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Binali, R.; Akkuş, H.; Salur, E. A
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Abstract: Industrial materials are materials used in the manufacture of products such as durable
machines and equipment. For this reason, industrial materials have importance in many aspects of
human life, including social, environmental, and technological elements, and require further attention
during the production process. Optimization and modeling play an important role in achieving
better results in machining operations, according to common knowledge. As a widely preferred
material in the automotive sector, hardened AISI 4140 is a significant base material for shaft, gear,
and bearing parts, thanks to its remarkable features such as hardness and toughness. However, such
properties adversely affect the machining performance of this material system, due to vibrations
inducing quick tool wear and poor surface quality during cutting operations. The main focus of
this study is to determine the effect of parameter levels (three levels of cutting speed, feed, and
cutting depth) on vibrations, surface roughness, and acoustic emissions during dry turning operation.
A fuzzy inference system-based machine learning approach was utilized to predict the responses.
According to the obtained findings, fuzzy logic predicts surface roughness (88%), vibration (86%),
and acoustic emission (87%) values with high accuracy. The outcome of this study is expected to
make a contribution to the literature showing the impact of turning conditions on the machining
characteristics of industrially important materials.

Keywords: turning; AISI 4140; surface roughness; vibration; acoustic emissions; machine learning

1. Introduction

Industrially important materials have a critical place in the market since companies
make an investment in innovative ideas and methods for such material products. AISI 4140
alloyed steels are broadly preferred in various industrial areas due to their high hardness,
weldability, and toughness properties. Seemingly, a hardened version of AISI 4140 is a
good alternative for prominent sectors to fabricate significant parts such as shaft, gear,
and bearing parts for the automotive sector [1]. However, extreme hardness makes these
materials difficult to cut, since the severe plastic deformation causes excessive cutting
forces and leads to chatter vibrations [2]. As a result of this, the initial condition of the
cutting tool geometry can be lost quickly due to various wear mechanisms and resultant
wear patterns [3]. During this period, the main elements in the cutting tool material
disappear by rupturing from the body or diffusing into the chip [4]. Consequently, the
cutting ability of the tool edge diminishes or fails. In the other scenario, work material
welds or joins on to the cutting tool face, leading to a new cutting edge called a build-up
edge. All these developments decrease the remaining useful lifetime of cutting tools. Such
abnormalities reduce machining quality and pave the way for poor surface integrity, i.e.,
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surface roughness [5]. Hence, the machining of such materials requires further precautions.
Otherwise, time, expense, and labor consumed during machining operations turn into
waste, which is not desired in today’s competitive machining industry.

In a basic cutting operation, machine tools, workpiece material, and cutting tools have
several parameters affecting the sustainability index and quality of the process. In this
respect, keeping some of these factors and related parameters is logical, and it provides
practical solutions to attain better cutting performance. Considering the complex nature
of machining environments, entrepreneurs have tried several approaches for improving
machinability. In the past, researchers focused on three fundamental approaches for
better machining. Some of them can be sorted as: (i) selecting the optimal machining
parameters [6], (ii) using advanced cooling and lubricating environments [7], (iii) utilizing
different types of coating technologies to elongate tool life [8], (iv) using textured cutting
tools for machining enhancement [9], and (v) modeling the cutting environment to replicate
the experiments productively [10]. This study focuses on two of these approaches in a
turning operation. Modeling and optimization of cutting parameters play a key role in
determining the best production conditions for any material [11]. In the modeling process,
a software-based application is used in order to observe the relationship between input
and output parameters. This is highly useful and brings important advantages, namely
low cost and time inputs for the managers, operators, and researchers. The optimization
stage allows for the selection of the best parameter combinations to obtain responses in a
desired range. Therefore, consolidation of two basic methods is an effective approach in
many respects. This study considers a commercially available material, i.e., AISI 4140, for
integration of these two approaches during a turning operation.

