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Abstract: Press Hardening offers the possibility to obtain a wide range of mechanical properties
through microstructural tailoring. This strategy has been successfully applied in thin sheet com-
ponents, for instance, through differential cooling strategies. The application of these added value
features to truck components implies adapting the process to the manufacture of thick sheet metal.
This introduces an additional layer of complexity, but also opportunity, in a process where the final mi-
crostructure and, thus the mechanical performance is generated in the press shop. This work presents
a study on optimizing the crash worthiness and impact energy absorption on a press hardened
thick 22MnB5 steel sheet. Different microstructure design strategies have been studied, including
ferrite-Pearlite (representative of a differential heating and austenitization strategy), in-die generated
Bainite (representative of differential cooling) and Tempered Martensite (generated through laser
tempering), keeping a fully hardened martensite as a reference condition. The material performance
has been compared in terms of the monotonic properties, useful for anti-intrusion performance, and
Essential Work of Fracture, a well-suited parameter to predict the crash failure behavior of high
strength steels. The results show that laser tempering offers properties similar to Bainite-based
microstructures and can be a successful replacement in components where the sheet thickness does
not allow for the fine control of the in-die thermomechanical evolution.

Keywords: thick 22MnB5 sheet; laser tempering; essential work of fracture

1. Introduction

Since the early 2000s, press hardening has evolved from being a specialty technique
into becoming a mainstay in the production of crash-resistant structures in automobiles [1],
thanks to a combination of high performance, cost-competitiveness, and robustness. This
success has led, in the last few years, to proposals to export the technology into similar
or related applications. One such sector is in heavy vehicles, such as trucks or busses,
that could benefit from a weight reduction in its safety-responsible parts. Preliminary
studies appeared as early as 2017 [2], and a quick introduction into the market followed,
demonstrating that it is indeed a competitive option.

This process of adoption into truck parts can still be enhanced by porting added-
value solutions from the thin sheet market, and microstructural tailoring immediately
comes to mind. The introduction of soft zones, or areas with tailored properties inside
a component, has been proposed since the popularization of press hardening and has
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indeed shown great results through various implementations, including selective heating
or differential cooling [3]. Again, applying microstructural tailoring to heavy vehicles is
not straightforward due to the sheet thickness. While employing heated dies to reduce the
cooling rate is common in thin sheets [3], it is not clear that the same time temperature
profiles can be obtained on thick products due to the difficulty of precisely controlling
the tool temperature through cartridge heating, while at the same time, extracting a large
amount of heat from a thick steel section.

In this regard, laser tempering on fully martensitic material has been proposed as an
alternative and has been demonstrated to be feasible for both thin and thick sheets [4–6].
Laser tempering technologies offer great potential for tailoring, opening the possibility of
complex and intricate zones, sharp transitions, and cost-competitive alternatives in cases
where heated dies cannot be produced (e.g., short productions).

As an added layer of potential, varying the microstructure does not only affect the
monotonic performance, but also has a strong effect on the fracture toughness, a property
that has been demonstrated to be strongly linked to crashworthiness [6,7]. In the last few
years, a great deal of work has been devoted to measuring the fracture toughness in sheet
metal, something that is reliably accomplished through the Essential Work of Fracture
(EWF) methodology [8]; this method can therefore be applied to predict the performance of
laboratory-produced microstructures in crash conditions.

This work explores local tailoring as a cost-competitive strategy to produce optimized
and added value thick sheet metal parts. Two options are explored: in-die bainitizing
(quenching in-die heated at a controlled temperature) to create a Bainite-based soft zone
and laser tempering, applying a laser post-treatment to a fully martensitic component,
resulting in a Tempered Martensite region; industrially valid implementations are offered
for both. Finally, the obtained microstructures are compared in terms of two mechanical
properties related to crashworthiness: monotonic load strength (anti-intrusion potential)
and fracture toughness (and therefore energy-absorption capacity).

2. Materials and Methods
2.1. Materials

All of the samples were obtained from a single batch of commercial 6.2 mm thick
22MnB5 sheet. The chemical composition was verified by means of spectroscopy (Table 1).

