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Abstract: Material removal rate in electropolishing is often overlooked because this process generally
addressed for surface finish; however, it is paramount on metallic sheet machining possessed with
intricate geometry. Electropolishing removes metallic material from the surface of a workpiece
based on anodic dissolution process. The material removal rate depends on the current density,
electrolyte, the strength of the magnetic field, polishing time and temperature. In this study, three
factors of applied voltage, electrolyte composition and magnetic field were evaluated using Taguchi
approach to improve the material removal rate in the electropolishing of a pure titanium (99.5%)
workpiece. The experiments were undertaken as per Taguchi L9 (33) orthogonal array, and further
analyzed using Pareto ANOVA to determine the most significant parameter. It was found that the
optimum parametric combination to maximize the material removal rate were, applied voltage of
15 V, ethanol concentration of 20 vol.% and magnetic field of 0.51 T. The experimental results show
that the responses in electropolishing process can be improved through this approach.

Keywords: electropolishing; Taguchi; titanium; SS 304; material removal rate; environmentally
sound technologies

1. Introduction

Titanium has a wide variety of industrial uses in aerospace, medical implants, chemical
processing, automotive, marine, and power generation, due to their high strength-to-
weight ratio, corrosion resistance and durability. The low density and excellent physical
properties (high yield strength and modulus of elasticity) make it suitable for use in high-
temperature service environments including in petroleum and chemical industries [1,2].
Its biocompatible property is also ideal in medical applications such as in orthopedic
bone implants and as hard tissue replacements in artificial joints and dental implants [3,4].
However, titanium is identified as a difficult-to-machine material, requiring relatively large
cutting forces, yielding further in high cutting temperatures during the manufacturing
process [5–10].

For most applications, the machined titanium components usually undergo surface
finishing to produce the final high-quality surface, either by mechanical or chemical polish-
ing [11–15]. Mechanical polishing is generally used to smoothen the surfaces of titanium;
however, it may induce surface residual stress, scratches, cracks, and plastic deformation [16].
Furthermore, despite water cooling and slow-speed abrading, mechanical polishing can some-
time result in the adhesion of the abrasive particles on the polished surface, changing the
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chemical bond state and contaminate the titanium surface by the abrasive polisher [17]. This
contamination is negatively affecting its biocompatibility and corrosion resistance.

Some applications of titanium components such as microchannel on dialysis instru-
ment and bone implants are intricate, highly accurate and have complex geometry, thus
require extended processing time to produce the final shape by conventional polishing.
At times, the conventional polishing is even not feasible due to the shape intricacy and
thickness of the components. Thus, non-conventional polishing methods such as chemi-
cal and electrochemical processes are preferred for polishing titanium without the use of
abrasives [18–20]. However, the main issue with chemical polishing is the handling and
safety requirements during the process as well as related environmental concerns, how to
dispose the used chemicals along with the generated gas [21,22]. Therefore, an efficient
yet environmentally friendly polishing process such as electropolishing can be used as an
alternative to improve the quality of the material surface [23–26].

In principle, material removal by electropolishing involves the electrochemical disso-
lution of the workpiece surface. Electrolysis uses the principles of Faraday’s Law which
determine that electropolishing possesses is quite different technique than the conventional
finishing method, including grinding, milling, grinding, milling and buffing as the final
touch, due to that electropolishing is a considered as a non-contact machining that damage
free process. The polishing phenomenon is portrayed by the removal of roughness, the
absence of crystallographic and grain-boundary strike, and generate the production of
bright and smooth surfaces [27]. The workpiece to be polished is positioned as the anode
and is then connected to the positive electrode of a DC power supply. As the current flow,
the surface of the anode (workpiece) in contact with the electrolyte is oxidized into metal
ions, resulting in the material removal from the surface. In electropolishing process, a com-
bination of chemical reaction, fluid mechanics, electric field as well as material properties
comprise a significant number of independent machining parameters which are quite diffi-
cult tough to study in determine a very comprehensive conclusion. Therefore, Lu et al. [28]
introduced a new approach using the deep CNN with Bayesian optimization to improve
the accuracy of the prediction and rate of convergence for the electrochemical machining
drilling process. The proposed model has provided fewer training iterations to converge
and fewer prediction errors compared to the previous prediction method. Deng et al. [29]
revealed that regardless of composition of the electrolyte, pulse duty cycle, current density
and other polishing parameters, an isotropic etching under mass transfer polarization plays
an important role for having smooth surface via electropolishing. In addition, the etching
isotropy probably a more efficient and direct for the process development of practical ap-
plication of electropolishing to different type of metals or alloys. Karim et al. [30] reported
a simple, rapid and efficient of titanium electropolishing by utilizing an environmentally
friendly choline chloride-based ionic liquid, known as Ethaline. Under machining condition
of 6–10 V in 30 min of machining time, a potential electropolishing process was performed
without the obvious presence of gas evolution. In addition, by carrying out the current
procedure, the microscopic results showed leveling and brightening of the titanium surface
which is the responsibility of the current procedure.

