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Abstract: With the rapid development of railways towards high speed and larger carrying capacity,
the problem of wear and fatigue damage between wheel/rail is gradually becoming serious. However,
traditional pearlite wheel/rail has reached the limit, which leads to more attention to developing a
novel wheel/rail material. This study aims to report a novel carbide-free bainite wheel steel. The
wear-resistance of novel steel was tested by a rolling-sliding wear experiment under heavy-haul
condition and investigated the impacts of the running speeds on the damage mechanism of wear and
fatigue. The results show that the yield strength of the bainite wheel was as high as 950 MPa and the
hardness was 415 HV, which was superior to most of the reported typical wheel steel. During the
process of wear, the surface damage of the wheel was mainly adhesive wear and fatigue damage, and
the gradient strain layer (GS layer) was formed on the wheel surface. As the running speed increased,
fatigue damage gradually became more serious than adhesive wear, and the shear stress and strain of
the GS layer were enhanced. The higher thickness and hardening were produced on the GS layer,
which is the main reason for the higher wear-resistance of the bainitic wheel under higher running
speeds. In addition, the wear-resistance of the novel wheel steel was better than that of the reported
wheel steel. This novel bainitic wheel is a promising wheel for heavy-haul condition applications,
which could provide a guide in choosing bainitic wheel steel for the railway.

Keywords: heavy-haul trailway; bainitic wheel; wheel-rail wear; hardening; wheel-rail surface
damage; running speed

1. Introduction

Rolling contact fatigue and wear are the most important ways of causing train wheel-
rail failure [1–4], and it not only increases the transportation cost of the railway, but also
directly endangers the safety of railways. Therefore, solving the failure problem caused
by rolling contact fatigue wear has become the focus of research in the world today. With
high-speed passenger lines and heavy-haul rail freight lines, the rolling contact fatigue
damage between wheels and rails becomes more and more serious [5,6].

As one of the crucial components of the wheel-rail system, the wheel is required to
transmit the force of the wheel–rail interface while carrying the load of the train [7]. The
wheel is operated under strong frictional forces and different environmental coupling
during rolling contact, and its frictional wear and fatigue damage behavior is bound to be
more complex. Thus, the wear and rolling contact fatigue (RCF) resistance of wheel/rail
has attracted much scientific interest from researchers. Guo et al. [8] investigated the effects
of the slip ratio and contact pressure on the evolution of wear and damage of the CL60
wheel material were explored, which found that the wear and damage of the wheel material
are milder under the wet conditions than under the dry conditions. Liu et al. [9] found
that pre-wear resulted in an effective strengthening of the wheel surface, which improved
the RCF life of wheel specimens under oil lubrication. Faccoli et al. [10] investigated the
effect of desert sand on the wear and RCF performance of different wheel steels, which
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found that sand increased the wear rate of the material, leading to the formation of large
cracks on the surface of material. In addition, axle weight and operating speed are also
important factors that affect wheel steel RCF damage [11–14]. Ding et al. [15] conducted
the effect of running speed on rolling wear and damage behavior of pearlitic wheel rail
materials, which found that the wear loss of the wheel roller increased with increasing
running speed, and the surface damage morphology of the wheel rollers was dominated
by the combination of fatigue cracks and adhesive wear.

In addition to these external conditions, the microstructure of the wheel has a signif-
icant effect on the wear and fatigue behavior of the wheel steel [16]. Li et al. [17] found
that the fatigue life of lamellar pearlite steel was significantly higher than that of spherical
pearlite steel. However, if the alloying elements in the wheel steel are not added in the
right proportion during actual manufacturing, the surface of the wheel tread will easily
produce a non-uniform microstructure [1,18], which will lead to premature fatigue cracking
of the wheel. Zhang et al. [18] found that the non-uniform microstructure consisted of
pearlite, pre-eutectoid ferrite and upper bainite. The presence of upper bainite disrupts the
continuity and homogeneity of the wheel matrix and produces an uncoordinated plastic
deformation with the pearlite, which leads to stress concentration at the interface between
the two kinds of microstructure, inducing and promoting the formation of fatigue cracks,
further accelerating fatigue wear, and ultimately reducing the wear resistance of the wheel.