Table 1. Chemical composition of the studied material, compared to 22MnB5 standard; amounts
in [wt%].

C Si Mn Cr Al B

22MnB5 0.2–0.25 0.15–0.35 1.1–1.4 0.15–0.30 0.02–0.06 0.02–0.04
Sample 0.215 0.27 1.19 0.119 0.03 0.02

As is usual for this format, the material was received hot rolled and in a Ferritic-
Pearlitic microstructure and was not coated. The starting microstructure did not show
significant differences from a conventional thin sheet hot stamping product (Figure 1).

2.2. Sample Production and Heat Treatment

Small blanks (100 mm × 100 mm) were cut from the as-supplied material, using an
angle grinder at low speed to avoid excess frictional heating. Afterwards, different heat
treatments (Table 2) were applied on these blanks. Finally, the test specimens were wire-cut
from this heat-treated material.

In all cases, austenitization was conducted in an open (oxygen-containing) atmo-
sphere roller hearth furnace, 2.5 m long. The furnace was preheated at 930 ◦C, and the
samples were allowed 690 s residence time, including the heating time and dwell time
for homogenization.
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The martensitic samples were then manually transferred to a water-cooled (16 ◦C)
flat die installed in a 150-t hydraulic press, where they were press hardened under an
average pressure of 25 MPa. The samples were extracted after 60 s, at approximately
room temperature.
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Figure 1. Initial microstructure of the studied 6.2 mm thick 22MnB5 material.

Table 2. Summary of heat treatment conditions applied.

Austenitization Quench Post-Treatment

Ferrite-Pearlite n. a. n. a. n. a.
Martensite 690 s at 930 ◦C Water-cooled die None

Tempered Martensite 690 s at 930 ◦C Water-cooled die Laser tempering
Bainite 690 s at 930 ◦C Heated tool None

The bainitic samples were instead introduced into a tool formed by two hinged steel
blocks held at a constant temperature (Figure 2). Due to limitations in the technical appara-
tus, no external pressure could be applied on this tool. This experiment was performed
at different tool temperatures: 200, 300, 400 and 450 ◦C. Laser tempering was performed
on the martensitic samples using a TRUMPF VCSEL Module of 2.4 kW laser equipment
(Figure 3).
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Figure 3. Laser treatment of thick sheet.

Dog-bone tensile specimens (Figure 4a) and Single Edge Notched Bending (SENB)
specimens, for the EWF tests (Figure 4b), were wire-cut from the heat-treated blanks,
produced as described above. In the case of the laser-tempered material, samples were cut
from the fully martensitic blanks and laser tempering was applied on the area of interest
(Figure 4a,b).
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Figure 4. (a) Tensile test specimen geometry; (b) SENB specimen for EWF testing; W: width,
t: thickness, L: length, S: Span, lo: original ligament length; a: initial crack length (notch + fatigue
pre-crack); (c) experimental procedure for we determination.
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2.3. Uniaxial Tensile Tests

Uniaxial tensile tests were performed to obtain the main tensile properties of the
different microstructures. Tensile specimens with a width of 20 mm and a parallel calibrated
length of 50 mm were used. All of the specimens were machined with the parallel length
oriented longitudinally to the rolling direction. The strain was measured by means of a
video extensometer, using extensometer marks separated 25 mm (lo = 25 mm). The test
speed was 6 MPa/s until the end of the elastic deformation, then 6.7 × 10−3 s−1 until the
failure of the sample. Three specimens per condition were tested.

2.4. Essential Work of Fracture Test

The fracture toughness of the different microstructures was evaluated using the
EWF methodology, following the recommendation provided in the previous work by
the authors [9].

For the evaluation of the EWF, rectangular Single Edge Notched Bending (SENB)
specimens of 120 × 28 × 6 (L × W × t) mm3 were used (Figure 4b). The specimens were
machined at the transverse orientation with respect to the rolling direction. In order to
determine the specific essential work of fracture (we), specimens with different ligament
lengths (lo) were tested up to fracture.