Due to that electropolishing process produces a smooth, damage free surface that
improves the adhesion properties, it is often used to create surfaces for processes such as
coating that promote good wetting of the surface material and to facilitate retention of a
liquid on the metallic surface [31]. Gram et al., [32] evaluated whether the smoother surface
roughness, Ra 0.01 um compared to Ra 0.9 has provided hygienic characteristics of stainless
steel used in medical and food processing industry. Pseudomonas sp., Listeria monocytogenes
and Candida lipolytica were used to study the adhesion of microorganisms on the metallic
surface. The study revealed that the surface finish has no effect in bacterial adhesion,
however, it is more essential parameter for the property of corrosion resistance of the surface.
Chen et al. [33] investigated electropolishing of Ti60 to determine the influences of several
processing parameters on the surface roughness. It was found that the frequency of the
pulsed power supply is the most important parameters to significantly decrease the surface
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roughness of the workpiece Guo et al. [34] proposed optimal conditions for fabricating
nanostructures on titanium implants with curved geometry. Short-time anodization on
implants were performed to understand the nanostructure self-ordering. It was found
that decreasing the anodization voltage minimizes excessive TiO2 dissolution as well as
improving the efficiency of nanopores fabrication on titanium wires. Sathish et al. [35]
optimized the machining parameters by evaluating the effect of duty ratio parameters such
as material removal rate, machining time and overcut in a micro electrochemical drilling
process. It was found that the material removal rate increases with the increases of the duty
cycle value. Using an aqueous electrolyte as the electropolishing media, Ferchow et al. [36]
have found a significant improvement on the external surface roughness of a complex
selective laser melting metal part. Thus, the electrolyte concentration, the electrolyte flow
rate and the applied voltage are significant factors that can influence the material removal
rate [37–39].

Incorporation of a magnetic field into the electropolishing process in a process known
as magneto-electropolishing (MEP) further improves the surface quality of stainless steel
by speeding up the rate of dissolution [40]. Other study reveals that the application of
magnetic force on titanium altered the Young’s modulus value, hence offer better perfor-
mance [41]. The MEP process utilizes an external magnetic force generated from either a
permanent neodymium magnet or an electromagnet to assist dissolution process of the
material over the polished surface. The characteristic of self-contained electrolyte whirling
introduced by the magnetic force has lowered the oxygen content in the top layers of
titanium [42], and control the Cr:Fe ratio at the surface of austenitic stainless steel, which is
advantageous to the microhardness [43]. MEP also improve corrosion resistance of Co-Cr
alloy, one of biomaterials mostly used as implants and cardiovascular stent [44]. However,
the relationship between electropolishing parameters, such as the current density and the
electrolyte composition are yet to be investigated in detail. The optimization of material
removal rate in electropolishing is often left out because most works were focused on
acquiring the finest surface finish for each combination of workpiece-electrolyte used. Al-
beit the fact, material removal rate is undoubtedly one important machining factors when
it comes to machining flat sheet metallic components, particularly when manufacturing
microparts with intricate geometry [26]. Electropolishing with high material removal rate is
a highly viable method for manufacturing meso- to microparts rapidly, with high accuracy
and at exceptionally low cost.