When looking at the machinability investigations of AISI 4140, a series of published
papers are encountered in the open literature. Arrazola et al. [12] assessed the impact
of machining operation on the thermal variations during the cutting of AISI 4140 steel.
They correlated the improved machining with reduced temperature regions, which can
be quite useful to overcome uncertainties. Later, the same team [13] reported the effect
of the tool and coating along with the operation on thermal zones for the same material.
They evaluated the cutting forces and temperatures as outputs, considering the influence
of cutting parameters. Khrais et al. [14] evaluated the cutting performance of coated tools
regarding the progressive wear mechanisms under determined operational ranges. They
showed that abrasive wear, chipping, attrition, and fatigue play a huge role in coated tools
during the cutting of AISI 4140. Aslan et al. [15] investigated the influence of basic cutting
parameters on surface roughness and wear using an orthogonal design and statistical
approach. They determined the best solutions for achieving maximized tool life and surface
quality. Elbah et al. [16] evaluated the surface roughness parameters during the machining
of hardened AISI 4140 alloy steel. They concluded that the feed rate and cutting depth
have a dramatic impact on surface quality. Das et al. [17] focused on the influence level of
main turning parameters on surface roughness, chip morphology, and flank wear while
cutting AISI 4140. Abrasive wear was found as the governing mechanism and feed rate was
detected as the most influential factor on the surface roughness. Dhar et al. [18] evaluated
the effectiveness of cryogenic cooling for improving performance measures of AISI 4140.
The superiority of the cryogenic facility was observed on the finished surface, tool wear
and temperature. Hadad et al. [19] compared dry and wet turning with minimum quantity
lubrication assistant operation while machining AISI 4140 steel. For temperature reduction,
the minimum quantity lubrication strategy was found to be the most effective method,
followed by the conventional cooling and dry methods. Sayuti et al. [1] utilized nanofluid
in hard turning of AISI 4140 steel for minimization of tool wear and surface roughness. The
authors reduced the total cost and improved surface quality via fuzzy logic and Taguchi-
based optimization methods. Saikaew et al. [20] compared different coating materials and
their machinability performance under dry-cutting conditions. They determined the best
intervals of cutting speed to reach acceptable turning performance in turning of AISI 4140.
Seemingly, ploughing, chipping and abrasive wear were observed as wear developments in
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such an environment. Gürbüz et al. [21] applied a minimum quantity lubrication technique
by changing the flow rate on AISI 4140 machining operation. The results of the paper
showed that increasing the flow rate ratio has a good impact on cutting forces but no
important effect on surface quality. Aouici et al. [22] compared different inserts during
the hard turning of AISI 4140 material using main turning parameters. They analyzed
the superiority and inferiority of two different cutting inserts for better cutting forces and
flank wear.

The comprehensive literature analysis showed that the cutting of AISI 4140 steel is
a challenging process, especially when heat treatment was applied. In such instances,
the cutting process becomes highly severe while creating destructive wear mechanisms,
reducing the surface quality. Although parametric research studies have been completed
previously, they are limited for such a popular work material. Moreover, despite the
additional economic burden of cooling and lubricating methods, they cannot improve
surface quality. At this point, it should be noted that dry machining is a simple way to
reach zero waste machining with minimum costs. Despite a good number of papers about
the machinability of AISI 4140 having been published, a proportion of them was carried
out on a lathe, and none of them was interested in parameter optimization and prediction
under dry cutting conditions. In addition, it is necessary to verify the validity of previous
findings to create an up-to-date database for machining operations, owing to the broad
utilization of these materials in privileged areas. In light of the above information, this work
aims to fill a gap in the literature by investigating the effects of turning parameters, namely,
speed, feed, and cutting depth, on surface roughness and vibrations while machining AISI
4140 steels. In this context, 3D graphs were utilized for in-depth analysis of main and
intermediate levels of the cutting parameters. Additionally, estimation of the response
parameters was carried out using a machine learning technique, i.e., fuzzy logic. Hopefully,
this work will be useful for practitioners in the industry and young researchers in academia
regarding the integration of various techniques into the machining of industrial products
with sustainable machining methods.

2. Materials and Methods
2.1. Preparation of Test Samples

For the test sample, AISI 4140 (SAE 4140, DIN 42CrMo4) correction steel was used
with Ø110 × 600 mm2 dimensions. AISI 4140 steel was used for the stage of high-strength
machine parts, stepped wheels, connection parts, commands, pins, and axles. The chemical
constituents of the used test sample are given in Table 1. Before the parts were heat-treated,
face and surface turning were performed, and two center holes were drilled. Thermally,
the material can be diluted at 920 ◦C and tempered at 350 ◦C for 2.5 h. The hardness
of these materials was reduced to 62 HRC. The crust formed on the surface due to heat
treatment was removed by turning. The experimental setup is shown in Figure 1. In
Figure 1, a summary of the machine tools used, sensors, machinability input parameters,
the methods used, and the machinability output parameters obtained in the experimental
studies are given.

Table 1. Chemical composition of AISI 4140 steel.