According to current smelting technology and material processes, the mechanical
strength of traditional pearlite wheel materials has reached a limit, making it difficult to
meet the demands of the rapid development of the railway. Therefore, the development of
new rail transportation materials has become a hot topic. Compared to pearlitic wheel and
rail steels, low-carbon bainitic steels have higher fracture toughness and strength [19–21].
Rezende et al. [22] evaluated the wear resistance and rolling contact fatigue (RCF) of bainitic
and pearlitic tissues under dry conditions by double-disk tests, and the results showed
that bainitic tissues possess better wear resistance and fatigue resistance than pearlitic
tissues; Miranda et al. [23] found that the bainitic microstructure was more resistant
to crack extension than pearlite, resulting in less mass loss. In addition, rails made of
bainitic steels have a longer contact fatigue life than pearlitic steels [24–26]. Therefore,
bainitic steel is considered a potential alternative to pearlitic wheel rail steel. Recently,
the effect of microstructure on mechanical properties of bainitic steel have attracted much
attention [23,27,28]. The obtained results revealed that the heat treatment progress plays
an essential role in determining the microstructure of bainitic steels. Valizadeh et al. [29]
revealed that the volume percent of retained austenite in bainitic steel decreases with
decreasing the isothermal transformation temperature. The fraction of blocky austenite in
the microstructure is largely suppressed by choosing particular chemical composition of the
steel and low isothermal transformation temperature to maximize the bainite fraction [30].
During isothermal transformation, the austenite transforms to bainitic ferrite and thin
film-like retained austenite, which between bainitic laths are more stable than large blocky
austenite because of higher C concentration and transformation constraints exerted by
the surrounding ferrite [31]. Xu et al. [32] emphasized the ratchetting is performed on
the carbide-free bainitic (CFB) rail steel by low-cycle fatigue experiments under different
heat-treatment conditions. They found that online controlled cooling could enhance the
fatigue resistance of CFB steel more than air cooling. Moreover, bainitic steels with a lower
transformation temperature showed a greater wear resistance [33]. To meet the increasing
industrial demands, the service condition of the railways becomes more severe, such as
higher running speed and larger capacity. Those severe service conditions will cause the
acceleration of fatigue and wear damage for a wheel material, consequently leading to the
expressive decline of the service life of wheel/rail materials. The pearlitic wheels have
been widely used in heavy-haul railways systems all over the world. However, they have
suffered from damage with different degrees under various working conditions during the
harsh service conditions. The wear rate of pearlitic materials increases with increasing axle
load [7] and running speed [15], but decreases with the increase of curve radius. While
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there are many studies on the damage behavior of wheel materials under harsh conditions,
which provide valuable insights, extending the service life of wheel materials remains a
challenge. Given the fact that bainitic steel is considered a potential alternative to pearlitic
wheel/rail steel, the failure mechanism of bainitic wheel materials under harsh conditions
has not been studied in great detail yet.

In view of the outstanding issue discussed above, the present work aims to extend
the knowledge of the effect of running speed on the wear resistance and fatigue resistance
of bainitic wheel steels. The wear and fatigue damage behavior of bainitic wheel steels
was analyzed by wear rate, hardening rate, surface abrasion, fatigue cracking and plastic
deformation of wheel specimens. This paper tends to provide a theoretical basis for
exploring the mechanism of damage of new bainitic wheels, optimizing wheel materials,
and improving the safety of trains in service.

2. Materials and Methods
2.1. Test Steel

The specimens used in the rolling-sliding wear experiment were two types of materials.
The main specimen was taken from a novel bainitic wheel steel (BW), and the accompanying
specimen was taken from a pearlitic rail steel (U75V, 310 HV, Chinese standard: GB/T
2585-2007). As illustrated in Figure 1a, the heat treatment process of the wheel steel
consists of two main stages: Austenitizing and tempering. The specimens were heated
to the austenitization temperature (900~920 ◦C) with a heating rate of 10 ◦C/s and held
for 30 min under a vacuum. Afterwards, specimens were cooled (cooling rate: 5 ◦C/s)
to room temperature and tempered for 2 h. Bainitic transformation occurred during
continuous cooling. The cooling rate was enough to avoid the formation of other phases
which exist prior to bainite transformation according to the CCT diagram (Figure 1b). The
chemical composition of the wheel steel is listed in Table 1. To provide insight into the
yield strength and hardness of the novel BW presented in this study, which were listed in
Table 2, alongside some representative wheel steel reported in previous studies (Table 3).
The yield strength and microhardness value of the BW are higher than those of most of the
typical wheel steels from American, Chinese, and European Standards.
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Figure 1. (a) The thermal treatment process of the test steel, and (b) calculated CCT diagram of the
test steel using JMat-Pro.