That being the case, the present study aims to optimize the main electropolishing
parameters to obtain higher material removal rate by considering the influence of applied
voltage, concentration of ethanol in electrolyte and the use of magnetic field by using
Taguchi analysis. A high removal rate is targeted to be comparable to mechanical polishing
methods. In this paper, Pareto ANOVA technique was used to analyze the effect of three
machining parameters and its level in achieving high material removal rate. The structure of
this paper presents Section 1 describing recent approaches to improve the material removal
mechanism as well as surface quality in electropolishing process. Section 2 deals with
the details of materials, experimental methods and statistical analysis used in this study.
Section 3 focuses on the experiment results related to the effect of machining parameter on
material removal rate based on the statistical analysis result.

2. Materials and Methods
2.1. Material and Solution

Commercially-pure Grade 1 titanium (99.5%) and stainless steel 304 (SS 304) sheets
(Nilaco Corp., Tokyo, Japan) measuring 20 mm× 10 mm and 200 µm in thickness were used
as the anode (workpiece) and cathode (tool electrode), respectively. Tables 1 and 2 present
the mechanical properties and chemical composition of pure titanium. Tables 3 and 4
present the mechanical properties and chemical composition of SS 304. Meanwhile, the 1M
electrolyte solution with various concentrations, i.e., 0, 10 and 20 vol.%, was prepared from
NaCl powder (Merck & Co., Inc., Rahway, NJ, USA) dissolved in Ethylene glycol (Merck &
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Co., Inc., Rahway, NJ, USA). A digital microscope, Dino-lite AM4515T8 (AnMo electronics,
New Taipei City, Taiwan) with resolution of 1.3 MP and a magnification rate of 700×~900×
was used to capture the image of the electropolished of titanium surface.

Table 1. Mechanical properties of pure titanium (JIS H 4600 TR270C).

Yield Strength Elongation Tensile Strength

218 MPa 45% 320 MPa

Table 2. Chemical composition of pure titanium in wt.% (JIS H 4600 TR270C).

N C H Fe O Ti

0.00 0.00 0.02 0.03 0.04 Bal.

Table 3. Mechanical properties of SS 304 (JIS G4313).

Hardness Tensile Strength Elongation

378 HV 1202 MPa 6%

Table 4. Chemical compositions of SS 304 in wt.% (JIS G4313).

C Cr Mn Si P S Ni

0.04 18.21 0.91 0.53 0.030 0.002 8.09

Figure 1 illustrates the schematic of the experimental set-up. The distance between
the workpiece and tool electrode was maintained at 20 mm. The constant experimental
parameters are summarized in Table 5. The selection of the experimental parameters
as presented in Table 5 was based on the preliminary experiment result and previous
research [45]. Each experiment was conducted for 50 min, and the final weight of the anode
was measured using a digital weight balance (Fujitsu FS AR 210, readability: 0.1 mg) to
determine the material removal rate.

Metals 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 1. Experimental setup of electropolishing. 

Table 5. The experimental parameters applied in this research. 

Anode Pure titanium sheet (99.5%) 20 mm × 10mm × 0.2 mm 

Cathode Stainless steel 304 

Polishing time 50 min 

Electrolyte solutions 1.0 M NaCl, 99.0% ethylene glycol  

2.2. Taguchi Analysis 

The Taguchi method is one of the best experimental technologies that provide much-

reduced variance for experiments to be performed within the permissible limit of factors 

and levels. It identifies the significant level of a factor which affects the specific perfor-

mance parameter. In this study, three parameters of (1) applied voltage, (2) ethanol con-

centration and (3) magnetic field were selected to be optimized for material removal rate 

of the titanium workpiece. In general, optimization using Taguchi can be categorized into 

the criteria of larger-the-better, nominal-the-best type, or the- smaller-the-better. In the 

Taguchi method, the term ‘signal’ represents the desirable value of the output (mean) and 

the term ‘noise’ means the undesirable value of the output, which is the standard devia-

tion. A signal-to-noise-ratio (S/N ratio), which is a measure of robustness to identify the 

control factor that minimize the effect of noise, can then be used as an objective function 

to determine the best process parameters. In this study, the larger-the-better type criteria 

is selected because maximum material removal rate is desirable, thus maximizing the S/N 

ratio defined by Equation (1). 