C (wt%) Si (wt%) Mn
(wt%) P (wt%) S (wt%) Cr

(wt%)
Mo

(wt%)
Ni

(wt%)
Al

(wt%)
Cu

(wt%)
Sn

(wt%)

0.40 0.28 0.88 0.016 0.002 0.91 0.17 0.19 0.017 0.13 0.008
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2.2. Cutting Tool and Tool Holder

As a cutting tool, ISCAR brand WNMA 080,408 IC5005 CVD-coated cutting inserts
with a tip radius of 0.8 mm were used. The tool surface was coated with Al2O3 and TiC.
The insert used in the experiments is shown in Figure 2. ISCAR MWLNR 2525M-0.8W was
used as a tool holder and the dimensions of the tool holder are given in Figure 3.
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Figure 3. Cross-sections and dimensions of the tool holder (mm).

2.3. Data Acquisition Equipment

A Kistler brand 5134-type accelerometer was used for vibration measurement. Figure 4
shows the vibration measurement sensor and the placement of the vibration measurement
sensor in the system. A Mitutoyo brand SJ 201 surface roughness measuring device was
used to measure the surface roughness values of the processed samples. The device is
shown in Figure 5.

Metals 2023, 13, 437 5 of 16 
 

 

 
Figure 3. Cross-sections and dimensions of the tool holder (mm). 

2.3. Data Acquisition Equipment 
A Kistler brand 5134-type accelerometer was used for vibration measurement. Figure 

4 shows the vibration measurement sensor and the placement of the vibration measure-
ment sensor in the system. A Mitutoyo brand SJ 201 surface roughness measuring device 
was used to measure the surface roughness values of the processed samples. The device 
is shown in Figure 5. 

 
Figure 4. Placement of the sensor for vibration measurement in the experimental setup. 

 
Figure 5. Mitutoyo brand SJ 201 surface roughness measuring device. 

2.4. Data Acquisition Equipment 
The experiments were carried out on the NL 2500 CNC lathe belonging to Mori Seiki 

at the Manufacturing Systems Automation and Computer-Aided Design Production Re-
search and Application Center (ISOMER) at Selcuk University. No coolant or gas was used 
in the experiments, and sawdust was removed under dry-cutting conditions. The shape 
of the lathe is given in Figure 6, and the specifications of the lathe are given in Table 2. 
Three different cutting speeds (V), three different feed rates (f), and three different cutting 
depths (a) were determined as cutting parameters according to the manufacturer’s cata-
log. In the experimental design, 27 different combinations of experiments were designed 
using the full factorial method. Table 3 shows the parameters used in the experiment and 
their levels. 

Figure 4. Placement of the sensor for vibration measurement in the experimental setup.

Metals 2023, 13, 437 5 of 16 
 

 

 
Figure 3. Cross-sections and dimensions of the tool holder (mm). 

2.3. Data Acquisition Equipment 
A Kistler brand 5134-type accelerometer was used for vibration measurement. Figure 

4 shows the vibration measurement sensor and the placement of the vibration measure-
ment sensor in the system. A Mitutoyo brand SJ 201 surface roughness measuring device 
was used to measure the surface roughness values of the processed samples. The device 
is shown in Figure 5. 

 
Figure 4. Placement of the sensor for vibration measurement in the experimental setup. 

 
Figure 5. Mitutoyo brand SJ 201 surface roughness measuring device. 

2.4. Data Acquisition Equipment 
The experiments were carried out on the NL 2500 CNC lathe belonging to Mori Seiki 

at the Manufacturing Systems Automation and Computer-Aided Design Production Re-
search and Application Center (ISOMER) at Selcuk University. No coolant or gas was used 
in the experiments, and sawdust was removed under dry-cutting conditions. The shape 
of the lathe is given in Figure 6, and the specifications of the lathe are given in Table 2. 
Three different cutting speeds (V), three different feed rates (f), and three different cutting 
depths (a) were determined as cutting parameters according to the manufacturer’s cata-
log. In the experimental design, 27 different combinations of experiments were designed 
using the full factorial method. Table 3 shows the parameters used in the experiment and 
their levels. 

Figure 5. Mitutoyo brand SJ 201 surface roughness measuring device.

2.4. Data Acquisition Equipment

The experiments were carried out on the NL 2500 CNC lathe belonging to Mori Seiki at
the Manufacturing Systems Automation and Computer-Aided Design Production Research
and Application Center (ISOMER) at Selcuk University. No coolant or gas was used in the
experiments, and sawdust was removed under dry-cutting conditions. The shape of the
lathe is given in Figure 6, and the specifications of the lathe are given in Table 2. Three
different cutting speeds (V), three different feed rates (f), and three different cutting depths
(a) were determined as cutting parameters according to the manufacturer’s catalog. In the
experimental design, 27 different combinations of experiments were designed using the
full factorial method. Table 3 shows the parameters used in the experiment and their levels.
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Table 2. Features of the Mori Seiki NL 2500 lathe.