For each specimen, the total work of fracture (Wf, area under the load-displacement
curve, Figure 4c left) was calculated and normalized by the cross-section area, obtaining
the specific total work of fracture (wf). we was obtained through the linear extrapolation
of the wf vs. lo data to zero ligament length. The slope in the linear data regression
represents the non-essential plastic work, wp, multiplied by a shape geometry factor, β
(Figure 4c right). Ligament lengths ranging between 6 and 20 mm (a/W = 0.29–0.79) were
used. Two specimens per ligament length were tested. The tests were conducted at a
constant cross-head displacement of 1 mm/min. The distance between supports, S, was
112 mm. To avoid the effect of the notch radius on the fracture toughness values, a fatigue
pre-crack was nucleated on the notch root, following the recommendations of the fracture
mechanics standard procedures.

3. Results and Discussion
3.1. Heat Treatment Results
3.1.1. In-Die Bainite Formation

In-die bainitic quench was performed at different temperature levels in order to
identify a condition that would result in a lower bainite microstructure, with hardness in
the 300–350 Vickers hardness (HV1) range. This would result in a material comparable to the
commercial soft zones in a thin metal sheet [10]. The results, summarized in Figure 5, show
that a relatively low tool temperature (200 ◦C) is required to achieve this microstructure;
otherwise, the limited heat extraction combined with thick material results in structures
too close to equilibrium. As discussed in the introduction, this temperature range can be
difficult to control in production tools interacting with thick material, although this can be
improved through the use of advanced closed-loop temperature control strategies.
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3.1.2. Laser Tempering

Laser tempering was set up with the same target (300–350 HV1) as the bainitic quench.
After different trials, a set of conditions (1.92 KW on a ~40 mm × 40 mm spot) was found
that resulted in a temperature peak around 600 ◦C, resulting in a Tempered Martensite
microstructure with 330 ± 6 HV1 Vickers hardness (Figure 6).
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Figure 6. Laser tempering of thick sheet: (a) Tempered Martensite microstructure; (b) schematic
representation of the indentations performed for hardness measurements in laser treated specimens
and (c) Vickers hardness (HV1) profiles.

The width of the generated transition zone was evaluated on the SENB samples,
where the treatment had only been applied to the section corresponding to the sample
notch (see Figure 4b). The hardness profiles were extracted from the center of the laser-
treated zone in the SENB specimens, as illustrated in Figure 6b. Three rows of indentations
were performed on a cross-section of the specimen: two were close to the specimen surfaces
(approx. 1 mm from the outer surface) and one was in the mid-thickness. The hardness
profiles (Figure 6c) show a homogeneous through-thickness hardness distribution and a
transition zone approximately 20 mm wide from the center of the specimen.

3.2. Mechanical Performance
3.2.1. Tensile Properties

Figure 7 shows the engineering stress-strain curves for the studied microstructures.
The tensile properties are shown in Table 3. As expected, the fully martensitic microstruc-
ture shows the highest strength, reaching the full 1500 MPa UTS that can be expected
in 22MnB5; this shows, that despite the high thickness, the samples were satisfactorily
quenched. The laser-Tempered Martensite shows a significant decrease in strength, but
no noticeable gain in ductility. The Bainite and Ferrite-Pearlite show much lower strength
values. It should be noted that the elongation at the fracture is only comparative and should
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not be taken as an absolute value because the test samples could not be manufactured in a
standardized geometry due to equipment limitations.
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Table 3. Tensile test results.