Table 1. Chemical composition (wt%) of the test steel.

C Si Mn Cr Ni Mo Cu V

0.22~0.24 1.53~1.55 2.04~2.06 0.04~0.06 0.38~0.40 0.34~0.36 0.26~0.30 0.06~0.08
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Table 2. Mechanical properties of the test steel.

Yield Strength/MPa Tensile Strength/MPa Elongation/% Microhardness/HV

960 ± 15 1050 ± 20 18 ± 2 415 ± 10

Table 3. Hardness, chemical composition (wt%) and yield strength of the representative wheel
materials reported in previous studies.

Material C Si Mn Hardness/HV Yield Strength/MPa Ref.

1. CL60 0.55~0.65 0.17~0.37 0.50~0.80 277 580 [34]
2. CL65 0.57~0.67 ≤1.00 ≤1.20 302 620 [34]
3. CL70 0.67~0.77 ≤1.00 ≤1.20 321 650 [34]

4. Class B 0.65 0.63 0.26 330 642 [35]
5. Class B+ 0.63 0.84 0.88 340 690 [35]

6. ER7 0.51 0.78 0.38 295 568 [35]
7. ER8 0.52 0.26 0.73 285 610 [36]
8. D2 0.50~0.56 0.90~1.10 0.90~1.10 270 570 [37]

Figure 2 shows that the microstructure of the wheel steel, which consists of carbon-
enriched retained austenite (film-like) embedded in exceptionally fine plates of carbide-free
bainitic ferrite, as the precipitation of carbides is suppressed by the high silicon content
(more than 1.5 wt%).
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2.2. Microstructural Characterization

The microstructure of the specimens was characterized by optical microscope (OM,
ZEISS Axiovert 40MAT, Oberkochen, Germany), field-emission scanning electron micro-
scope (FESEM, Tescan MIRA3 XMU, Brno, Czech Republic), and transmission electron
microscope (TEM; Tecnai G2 F20 S-TWIN, Hillsboro, OR, USA). Specimens for FESEM
were prepared by mechanical polishing and then etched with 4% nitric acid alcohol. The
cross-section of samples for microstructure observation was perpendicular to the wear
surface and parallel to the rolling direction.

2.3. Dry Rolling–Sliding Wear Test

The rolling–sliding tests were performed on a twin-disc wear testing machine (Wear
Tester, CQHH-RCF-1, Chongqing, China), which was previously used in wheel–rail contact
studies under dry conditions. The test specimens were cylindrical rings with Ø60 mm
outer diameter, Ø30 mm inner diameter and 20 mm thickness. The contact width between
the two discs was 5 mm. The upper one machined from the wheel steel and the lower one
machined from the standard rail steel. The schematic diagram of the tester is shown in
Figure 3. The maximum contact stress between the two samples in point contact mode
was calculated using Hertz contact theory and simulation criteria. The method is shown in
Equation (1) [38]:

σmax =
852.6
α·β ×

3
√

F(Σρ)2 (1)

where ρ is the curvature at the contact point between the twin disc determined by the
sample radius size (unit: mm−1). σmax is the maximum contact stress (unit: MPa). α and
β are point contact deformation coefficients determined by the auxiliary parameter cosτ,
obtained from YB/T 5345-2014 standard [39]. F is the vertical load applied to the sample
(unit: N). The operation condition of a heavy-haul train with the axle load of 35 t and the
wheel diameter of 840 mm was simulated. The maximum contact stress simulated in the
experiment between the wheel and rail was 1200 MPa. According to Equation (1), the
pressure load was calculated to be 3035 N. The actual angular velocity of wheels (ω) could
be calculated with the following formula:

ωwheel =
V
R

(2)

where ωwheel is the actual angular velocity of wheels, V represented the actual operation
speed of heavy-haul trains (80, 120, 150 km/h), and R represented the radius of wheels.
Therefore, the experimental rotational speed could be calculated in the following way:

Nexp = Nwheel =
ωwheel

2π
(3)

where Nexp is the experimental rotational speed of wheels, and Nwheel is the actual rotational
speed of wheels.

