted. During the electroslag remelting, 30% Al2O3-70% CaF2
slag is adopted, and no Al-bearing materials are added to the slag pool. Therefore, the
increase in Al in the electroslag ingot must come from Al2O3 in the slag pool.

In an open electroslag remelting with a power supply of 50 Hz, the oxygen content
will increase inevitably, and the Al content in the electroslag ingot will decrease because
of the oxidation of air [17–20]. Even if the electrode surface is polished and gas protection
is used during remelting, Al content may increase slightly. However, in this experiment,
the oxygen and Al contents in the electroslag ingot increase simultaneously, which should
be caused by the decomposition of Al2O3 in the slag pool. The increase in the number
of Al2O3 and Al-containing composite inclusions in electroslag ingot in Figures 5 and 7
further confirms this conclusion.



Metals 2023, 13, 457 10 of 13

In the previous research, the authors study the influence of different frequencies on
the oxygen and Al content in GCr15 bearing steel and 304 stainless steel electroslag ingots
in detail, and the research results are consistent with the research results in this paper (as
shown in Figure 9), which fully proves that the Al2O3 in slag pool is partially electrolyzed
under the action of low frequency [16].
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Relevant researches show that some oxides in slag in the DC electroslag remelting pro-
cess will be electrolyzed, thereby resulting in the increase in oxygen content in electroslag
ingot [21–23], and the results in this paper further confirm this viewpoint. When the power
supply frequency is low, the DC tendency, which is very likely to electrolyze some oxides
in slag, increases.

When 30% Al2O3-70% CaF2 slag is adopted, the components of slag exist in the form
of Al3+, Ca2+, O2−, F− and AlO3−

3 in high-temperature slag pool [9,24]. Under the action of
the high-density current, the cations move to the cathode, and anions move to the anode.
According to the potential sequence of ions, Al3+ obtains electrons more easily than Ca2+,
whereas O2− loses electrons more easily than F−. Therefore, the cathode/anode reaction is
expressed as follows [25].

Al3+ + 3e = Al (1)

O2− − 2e = O (2)

For AlO3−
3 , a small amount of Al2O3 will be decomposed according to Formula (3) [24].

Al2O3 = Al3+ + AlO3−
3 (3)

Al3+ obtains electrons in anions, as shown in Formula (1). AlO3−
3 discharges at the

anode, as shown in Formula (4).

2AlO3−
3 − 6e =Al2O3 + 3[O] (4)

Through reactions (1)–(4), Al2O3 is decomposed into [Al] and [O] and enters the metal
pool, as shown in Figure 10. However, [Al] and [O] do not react immediately to form Al2O3
inclusions but gradually form Al2O3 inclusions with the decrease in temperature in the
metal pool, which inhibits the growth of inclusions. Therefore, even if the oxygen content
and the number of inclusions in electroslag ingot increase, few large Al2O3 inclusions are
found, as shown in Figure 8. Even if the oxygen content in the electroslag ingot is as high
as 155.3 ppm when the DCSP power supply mode is adopted, the maximum diameter of
Al2O3 inclusions is still less than 12 µm.
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Figure 10. Schematic diagram of Al2O3 electrolysis.

Notably, the oxygen content in the electroslag ingot remelted by DCSP mode is more
than 50% higher than that by DCRP mode. When the consumable electrode is the anode
(DCRP mode), O2− and AlO3−

3 migrate toward the anode and then lose electrons to form
[O], entering the liquid metal film at the electrode cone. Given that the current density
at the electrode cone is the largest, more Al2O3 is electrolyzed, which results in more [O]
entering the metal film.

However, the [O] and [Al] in the metal film will combine again to form Al2O3 because of
the low temperature, and part of the Al2O3 will be absorbed by the slag during the dropping
process of the metal droplet; the oxygen content in ingot is relatively low. Al3+ migrates toward
the cathode (slag-metal interface) and gains electrons to form [Al] entering the metal pool. The
increase in Al content in the ingot is small because the [Al] in the metal film is partially oxidized
to offset the increase in Al content in the metal pool caused by electrolysis.

When the consumable electrode is the cathode (DCSP mode), Al3+ migrates toward
the cathode and then gains electrons to form [Al], entering the liquid metal film at the
electrode cone. Given that the consumable electrode contains a certain amount of Al and
the dissolved oxygen is very low, the loss of Al in the metal film is very small. As the film
forms droplets and then drops into the metal pool, the Al content increases significantly.
Both O2− and AlO3−

3 lose electrons to form [O] entering the metal pool, and the oxygen
content in the ingot also increases greatly. Therefore, compared with the DCRP power
supply mode, when the DCSP mode is used for remelting, not only the oxygen content but
also the Al content in the ingot increase significantly.

In addition, the current density has a great effect on the electrolysis of oxide in the
slag pool. With the increase in mold diameter, the current density decreases rapidly, which
generally follows the law of Formula (5) [26]:

−
J mold =

260
Dmold

(5)

where
−
J mold is the average remelting current density, A/cm2; and Dmold is the mold

diameter, cm.
Therefore, in large-scale industrial production, the electrolysis effect of low-frequency

and DC power supply needs to be verified further.
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5. Conclusions

In the present work, laboratory-scale electroslag remelting experiments are conducted
to study the effect of power supply modes on the cleanliness of electroslag ingots. The
main conclusions can be summarized as follows.

(1) Compared with the power frequency of 50 Hz, the oxygen content in the electroslag
ingot increases significantly when the frequency of 2 Hz or DC power is used. The
influence order of frequency on oxygen content is DCSP, DCRP, 2 Hz, and 50 Hz. The
oxygen content is the highest with DCSP mode and the lowest with the frequency of
50 Hz.

(2) With the low-frequency and DC power supply modes, the number of inclusions in
electroslag ingot increases obviously, but the increased inclusions are mainly Al2O3.
However, the diameter of inclusions is smaller, and the maximum diameter is not
more than 20 µm.

(3) When CaF2-Al2O3 slag is used for electroslag remelting, the oxygen content in the
electroslag ingot increases because [O] and [Al] generated by the electrolysis of Al2O3
enter the metal pool. However, the Al2O3 in the electroslag ingot is regenerated with
the decrease in metal pool temperature and solidification; the inclusion size is fine.
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