The S/N for the larger-better ratio is calculated using the following equations [46]: 

𝑆 𝑁𝑆 = −10 𝑙𝑜𝑔10⁄ [
1

𝑛
(∑

1

𝑦𝑖
2

𝑛

𝑖=1
)] (1) 

where 𝑦𝑖  is the observations of quality characteristic under different noises and 𝑛 is the 

number of the experiments in the factor level combination performed. 

The material removal rate is calculated by using Equation (2): 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 =
𝑊𝑏 − 𝑊𝑎  (𝑚𝑔)

𝑀𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒(min)
 (2) 

Figure 1. Experimental setup of electropolishing.



Metals 2023, 13, 392 5 of 14

Table 5. The experimental parameters applied in this research.

Anode Pure titanium sheet (99.5%) 20 mm × 10 mm × 0.2 mm
Cathode Stainless steel 304
Polishing time 50 min
Electrolyte solutions 1.0 M NaCl, 99.0% ethylene glycol

2.2. Taguchi Analysis

The Taguchi method is one of the best experimental technologies that provide much-
reduced variance for experiments to be performed within the permissible limit of factors
and levels. It identifies the significant level of a factor which affects the specific performance
parameter. In this study, three parameters of (1) applied voltage, (2) ethanol concentration
and (3) magnetic field were selected to be optimized for material removal rate of the
titanium workpiece. In general, optimization using Taguchi can be categorized into the
criteria of larger-the-better, nominal-the-best type, or the- smaller-the-better. In the Taguchi
method, the term ‘signal’ represents the desirable value of the output (mean) and the term
‘noise’ means the undesirable value of the output, which is the standard deviation. A signal-
to-noise-ratio (S/N ratio), which is a measure of robustness to identify the control factor
that minimize the effect of noise, can then be used as an objective function to determine the
best process parameters. In this study, the larger-the-better type criteria is selected because
maximum material removal rate is desirable, thus maximizing the S/N ratio defined by
Equation (1).

The S/N for the larger-better ratio is calculated using the following equations [46]:

S/NS = −10 log10

[
1
n

(
n

∑
i=1

1
y2

i

)]
(1)

where yi is the observations of quality characteristic under different noises and n is the
number of the experiments in the factor level combination performed.

The material removal rate is calculated by using Equation (2):

Material removal rate =
Wb −Wa (mg)

Machining time(min)
(2)

where Wb is the weight of the workpiece before electropolishing and Wa is the weight of
the workpiece after the electropolishing process.

2.3. Configuration of Experiment Factors and Their Levels

Table 6 presents the factors and levels of the electropolishing machining parameters. The
three control factors; the applied voltage, ethanol concentration and magnetic field, were
designated as factor A, B and C, respectively. The three levels chosen for each factor, namely
0 V, 10 V and 15 V (applied voltage), 0 vol.%, 10 vol.% and 20 vol.% (ethanol concentration)
and 0 T, 0.41 T and 0.51 T (magnetic field). An L9 orthogonal array was selected for the
design of experiments, as configured in Table 7. Triplications were conducted for each set of
experiment to ensure reproducibility and accuracy of the results.

Table 6. Factors and levels of the EP machining parameters.

Control Factor
Levels

1 2 3

A Applied Voltage (V) 5 10 15
B Ethanol concentration (vol.%) 0 10 20
C Magnetic field (T) 0 0.41 0.51
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Table 7. Configuration of EP machining parameters.