From Formula (3), the rotational speeds were 546, 740, and 950 r·min−1, and the rolling
cycles were 30,000. The slippage ratio of wheel/rail specimens was about 10%. All experiments
were conducted at room temperature. The main test parameters are shown in Table 4.

Table 4. Test parameters and calculation results of contact stress.

Running Speed/km·h−1 Rotational Speed/r·min−1 Vertical Load/N Slip Rate/% Number of Cycles

80 546 3035 10 30,000
120 740 3035 10 30,000
150 950 3035 10 30,000
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Figure 3. Experimental setup for the rolling-sliding tester.

3. Results
3.1. Wear Resistance

The specific wear rate (SWR) is the volume loss per unit load and the distance traveled
by a point on the perimeter during the wear test.

SWR =
V

FN × Sd
(4)

where V is volume loss, Sd is wearing distance, and FN is load.
Figure 4 shows the wear loss of the wheel specimens with increasing running speed.

The mass loss of wheel roller under higher rotational speed (80 km/h) is higher than that
under lower speed (150 km/h), with the similar trend of the SWR. Therefore, it is clear that
the wear loss of the wheel declines with the increase in running speed.
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(b) specific wear rate.

3.2. The Morphology of Wear Surface

Figure 5 shows the microscopic morphology of the wear surface of the specimens at
different speeds. It can be seen that the surface of the wheel specimen is dominated by
adhesive wear and fatigue cracks. The cracks, delamination and peeling off of the specimen
surface were observed at the low speed (80 km/h) (Figure 5(a1,a2)). Cracks are caused by
cyclic stresses expanding towards the interior of the matrix and folding back towards the
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surface, in which cases spalling to form severe peeled blocks [7]. In addition, a small number of
pits were found on the surface of the specimen, the wear mechanism of this surface specimen
is not only fatigue wear and adhesive wear, but also a small amount of pitting fatigue flaking
when the degree of wear is serious. As the speed increases, the surface of specimen became
more densely packed with pitting pits and a large number of pockmarks appeared, indicating
that the wear mechanism of specimen changes to a mainly pitting fatigue spalling at 120 km/h,
where the wear was reduced, but the fatigue damage was increased (Figure 5(b1,b2)). Finally,
almost no pitting pits were observed on the specimen surface at 150 km/h, and there is a large
amount of flattened puckering (Figure 5(c1,c2)), which indicated that the specimen surface
was dominated by fatigue wear.
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Figure 5. FESEM images of the wear surface of the test steel: (a1,a2) 80 km/h, (b1,b2) 120 km/h and
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3.3. Microstructure of the Gradient Strain Layer

Plastic deformation of the material occurs under cyclical load, which gradually ac-
cumulates and eventually forms a gradient strain layer on the wheel surface due to the
ratchet effect [10,40,41]. Figure 6 shows the original morphology of plastic deformation in
the cross-section of the specimens. After the wear test, a gradient strain layer (GS layer)
was formed on the surface of the specimen. As the speed increased, the plastic deformation
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of the wheel became more severe. With the running speeds increasing from 80 km/h to
150 km/h, the thickness of the GS layer (TGS) increased from 42 µm to 110 µm.
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In order to further investigate the microstructure evolution of the wheel steel, the
surface of the specimens can be divided into three zones, as shown in Figure 7. As
shown in the above results, the topmost surface of the specimens was the severe plastic
deformation (SPD) zone with the deepest bainite refinement, almost parallel to the surface
of the specimens (Figure 7a (I)). The light plastic deformation (LPD) zone was closed to the
matrix, with shallow plastic deformation and curved bainite flow lines, while the direction
of the bainite slats in the matrix region was randomly arranged (Figure 7a (II)). Thus, the
degree of bainite lath and the refined grain size gradually increase from the matrix to the
topmost surface. Further observation of the topmost surface layer (SPD zone) showed that
the bainite was extruded and fragmented into submicron grains and thin lath. The degree
of grain refinement and grain size in the topmost surface layer of the wheel specimens
were similar for different rotational speed conditions (Figure 7(a1,b1,c1)).
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3.4. The Distribution of Shear Strain and Hardness