Max. turning diameter 366 mm
Max. turning length 705 mm
X-axis machining 260 mm
Z-axis machining 795 mm
Max. pressure 3 MPa
Bench power 10 kW
Round per minute 4000 rpm
Number of turret sets 12
Sensitivity 0.001 mm

Table 3. Three-level values of cutting parameters.

Cutting Parameters
Levels

I. II. III.

Cutting speed (m/min) 90 120 150
Feed (mm/rev) 0.18 0.27 0.36

Cutting depth (mm) 0.2 0.4 0.6

2.5. Fuzzy Logic Model for Parameter Estimation

The rule-based fuzzy logic model was created with three inputs (cutting speed, feed,
and depth of cut) and three outputs (surface roughness, vibration, acoustic emission) via the
Fuzzy Logic Toolbox of the Matlab (Matrix Laboratory) package program. The Mamdani
approach was chosen as a fuzzy logic inference mechanism. Centroid (center of gravity)
was chosen as the defuzzification method. Figure 7 shows the generated fuzzy logic model.
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3. Results and Discussion

In the context of this paper, the response parameters such as vibration, surface rough-
ness, and acoustic emission were evaluated using 3D graphs. This type of research will
shed light on the effect of the input parameters on outputs. At the same time, the estimation
of the response parameters provides an opportunity for quick optimization between ranges
of operational parameters.

3.1. Graphical Evaluation of the Vibration

Mechanical vibrations cause damage to the parts of any system since they deteriorate
the natural flow of running and lead to excessive and sudden loads [23]. In a machining
environment, vibrations play an important role in ensuring the stable cutting mechanism
protects the cutting tool from fast-wearing and spoiled workpiece surfaces, as the inter-
action between the cutting tool and workpiece produces some vibrations as a result of
high cutting speeds, the resistance of materials to plastic deformation, hard-to-predict wear
mechanisms, inhomogeneity of work materials, etc. Therefore, the influence of the basic
cutting parameters on machining characteristics can show alterations according to time and
place. In the meantime, increasing vibrations induce elevated cutting forces, triggering sev-
eral wear mechanisms [24]. When looking at hardened steels or alloyed materials, it can be
said that the vibrations demonstrate an increasing trend compared to conventional metals.
Thus, the determination of the conditions that convey a high amount of vibration should be
eliminated to avoid poor machinability. This can be achieved by organizing the entirety of
the machining environment so as to include the fundamental cutting parameters, namely
cutting speed, feed rate, and depth of cut. Therefore, this paper examines the influence of
combined parameters on vibrations using 3D surfaces in graphs, as shown in Figure 8. Such
an approach seeks to achieve the intermediate values of parameter ranges, approximately
representing an optimization method. Since the machined material is hardened steel, the
cutting mechanism is open for forced vibrations as a result of rapidly accelerating tool
wear. Seemingly, the maximum feed rate and depth of cut produce the highest vibration,
according to Figure 8C. Material volume removed from the surface reaches peak value
under these circumstances, placing extreme force on the cutting tool and triggering the
vibration mechanism. In addition, it can be clearly seen that the medium cutting speed
values are responsible for the high levels of vibration, according to Figure 8A,C. A dra-
matic reduction is also seen from this value to extreme values, especially at low feed rates
(Figure 8A). It is difficult to explain the outcome since the behavior of vibration depends
on many factors including tool wear, chip formation, etc. On the other hand, it exhibits the
general trend of vibration curves, which is useful in designing machining parameter ranges.
Figure 8B,C demonstrates much more regular dwindling/growing behavior compared to
the feed/speed combination effect. This is attributed to the reason that high-level cutting
depth has an ever-increasing impact on vibrations, irrespective of cutting speed and feed
rate (Figure 8B,C). From the above-mentioned results, it can be inferred that the feed rate
and cutting speed combination have to be arranged to avoid excessive vibrations in the
cutting of hardened steels, while the depth of cut has a much more consistent effect.



Metals 2023, 13, 437 8 of 15Metals 2023, 13, 437 8 of 16 
 

 

 
Figure 8. The effect of cutting parameters on vibration in 3D graphs. (A) Feed rate-Cutting speed, 
(B) Depth of cut-Cutting speed, (C)Depth of cut-Feed rate. 