Exp. No
Configuration of Machining Parameters

Material Removal Rate (Ra)
A B C

1 A1 B1 C1 MRRa1
2 A1 B2 C2 MRRa2
3 A1 B3 C3 MRRa3
4 A2 B1 C2 MRRa4
5 A2 B2 C3 MRRa5
6 A2 B3 C1 MRRa6
7 A3 B1 C3 MRRa7
8 A3 B2 C1 MRRa8
9 A3 B3 C2 MRRa9

2.4. Pareto ANOVA

Pareto analysis of variance (ANOVA) was also used to identify the factors that have
the greatest impact on a particular response variable by comparing variances across the
means of the three groups. Subsequently, the pareto optimal point, which is the set of
factor levels that maximizes the response variable, can be identified. This means that the
electropolishing parameters obtained from the pareto-optimal are the combination that
contribute to achieve high removal rate. In the next section, Pareto ANOVA analysis is
implemented to study the interactions of selected input parameters in the Taguchi method.

3. Results and Discussion

Table 8 summarizes the measured material removal rate and the calculated S/N ratio
for each set of experiment in the L9 array. Figure 2 shows the visual quality of the surface
machined using 9 different machining combinations of EP process. The average S/N ratio
level for each factor, as shown in Table 9, can be obtained from the numerical values listed
in Table 7. The average S/N ratio for each level and the separate effects of each factor,
commonly called as the main effects, are shown in Figure 3.

The average S/N ratio of the levels (1, 2 and 3) for each factor (A, B and C), as shown
in Table 9 and Figure 3, are obtained using the following calculations:

- Average S/N ratio A1:

A1 =
∑ A1

3
=

(16.2 + 32.9 + 45.5)
3

= 31.5

- Average S/N ratio A2:

A2 =
∑ A2

3
=

(50.8 + 54.4 + 54.5)
3

= 53.17

- Average S/N ratio A3:

A3 =
∑ A3

3
=

(51.8 + 56.7 + 60.6)
3

= 56.37

- Average S/N ratio B1:

B1 =
∑ B1

3
=

(16.2 + 50.8 + 51.8)
3

= 39.59

- Average S/N ratio B2:

B2 =
∑ B2

3
=

(32.9 + 54.4 + 56.7)
3

= 47.99
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- Average S/N ratio B3:

B3 =
∑ B3

3
=

(45.5 + 54.4 + 60.6)
3

= 53.51

- Average S/N ratio C1:

C1 =
∑ C1

3
=

(16.2 + 54.4 + 56.7)
3

= 42.39

- Average S/N ratio C2:

C2 =
∑ C2

3
=

(32.9 + 50.8 + 60.6)
3

= 48.12

- Average S/N ratio C3:

C3 =
∑ C3

3
=

(45.5 + 54.4 + 51.8)
3

= 50.58

Table 8. Material removal rate and S/N ratio.

Exp. No
Control Factor

Material Removal Rate (mg/min)

Mean S/N Ratio (dB)Noise Factor

A B C N0 N1 N2

1 A1 B1 C1 18 12 4 11.3 16.2
2 A1 B2 C2 166 34 40 80 32.9
3 A1 B3 C3 148 288 196 210.7 45.5
4 A2 B1 C2 362 344 334 346.7 50.8
5 A2 B2 C3 482 722 460 554.7 54.4
6 A2 B3 C1 638 432 560 543.3 54.4
7 A3 B1 C3 308 410 560 426.0 51.8
8 A3 B2 C1 1482 598 556 878.7 56.7
9 A3 B3 C2 1062 970 1250 1094 60.6

Table 9. Average S/N ratio by factor levels (dB).

Factor

A B C

Level 1 31.55 39.59 42.39
Level 2 53.17 47.99 48.12
Level 3 56.37 53.51 50.58

Max-Min 24.83 13.92 8.19
Average 47.03 47.03 47.03
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3.1. Combination of Optimal Level for Each Factor and Verification Test

The optimal level for high material removal rate can be determined by the level with
the highest S/N ratio value. From Figure 3 and Table 10, the optimum combination for
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high material removal rate is A3B3C3. This means the optimal levels to yield high material
removal rate are applied voltage of 20 V (A3), ethanol concentration of 20 vol.% (B3) and
magnetic field of 0.51 T (C3).