The materials on the contact surfaces are subjected to positive and shear stresses [42],
which will lead to a rheological structure. The degree of bending of the bainite can often be
used to reflect the intensity of plastic deformation [43]. The shear strain can be calculated by
the displacement field of the plastic flow line, which will reflect the degrees of the bending
of bainitic lath, as shown in Figure 8a. The calculation equation of equivalent shear strain
is as follows [44]:

ε =
tan (θ)
√3

(5)
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where θ is the angle of shear at different depths on the plastic flow line, ε is the equivalent
shear strain, and tan(θ) is the slope of the tangent line of the rheological curve.

y(x) =y0+A × expRx (6)

where y(x) is the shear stain, x is the depth from surface, y0, and A and R are parameters.
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According to Equations (5) and (6), the distribution of the shear strain along the depth
from the surface (Ds) under different rotational speed conditions can be given in Figure 8b.
It can be found that the shear stain (ε) and depth (Ds) of the plastic flow line displacement
field satisfy the exponential relationship. As the Ds increases, the shear strain decreased
monotonically at the surface and it finally tended to 0 in the matrix. Compared to 80 km/h,
the shear strain increased significantly at 150 km/h.

The hardening of the wheel specimens was analyzed using microhardness. The
hardness distribution of the gradient strain layer is shown in Figure 9, which also satisfy
the exponential relationship according to the Equation (6). The hardness of the specimen
profile was distributed in a gradient, which was similar to the shear strain curve (Figure 8b).
Furthermore, the hardening rate of the GS layer was ~1.08 times higher at high running
speeds (150 km/h) than at low running speeds (80 km/h).
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3.5. Fatigue Cracks Damage

When there is an inhomogeneous plastic deformation locally on the material surface,
the ratcheting effect occurs as the plastic deformation accumulates, eventually leading
to crack sprouting [45–47]. As can be seen above, as the running speed increases, the
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thickness of the GS layer on the surface of material and the degree of accumulation of plastic
deformation gradually increased [48]. Figure 10 shows the fatigue cracking of the specimens
at different running speeds. When the accumulation of plastic deformation reaches its limit,
fatigue cracks start to appear on the surface or subsurface of material, forming a variety of
cracks, such as main cracks, multilayer cracks, subsurface cracks, and branching cracks,
and propagating along the matrix in the direction of plastic deformation [49]. However,
these cracks do not always increase in size due to the amount of deformation and the crack
driving force [50]. Branching cracks arose at the base of the main crack and propagate
along the ferrite line parallel at an angle of deviation. Additionally, the materials above
the cracked prevented the internal cracked materials from contacting the counter-frictional
substrate, but they were easily crushed and broken under cyclic load (Figure 10(c1)).
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4. Discussion

With the running speed increasing from 80 km/h to 150 km/h, the thickness of the
GS layer (TGS) increases from 42 to 110 µm and the hardening rate from 1.24 to 1.35, as
shown in Figure 11. To provide insight into the wear-resistance of rolling-sliding wear of
the novel BW presented in this study, alongside some representative wheel steel reported
in previous studies (Table 5) [15,25,51,52]. The specific wear rate of the test steel was 1.01
(80 km/h), 0.88 (80 km/h) and 0.85 (80 km/h), which was one of the lowest compared
to the pearlitic wheel (Figure 12). Additionally, opposite to the pearlitic wheel [15], the
wear rate of the novel bainite wheel declines with the increase in running speed. It is well
known that wear loss is a crucial parameter measuring the wear-resistance properties of
wheel/rail materials [20,22,25].
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Figure 11. (a) The thickness of GS layer (TGS) and (b) the hardening rate along with the running speeds.

Table 5. SWR data and chemical composition (wt%) of wear-resistant materials for railway reported
under rolling–sliding wear.

Material C Si Mn Cr Mo V SWR/mm3·m−1·N−1 Ref.