Yield Strength,
σys [MPa]

Ultimate Tensile
Strength, σUTS [MPa]

Uniform Elongation,
Ag [%]

Elongation at Fracture,
A25 [%]

Ferrite-Pearlite 404 594 14.2 33.7
Martensite 1160 1523 4.8 18.4

Laser-Tempered
Martensite 872 920 4.6 19.1

Bainite 200 ◦C 533 796 8.2 21.6

3.2.2. Essential Work of Fracture

The load-displacement curves obtained from the EWF tests are shown in Figure 8.
The results showed good repeatability, as indicated by the self-similarity of the curves for
the different ligament lengths, which is one of the requirements for the application of the
EWF [11]. It is worth mentioning that none of the tested samples fractured completely at
the end of the test due to the compression load at the back edge of the specimens in the final
stage of fracture. Therefore, the tests were manually stopped when a near-zero load was
reached. The resulting wf values are plotted as a function of the ligament length in Figure 9.
The linear regression for each dataset is also displayed. A summary of the we (essential
work of fracture) and βwp (non-essential plastic work) values are reported in Table 4.

The results show a clear gradation of the fracture toughness values, with a very high
we value for the soft and ductile Ferritic-Pearlitic microstructure and the lowest we value
for quenched Martensite. Such differences in the fracture resistance can be also discerned
by the fracture behavior inferred from the load-displacement curves. The Ferritic-Pearlitic
microstructure shows the lowest maximum load, but it exhibits a gradual decrease in the
load after the peak load up, reaching a maximum load-line displacement of around 20 mm,
indicating a slower stable crack propagation. On the other hand, the Martensite shows
higher peak loads and a much more pronounced load drop during the crack propagation
stage (post-peak load), resulting in faster crack propagation, as suggested by the low
displacement at the fracture (<5 mm) and we.

Both the Bainite and Tempered Martensite showed toughness values that were no-
ticeably higher than the Martensite, nearly thrice as much, which contrasts with the small
differences observed in the elongation values for the three microstructures (Table 3). This
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is particularly relevant for the Tempered Martensite, which was obtained from a short
post-treatment from the martensitic samples.
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Table 4. Summary of essential work of fracture (we) and non-essential plastic work (βwp) values.

we [kJ/m2] βwp [MJ/m3]

Ferrite-Pearlite 212 ± 19 30 ± 1
Martensite 38 ± 12 12 ± 1

Laser-Tempered Martensite 130 ± 22 30 ± 2
Bainite 200 ◦C 124 ± 32 17 ± 2

Interestingly, the Laser-Tempered Martensite and Bainite show basically equivalent
fracture toughness, indicating that both microstructures dissipate the same amount of
energy in the fracture process zone during crack propagation.

This is despite showing a very different behavior during the test, in which the Laser
Tempered samples showed greater displacement at the fracture and higher wf values than
the Bainite for the same ligament length. Nevertheless, in the Laser-Tempered microstruc-
ture, the fracture energy has a greater contribution from the non-essential plastic work
(βwp), as pointed out by the slope of the linear regression.

The trends observed in this study are consistent with the observations made in the
previous investigations focused on thin press hardening steels (PHS) sheets with differ-
ent microstructures [6,12], and show the potential benefits of Tempered Martensite and
Bainite for crash-resistant and damage-tolerant parts in heavy duty vehicles. In particular,
laser tempering provides an interesting combination of high strength and high fracture
toughness, which makes it an effective choice for the generation of soft zones in fully
hardened martensitic microstructures, thus improving the crash performance of PHS safety
components [6].

4. Conclusions

This work explores the press hardening of thick sheet, focusing on the possibility of
optimizing the component performance through a microstructural design. The following
conclusions could be drawn:

• It is possible to obtain soft zones or microstructural tailoring on thick 22MnB5 sheet.
• Four variants of microstructures were analyzed, together with the process in which

they can be generated. These different microstructures offer different and interesting
compromises in terms of their anti-intrusion performance, fracture toughness and
process window.

• The fully martensitic samples presented UTS levels (1500 MPa) on a par with thin
sheet, confirming that the material can be satisfactorily quenched.

• Ferritic-Pearlitic structures present the highest value in terms of the fracture toughness
of the studied microstructures.

• The Tempered Martensite, generated through laser tempering, offered a very attractive
combination of properties, presenting a fracture toughness on a par with the in-die Bai-
nite, but much higher monotonic strength and, therefore, anti-intrusion performance.

• In general terms, both Bainitic and Laser-Tempered Martensite structures offer the
potential to be applied in microstructural tailoring.
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