Pareto ANOVA analysis has been employed to study the contribution of selected
optimized parameters on obtaining high material removal rate. Figure 4 shows the Pareto
ANOVA analysis on material removal rate. The significant factors are selected starting from
the left-hand side of diagram and the summation value should surpass 90%. Since the sum
of the first factor (applied voltage) and second factor (ethanol concentration) was 92.91%,
thus indicate that the factor of magnetic field is not significant to aim for high material
removal rate. To summarize, to achieve high material removal rate, the parameters selected
should be the applied voltage of 15 V and 20% of ethanol concentration.

The sum of factors A, B, and C for level 1, 2 and 3, as presented in Table 11, can be
calculated as follow:

Sum of factor level A1 = 16.2 + 32.9 + 45.5 = 94.64

Sum of factor level A2 = 50.8 + 54.4 + 54.5 = 159.52

Sum of factor level A3 = 51.8 + 56.7 + 60.6 = 169.12

Sum of factor level B1 = 16.2 + 50.8 + 51.8 = 118.78

Sum of factor level B2 = 32.9 + 54.4 + 56.7 = 143.96

Sum of factor level B3 = 45.5 + 54.4 + 60.6 = 160.54

Sum of factor level C1 = 16.2 + 54.4 + 56.7 = 127.17

Sum of factor level C2 = 32.9 + 50.8 + 60.6 = 144.36

Sum of factor level C3 = 45.5 + 54.4 + 51.8 = 151.75
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Table 10. Optimal condition for EP process.

Factor Level

A. Applied voltage 15 Volt
B. Ethanol concentration 20 vol.%
C. Magnetic field 0.51 T

Table 11. Calculation of the contribution ratio of electropolishing machining parameters.

Factor A B C Total

Sum of factor level
1 94.64 118.78 127.17

1269.842 159.52 143.96 144.36
3 169.12 160.54 151.75

Square of difference (δ) 4208.74 1926.38 769.74 6904.86

Degrees of Freedom (∅) 2 2 2

δ/∅ 4924.034 1326.18 477.02 6727.24

Contribution ratio (%) 73.2 19.71 7.09 100

Optimum combination of significant
factor levels

A3-B3-C3

The optimal level of each significant factor is the level which maximizes the sum of
S/N ratios

Remarks on optimum combinations The significant factors are chosen from the left-hand-side in the above Pareto diagram
which cumulatively contribute about 90%

3.2. Effect of Applied Voltage on Material Removal Rate

The significant factors in pareto ANOVA analysis are chosen from the left-hand side
which cumulatively contribute about 90%. Based on Pareto analysis of Figure 4, the applied
voltage emerged as an important parameter in electropolishing process and shown to be
the most significant parameter (73.2% significance) in obtaining high material removal.

In electropolishing process, there is a relationship between current density of the
applied voltage with the increase of the anode dissolution process [47]. This relationship is
known as a polarization curve, which is obtainable when the tool and the workpiece are
placed close together and the applied current is increased [27,48]. In region I (etching), the
current density increases with applied voltage, hence the workpiece is directly dissolved.
However, in region II (passivating), the current density declines due to the formation of
diffusion layer, a passive oxide layer on the anodic surface. In Region III (polishing), known
as the plateau region, where the electropolishing occurs, there is barely any increase of
current density as the applied voltage increases. The diffusion layer that limits the current
density in region II and III breaks down, then dissolves in region IV (pitting), and as a
consequence, increases the current density with the increase in voltage. This effect causes
rapid anodic dissolution [39] and as a result, it would produce higher material removal
rate [27,44]. As the applied voltage contributes to 73.2% of significance level, the statistical
approach verified the density-voltage relationship to obtain high removal rate.

3.3. Effect of Ethanol Concentration on Material Removal Rate

In order to ensure human and environmental safety, this work uses ionic liquids as
electrolytes, which is the mixture of ethylene glycol and salt, instead of acidic solutions [11]. To
improve the electrical conductivity of the electrolyte solution, organic and inorganic additives are
added to the solution [10]. In this work, ethanol was used as the additive and the concentration
was made as one of the factors to observe its effect in increasing material removal.