3.2. Graphical Evaluation of the Surface Roughness 
Surface roughness is one of the most determinative indicators in terms of the 

machined workpiece for improved machining quality. Surface roughness is also known 
as roughness is a member of surface integrity [25]. Since the roughness profile reflects the 
irregularities on the surface with the calculation approach based on the depth of peaks 
and hollows, it is possible through this method to evaluate the machining conditions [26]. 
It is highly difficult to produce the desired roughness value range, especially for hard 
materials. Therefore, modeling the cutting conditions provide a chance for an in-depth 
analysis of machining outcomes. Therefore, it is a reliable and sustainable method for 
surface characterization around the world. Notwithstanding that there are several 
roughness parameters in detecting surface quality, the most prominent one is the 
arithmetic average of surface heights (Ra), which is widely used in academia and industry 
[27]. Figure 9 summarizes the effect of cutting parameters on surface roughness in 3D 
graphs. It should be noted there is a range that varies between 1 µm–4.5 µm under the 
applied cutting combinations. Accordingly, feed rate plays the most influential role on 
average surface roughness, as expected when looking at Figure 9A,C. This was previously 
determined by the authors several times, using experimental and theoretical methods [28–
30]. Indeed, it is understandable by the fact that the horizontal motion of the cutting tool 
on the workpiece determines the waviness according to the feed speed. However, it is also 
important to note that different levels of cutting speed and cutting depth have an effect 
on the roughness. This is a natural result of the relative motion between the cutting tool 
and the workpiece material. Therefore, it can be said that the feed rate acts as a 

Figure 8. The effect of cutting parameters on vibration in 3D graphs. (A) Feed rate-Cutting speed,
(B) Depth of cut-Cutting speed, (C) Depth of cut-Feed rate.

3.2. Graphical Evaluation of the Surface Roughness

Surface roughness is one of the most determinative indicators in terms of the machined
workpiece for improved machining quality. Surface roughness is also known as roughness
is a member of surface integrity [25]. Since the roughness profile reflects the irregularities
on the surface with the calculation approach based on the depth of peaks and hollows,
it is possible through this method to evaluate the machining conditions [26]. It is highly
difficult to produce the desired roughness value range, especially for hard materials.
Therefore, modeling the cutting conditions provide a chance for an in-depth analysis
of machining outcomes. Therefore, it is a reliable and sustainable method for surface
characterization around the world. Notwithstanding that there are several roughness
parameters in detecting surface quality, the most prominent one is the arithmetic average
of surface heights (Ra), which is widely used in academia and industry [27]. Figure 9
summarizes the effect of cutting parameters on surface roughness in 3D graphs. It should
be noted there is a range that varies between 1 µm–4.5 µm under the applied cutting
combinations. Accordingly, feed rate plays the most influential role on average surface
roughness, as expected when looking at Figure 9A,C. This was previously determined by
the authors several times, using experimental and theoretical methods [28–30]. Indeed, it is
understandable by the fact that the horizontal motion of the cutting tool on the workpiece
determines the waviness according to the feed speed. However, it is also important to note
that different levels of cutting speed and cutting depth have an effect on the roughness.
This is a natural result of the relative motion between the cutting tool and the workpiece
material. Therefore, it can be said that the feed rate acts as a determinant actor on this
response with the help of cutting speed and the depth of cut. As a result, the true selection
of the cutting parameters verifies the numerical equations by showing the actual impacts.
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According to Figure 9A,B, increasing cutting speed reduces the surface roughness slightly
at all levels of cutting depth and low values of feed rate. It is known that the high levels of
cutting speed make metal cutting easier, by reducing the cutting forces. On the other hand,
high levels of feed rate do not permit the roughness reduction through the effect of high
cutting speeds. It is thought that the extreme values of feed rate and cutting speed increase
the material removal rate. In addition, the feed rate dominates the roughness variation,
prohibiting the speed effect. When compared with cutting speed and feed rate, the depth
of cut has no important influence on surface roughness, as seen in Figure 9B,C. At this
point, it is recommended for future works that different levels of cutting depth need to be
considered for manipulating the surface roughness in turning such hardened steels.
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3.3. Graphical Evaluation of the Acoustic Emission