Test steel 0.22~0.24 1.53~1.55 2.04~2.06 0.04~0.06 0.34~0.36 0.06~0.08 1.01 × 10−5 Present
work

PW-1 ≤0.60 ≤40 ≤0.80 - - - 3.32 × 10−5 [15]
PW-2 0.71 0.43 0.84 0.27 - - 1.36 × 10−5 [25]
ER7 ≤0.48 ≤0.40 ≤0.75 - - - 1.95 × 10−5 [51]

CL60 0.55~0.65 0.17~0.37 0.50~0.80 - - - 1.67 × 10−5 [51]
B-Wheel 0.71 0.43 0.84 0.27 - - 1.09 × 10−5 [25]
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Previous studies have shown that the grain refinement due to the plastic deformation
can improve the mechanical properties of materials according to the Hall-Petch strengthen-
ing mechanism [53]. In this study, the strengthening hardness of the gradient strain layer
can be analyzed according to the classic Hall-Petch relation [54]:

σ = σ0 +Kd−1/2 (7)

where σ is the yield strength, σ0 is material constant, K is the Hall-Petch coefficient, and d
is the grain size of prior austenite.

With the formation of the gradient strain layer of wheel specimens, the grade of plastic
deformation of bainite decreased gradually from surface to matrix. The grain was refined
due to the SPD. The refinement of bainitic is the essential reason for the strengthening
of microhardness, according to Equation (7). As the running speed increased, the shear
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stress [55] and strain of the GS layer were enhanced. The higher thickness and hardening
were produced on the GS layer under higher running speed (Figure 11), which leads to the
improvement of the wear resistance of the novel bainitic wheel steel. The information of
specific wear rates could provide a guide in choosing bainitic wheel steel for the railway.

A relationship between the crack propagation depth and the crack propagation angle
with the running speed is shown in Figure 13. The crack propagation angle and depth were
at a minimum of ~11.4◦ and ~1.1 µm, respectively at 80 km/h, where the end of the crack
appeared to buckle upwards. The crack was relatively small and was easy to spall. As the
speed increases to 120 km/h, the crack propagation angle and crack propagation depth
increase to ~13.1◦ and ~1.5 µm. At 150 km/h, the crack propagation angle and depth of
crack propagation were at a maximum of ~16.8◦ and ~4.2 µm, respectively, where wear
and fatigue damage were both particularly severe. If further expansion occurs, a fatigue
fracture will occur, leading to the peeling of the wheel surface material. Thus, as the speed
increases, the RCF cracks propagate along the line of plastic deformation, which leads to a
gradual increase in the crack propagation depth and the crack propagation angle. When
subjected to continued alternating stresses, the cracks propagated into the interior of the
material, resulting in severe fatigue damage to the wheel.
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Figure 13. Curves of (a) the crack propagation depth and (b) the crack propagation angle with
running speeds.

Normally, the wear has connected with the RCF damage. In the rolling-sliding wear
tests, the wear was indicated by the mass losses of specimens, while the RCF damage was
characterized by the cracks in the surface layer. In addition, the fracture of fatigue cracks
would lead to the formation of wear debris, which could eventually result in material loss.
Peeling due to fatigue is one of the forms of wear [56]. Thus, RCF damage can lead to
wear. In a rolling-sliding wear test at a low running speed, the main wear mechanism
was adhesion wear on the surface of the wheel with a small number of pits. As the speed
increases, the density of cracks gradually decreases, but the length increases. The fatigue
damage increases as the speed increases and adhesion wear cannot effectively eliminate
cracks [57].

5. Conclusions

In this work, a novel bainitic wheel steel with a superior rolling-sliding wear-resistance
was designed and prepared. The following main conclusions can be drawn:

(1) The novel bainitic wheel steel consists of carbide-free bainite and film-like retained
austenite and exhibited outstanding mechanical properties with a high yield strength
of 950 MPa and a hardness of 415 HV, which were superior to those of most of the
reported typical pearlitic wheel steel.

(2) During the process of wear, the surface damage of the wheel was mainly adhesive
wear and fatigue damage, and the gradient strain layer (GS layer) was formed on
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the wheel surface. With the increasing running speed, the fatigue cracks on wheel
specimens were more serious and adhesive wear lightens, and the surface morphology
of the wheel turned from pitting pits to peeling.

(3) As the running speed increased, the shear stress and strain of the GS layer were
enhanced. The higher thickness and hardening were produced on the GS layer under
higher running speed, which led to the improvement of the wear resistance of the
novel bainitic wheel steel. This is the main reason for the wear rate of the bainite
wheel decreasing with increasing running speed.

(4) The novel bainitic wheel steel exhibited an excellent wear-resistance after rolling-
sliding wear, which was much better than that of most of the reported representative
pearlitic wheel steel. Thus, the novel bainitic wheel is a very promising wheel material
for heavy-haul railway applications.
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