The pareto ANOVA analysis in Figure 4 shows that the concentration of ethanol
in the electrolyte solution (ethylene glycol-NaCl) has a significant factor of 19.17% to
material removal rate. This factor is considered as one of significant parameters in material
removal since it is cumulatively exceeded 90% value after the applied voltage. During
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the electropolishing process of pure titanium, Ti4+ ions reacts with the Cl− ions from the
electrolyte to form titanium tetrachloride (TiCl4), as shown in Equation (3) [42]:

Ti4+ + 4Cl→ TiCl4 (3)

TiCl4 is a viscous yellow liquid that could retard the dissolution rate of the polished
material. The ethylene glycol used as the electrolyte always contains small amount of water
(H2O), and with the absence of ethanol, the reaction shown in Equation (4) [42] can take
place. The reaction of TiCl4 with H2O will generate TiO2 and adhere onto the surface of
the titanium sheet, as illustrated in Figure 5 (ethanol 0 vol.%).

TiCl4 + 2H2O→ TiO2 + 4H4+ + 4Cl− (4)

However, in the presence of ethanol into the electrolyte solution, the viscous layer, TiCl4
reacts with H2O through the ethanol, hence the reaction in Equations (4) and (5) [42] occur:

TiCl4 + EtOH→ Ti(OEt)4 + 4H4+ + 4Cl− (5)

Ti(OEt)4 + 2H2O→ Ti2 + 4HOEt (6)

where Et is ethanol presence in the electrolyte solution.
Thus, the added ethanol reduces the thickness of the TiCl4 layer, due to its solubility

and viscosity to establish the appropriate thickness of the TiCl4, as shown in Figure 5
(ethanol 20 vol.%), hence improving material removal rate.
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3.4. Effect of Magnetic Field on Material Removal Rate

Several attempts have been done on magneto-electropolishing technique by investigat-
ing the effect of adding magnetic force into the process. A 1 T magnetic field was introduced
to electropolishing on titanium workpiece, and the experimental results revealed that the
electropolished surfaces have altered its mechanical properties in increased surface micro-
hardness [41] and improved corrosion resistance by lowering the hydrogen content on the
surface [42]. When applied to stainless steel, the magnetic force also indicated the same
phenomenon [43].
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The Lorentz forces due to presence of a magnetic field can create a mechanical effect
that rotates the electrolyte around the direction of the magnetic field. In theory, this rotation
could decrease the thickness of the diffusion layer, thus improving the material removal
rate by increasing dissolution process [40]. However, in this study, although being a factor
in increasing material removal rate, the magnetic field is not one impactful parameter
as the applied voltage and concentration of ethanol in the electrolyte. According to the
contribution ratio of magnetic field effect on removal rate, the 7.09% indicates that this
parameter is not significant to achieve higher material removal. In electropolishing, there
is no fit parameter set for all electropolishing setups [48]. Given different combination of
electrode-electrolyte yield in different current-voltage relationship, and every modification
added becomes another variable that has to be taken into account. In this study, based on
the Taguchi analysis for yielding high removal rate, it can be concluded that magnetic force
does not affect much on the removal rate. However, cases may be different when the work
objective is changed.

4. Conclusions

In the present work, pareto ANOVA analysis based on Taguchi L9 orthogonal array
was used to identify the optimum electropolishing parameters to achieve high material
removal rate on titanium workpiece. Applied voltage, ethanol concentration, and magnetic
field were considered as input machining parameters. The S/N ratio of the quality char-
acteristics of the material removal rate was analyzed using the ‘larger-the-better’ criteria.
From the three process factors considered to increase the material removal rate, it was
found that the applied voltage has the highest influence followed by the ethanol concentra-
tion and the strength of the magnetic field. The optimum machining parameter values to
maximize material removal rate are, applied voltage of 15 V and ethanol concentration of
20 vol.%. However, it was revealed from the pareto ANOVA analysis that the strength of
magnetic field is not significant to enhance the material removal because the cumulative
ratio of the applied voltage and ethanol concentration alone have surpassed 90%. For the
continuation of this study, future work will consider the analysis of surface roughness (Ra)
of the electropolished workpiece using Taguchi method.
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