Acoustic emission is a term which defines stress wave propagation from the materials
that are exposed to external forces causing plastic deformations. In this context, it is highly
critical to determine the acoustic waves in each cutting operation to correlate with the effect
of machining parameters and outcomes. Because identification of the chip morphology
and cutting tool wear index have the utmost significance in determining the relationship
between deformation rates, such variations determine the surface integrity of the workpiece.
This study focuses on the effect of parameter combinations on acoustic emissions while
turning hard steel. At this point, it is important to mention that the high hardness of the
material forces the cutting tool, triggering the plastic deformations. Figure 10 shows these
effects with dual combinations of cutting speed, feed rate, and cutting depth, respectively, in
3D graphs. There are complex results in terms of the effect of the basic cutting parameters,
as can be seen from these graphs. It can be said that the maximum values of cutting
parameters produce the highest acoustic emissions, and vice versa (Figure 10A–C). This is
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logical since the increase in these parameters’ material removal rate reaches its peak value
and plastic deformation elevates. On the other hand, variations of the cutting parameters
have a changeable role according to their levels and versus parameters. Therefore, in
here, singular parameter influences are not considered. Seemingly, increasing cutting
speed reduces acoustic emissions under low feed rate values (Figure 10A). Depth of cut
shows an increasing trend up to a certain value and then lowers until its high level, as
seen in Figure 9B. A wide part of the combination of feed rate and cutting depth does not
influence acoustic emissions (Figure 10C). Cutting depth in this graph has a similar effect
on the acoustic signals at low feed rate values. From this comprehensive analysis, it is
critical to note that the determination of the acoustic emissions is highly challenging, as a
result of depending on the combined effects of cutting parameters and the complexity of
machining operations.
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3.4. Estimation of the Response Parameters via a Fuzzy Logic Method

Three membership degrees and triangular membership functions (trimf) are defined
for cutting speed, feed rate, and depth of cut. Table 4 shows the ranges of membership
degrees established for cutting parameters.

Table 4. Membership degrees determined for input values.

Cutting Speed (V) Feed Rate (f) Depth of Cut (a) Membership Degree

90–120 0.18–0.27 0.2–0.4 Low (L)
90–150 0.18–0.36 0.2–0.6 Middle (M)
120–150 0.27–0.36 0.4–0.6 High (H)
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Eleven membership degrees and triangular membership functions (trimf) are defined
for surface roughness, vibration, and acoustic emission values. Membership degrees
have been determined for ease of translation into the same linguistic expressions and for
uniformity in practice. Table 5 shows the ranges of membership degrees established for
surface roughness, vibration, and acoustic emission.

Table 5. Membership degrees determined for surface roughness, vibration, and acoustic emission.

Ra Vibration Acoustic Emission Membership Degree

0.85–1.18 5.20–7.55 0.59–0.84 Very Very Very Very Low (VVVVL)
0.85–1.51 5.20–9.89 0.59–1.08 Very Very Very Low (VVVL)
1.18–1.84 7.55–12.24 0.84–1.33 Very Very Low (VVL)
1.51–2.17 9.89–14.58 1.08–1.57 Very Low (VL)
1.84–2.51 12.24–16.93 1.33–1.82 Low (L)
2.17–2.84 14.58–19.27 1.57–2.07 Middle (M)
2.51–3.17 16.93–21.62 1.82–2.31 High (H)
2.84–3.50 19.27–23.96 2.07–2.56 Very High (VH)
3.17–3.83 21.62–26.35 2.31–2.80 Very Very High (VVH)
3.50–4.16 23.96–28.65 2.56–3.05 Very Very Very High (VVVH)
3.83–4.16 26.31–28.65 2.80–3.05 Very Very Very Very High (VVVVH)

After the membership functions are determined, the rule base must be carefully
determined in order to obtain successful results from the fuzzy logic model. Table 6 shows
the rules. The rules were created according to the experimental results. In the table, the
cutting speed is expressed as “V”, the feed rate “f”, and the depth of cut “a”.

Table 6. Created fuzzy logic rules.

v f a Ra Vibration Acoustic Emission

1 L and L and L Then VL and VVVL and VVVVL
2 L and L and M Then VVVVL and VVVL and VVVVH
3 L and L and H Then VVVL and VVL and VVVL
4 L and M and L Then VL and VVVL and VVL
5 L and M and M Then VL and VL and VVVVL
6 L and M and H Then M and M and VVVL
7 L and H and L Then VH and VVVVL and VL
8 L and H and M Then VH and VVL and VVVVL
9 L and H and H Then VH and VH and VVVL

10 M and L and L Then VVVL and VVL and VVVL
11 M and L and M Then VVL and VVL and VL
12 M and L and H Then VVVL and VVVVH and M
13 M and M and L Then L and VVL and VVL
14 M and M and M Then L and VL and VVVL
15 M and M and H Then L and M and VVL
16 M and H and L Then VVH and VVL and VL
17 M and H and M Then VVVH and VH and VVVL
18 M and H and H Then H and H and VL
19 H and L and L Then VVVVL and VVVL and VL
20 H and L and M Then VVVL and VL and VL
21 H and L and H Then VVVL and VVVL and L
22 H and M and L Then L and VVVL and M
23 H and M and M Then M and VH and H
24 H and M and H Then M and VH and M
25 H and H and L Then VVVVH and H and M
26 H and H and M Then VVVH and VVL and M
27 H and H and H Then VVVH and VVVH and L

Table 7 shows the test results obtained for surface roughness, vibration, and acoustic
emission, and the fuzzy logic model estimation results.
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Table 7. Experimental results and fuzzy logic prediction results.

Experimental Results Fuzzy Logic Prediction Results
Case Number Ra Vibration Acoustic Emission Ra Vibration Acoustic Emission

1 1.76 8.25 0.59 1.84 7.55 0.67
2 0.85 7.41 3.05 0.95 7.55 2.97
3 1.21 9.23 0.86 1.18 9.89 0.84
4 1.71 7.70 1.09 1.84 7.55 1.08
5 1.73 11.34 0.62 1.84 12.20 0.67
6 2.47 18.28 0.76 2.51 16.90 0.84
7 3.28 5.20 1.33 3.17 5.91 1.33
8 3.15 9.60 0.62 3.17 9.89 0.67
9 3.17 22.33 0.74 3.17 21.60 0.84

10 1.09 10.71 0.74 1.18 9.89 0.84
11 1.55 8.75 1.32 1.51 9.89 1.33
12 1.30 28.65 1.75 1.18 27.90 1.82
13 2.24 9.65 1.03 2.17 9.89 1.08
14 2.08 11.34 0.83 2.17 12.20 0.84
15 2.11 17.70 0.99 2.17 16.90 1.08
16 3.52 10.07 1.28 3.50 9.89 1.33
17 3.74 21.92 0.87 3.83 21.60 0.84
18 2.84 20.34 1.28 2.84 19.30 1.33
19 0.94 6.60 1.45 0.95 7.55 1.33
20 1.26 11.38 1.32 1.18 12.20 1.33
21 1.24 8.35 1.50 1.18 7.55 1.57
22 2.17 7.61 1.86 2.17 7.55 1.82
23 2.59 21.21 1.96 2.51 21.60 2.07
24 2.37 22.29 1.79 2.51 21.60 1.82
25 4.16 18.76 1.71 4.06 19.03 1.82
26 3.86 10.00 1.75 3.83 9.89 1.82
27 3.66 25.65 1.58 3.83 26.30 1.57

Percentage errors are easily calculated to see the accuracy of the fuzzy logic prediction
model. Percentage error was calculated using Equations (1) and (2).

Difference = Experimental result-Fuzzy logic result, (1)

Percent Error = (100 × Difference)/Experimental result, (2)

Table 8 shows the percent error values. When the table is examined, it is seen that the
fuzzy logic predicts the surface roughness, vibration, and acoustic emission values with
high accuracy (surface roughness is about 88%; vibration is about 86%; acoustic emission is
about 87%).

Table 8. Percent error values.

Case Number Ra Vibration Acoustic Emission

1 5 8 13
2 12 2 3
3 2 7 3
4 8 2 1
5 6 8 7
6 2 8 10
7 3 14 0
8 1 3 8
9 0 3 13
10 8 8 13
11 3 13 1
12 9 3 4
13 3 3 5
14 4 8 1
15 3 4 9
16 1 2 4
17 2 1 3
18 0 5 4
19 1 14 9
20 6 7 1
21 5 10 4
22 0 1 2
23 3 2 5
24 6 3 2
25 2 1 6
26 1 1 4
27 5 3 0
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3.5. Statistical Analysis of the Machinability Criteria

Statistical analysis of the machining characteristics is also important for evaluating
the impact of the design parameters, which gives more accurate results utilizing numerical
pieces of evidence [31]. To this end, statistical analysis-based evaluations of the cutting
parameters were carried out for surface roughness, vibration, and acoustic emission in
this study. The findings obtained from the analysis are given in Table 9 according to the
analysis of variance method. For each criterion, singular and synergistic effects of the
cutting speed, feed rate, and depth of cut were evaluated. One of the advantageous aspects
of the statistical approach is that it is capable of giving results with different outcomes.
As seen, the F value, p value, and percent contributions were listed in the table where all
these values support each other in proving the effects of all parameters. Seemingly, the
feed rate was detected as the most significant parameter regarding surface roughness, with
an influence rate of 87.7%. However, depth of cut was found to be the dominant parameter
for vibration signals, at about 28.6%. Lastly, cutting speed was seen as the most important
parameter for acoustic emissions, with a contribution rate of 34.16%. In addition to the
singular effects, the synergistic effect of the feed rate and depth of cut was found to be very
important, according to the percent contribution rate of about 23.79%.

Table 9. Analysis of variance for machining characteristics.

Source Degree of
Freedom

Total Sum of
Square F Value p Value Percent

Contribution

Surface roughness
Cutting speed 2 1.662 0.51 0.619 0.4

Feed rate 2 350.269 49.51 0.000 87.7
Depth of cut 2 0.067 0.000 0.998 0.1

Cutting speed × feed rate 4 7.801 0.48 0.752 1.9
Cutting speed × depth of cut 4 13.883 1.07 0.438 3.4

Feed rate × depth of cut 4 3.690 0.29 0.877 0.9
Remaining error 7 22.380 - - 5.6

Total 25 399.753 - - 100

Vibration
Cutting speed 2 24.927 1.58 0.272 12.2

Feed rate 2 15.663 1.10 0.384 7.7
Depth of cut 2 74.757 4.11 0.066 37

Cutting speed × feed rate 4 16.317 0.48 0.751 8
Cutting speed × depth of cut 4 5.020 0.10 0.981 2.4

Feed rate × depth of cut 4 8.330 0.25 0.900 4.1
Remaining error 7 58.056 - - 28.6

Total 25 203.071 - - 100

Acoustic emission
Cutting speed 2 114.460 4.12 0.066 34.16

Feed rate 2 4.112 0.17 0.851 1.2
Depth of cut 2 0.345 0.01 0.985 0.1

Cutting speed × feed rate 4 29.003 0.58 0.686 8.65
Cutting speed × depth of cut 4 21.300 0.43 0.782 6.3

Feed rate × depth of cut 4 79.590 1.62 0.272 23.79
Remaining error 7 86.224 - - 25.8

Total 25 335.033 - - 100

4. Conclusions

In this study, AISI 4140 steel was turned on a CNC machine. Surface roughness,
vibration, and acoustic emission values were measured after turning experiments.

A rule-based fuzzy logic model was created with the Matlab program. Experimental
results and fuzzy model results were compared.
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It is concluded that rule-based fuzzy logic modeling is a decision alternative for surface
roughness, vibration, and acoustic emission in the turning process.

The margin of error should always be taken into account in forecasting models, and
the aim is to keep these errors at minimal levels and shed light on future studies. When the
experimental results and the prediction results made by fuzzy modeling are compared, it is
seen that the rule-based fuzzy logic model is successful.

In future studies, the error rates can be further reduced with more linguistic expres-
sions of membership degrees. The effects of different membership functions on the error
can also be investigated.
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15. Aslan, E.; Camuşcu, N.; Birgören, B. Design optimization of cutting parameters when turning hardened AISI 4140 steel (63 HRC)
with Al2O3+ TiCN mixed ceramic tool. Mater. Des. 2007, 28, 1618–1622. [CrossRef]

16. Elbah, M.; Yallese, M.A.; Aouici, H.; Mabrouki, T.; Rigal, J.-F. Comparative assessment of wiper and conventional ceramic tools
on surface roughness in hard turning AISI 4140 steel. Measurement 2013, 46, 3041–3056. [CrossRef]

http://doi.org/10.1016/j.jclepro.2013.12.052
http://doi.org/10.1016/S0043-1648(99)00361-0
http://doi.org/10.1016/j.rser.2022.112660
http://doi.org/10.1016/j.cirpj.2021.07.011
http://doi.org/10.1016/j.jclepro.2014.12.020
http://doi.org/10.1007/s13369-018-3559-6
http://doi.org/10.3390/lubricants10040063
http://doi.org/10.1016/j.vacuum.2022.111741
http://doi.org/10.1016/j.jmapro.2018.12.023
http://doi.org/10.1016/j.measurement.2018.10.067
http://doi.org/10.1016/j.measurement.2011.12.004
http://doi.org/10.1016/j.cirp.2008.03.139
http://doi.org/10.1016/j.cirp.2009.03.085
http://doi.org/10.1016/j.wear.2006.03.052
http://doi.org/10.1016/j.matdes.2006.02.006
http://doi.org/10.1016/j.measurement.2013.06.018


Metals 2023, 13, 437 15 of 15

17. Das, S.R.; Dhupal, D.; Kumar, A. Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated
ceramic tool. Measurement 2015, 62, 108–126. [CrossRef]

18. Dhar, N.; Paul, S.; Chattopadhyay, A. Machining of AISI 4140 steel under cryogenic cooling—Tool wear, surface roughness and
dimensional deviation. J. Mater. Process. Technol. 2002, 123, 483–489. [CrossRef]

19. Hadad, M.; Sadeghi, B. Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy. J. Clean. Prod. 2013, 54, 332–343.
[CrossRef]

20. Saikaew, C.; Paengchit, P.; Wisitsoraat, A. Machining performances of TiN plus AlCrN coated WC and Al2O3+ TiC inserts for
turning of AISI 4140 steel under dry condition. J. Manuf. Process. 2020, 50, 412–420. [CrossRef]
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