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Abstract: To maintain safety and reliability in power plants, creep-life prediction models have
received much attention over the years. This article was designed to focus on the conditions when a
material structure is exposed to extremely high temperatures and pressures with the help of finite
element analysis. A direct comparison of the feasibility of different models’ fitness and suitability
in predicting creep damage was presented in this article by simulating the damage evolution of
a uniaxial SS-304 specimen under a pre-defined load, using established constitutive creep models.
Comparative assessments of minimum creep strain rate, creep deformation, and stress rupture were
demonstrated using the Norton–Bailey (NB), Kachanov–Rabotnov (KR), Theta projection (TP), and
sine-hyperbolic (SH) models while standardizing them with the Omega model. The FE results
of a dog-bone specimen, while implementing the models, were compared with the actual creep
experiment results to check for the models’ reliability and validation. Subsequently, sensitivity
studies of the established creep models were conducted using the statistical tools RSM and ANOVA,
with an analysis of how the parameters for operation, design, and material dependency came into
effect. Thus, quantitative and qualitative correlation analyses of the FE creep response for these five
established models were conducted together, resulting in finalizing the selection of the most suitable
model, the sine-hyperbolic model, for the SS-304 material under the defined boundary conditions.
The 0.84 R2 value of the sine-hyperbolic model proved the model’s selection for predicting the creep
response of stainless steel 304. The method can be applied to select a suitable creep damage model as
per the feasibility of the operating conditions.

Keywords: creep deformation; curve fitting; creep law; creep prediction models; damage evolution

1. Introduction

Since 1929, numerous models have been created to forecast how a material will creep.
These models were built with specific boundary constraints, assumptions, and operating
conditions. Recent studies have concentrated on sine-hyperbolic and Kachanov–Rabotnov
creep damage model comparisons, as examined by Haque and Stewart [1]. The majority of
the literature is focused on the five most commonly used models: the Kachanov–Rabotnov
(KR), Omega, Norton–Bailey (NB), sine-hyperbolic (SH), and Theta projection (TP) models,
with the drawbacks of these five most established models being highlighted in this article [2].
The benchmark model is the Norton–Bailey model, which was developed by Norton and
Bailey and is often referred to as Norton’s power law for creep prediction. The model is
now a built-in component of the FE software package Abaqus for creep analysis [3]. The
NB model provides a starting point for developing other models. The model can predict
the creep deformation behavior of time-dependent, inelastic materials. The influence of
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the NB model is limited in its primary creep regime, and it can also be used to predict
creep deformation in the secondary creep regime, as recorded by Brathe and Josefson [4].
The Material Properties Council’s Omega model, on the other hand, is an exceptional
model that is commonly utilized for prediction owing to its directness and minimal reliance
on material constants. Prager [5] first presented the Omega creep evaluation model in
1995, which has a proven track record for understanding how properties interact with one
another across an extensive spectrum of materials. Yeom et al. [6] asserted that multi-axial
damage and strain-rate parameters should be used for accurate predictions with this model.
It accurately predicts the material rupture time at lower temperatures by modelling primary
and secondary creep regime deformations, as explained by Prager [7].

The KR model is another noteworthy model, as it is one of the early implementations of
Kachanov and Rabotnov’s continuum damage mechanics (CDM) technique, as investigated
by Kachanov [8], for studying creep. This model’s set of coupled equations can represent
secondary and tertiary creep deformation. In recent years, there have been significant efforts
contributing to the improvement of the existing version of the KR law to generate contour
deformation maps, as studied by Christopher et al. [9]. Stewart and Gordon [10] established
strain- and damage-based analytical procedures to establish transversely isotropic creep
damage parameters and further assessed the stress-independent tertiary creep damage
coefficients. The Theta projection is a vital creep prediction concept used in creep situations.
In 1985, to forecast the deformation stages of creep failure (including primary, secondary,
and tertiary), Evans et al. [11] created the TP model, which is another significant model
with some limitations. Stewart’s sine-hyperbolic model [12], which Alipour et al. [13] have
successfully applied at high temperatures for ferritic steels, is the most recent development
in models for creep prediction. The three-stage creep damage model is more accurate in
simulating primary, secondary, and tertiary creep than conventional models, as interrogated
by Yang et al. [14].

However, these models have some drawbacks that prevent them from being used
in various physical situations, as studied by Yao et al. [15]. The models provide certain
strengths and weaknesses at different operating temperatures, mechanical loadings, and
physical conditions. In addition, the accuracy of the correlation analysis among the models
needs to be quantified for the prediction of the remaining life of a material. There is nothing
in the literature available for a direct comparison of the five established creep damage
models and their in-depth analysis of the same physical conditions. Recent research has
focused on modifications of these creep damage models but the results are still conservative,
as slight changes in the material properties may alter the results. It is hypothesized that
the correlation among the models helps in exploiting their functional relationships, as it
facilitates the transformation of one material’s model’s constants to others, as investigated
by Haque and Stewart [16]. Their study demonstrated a comparison of the models for
complications of the minimum creep strain rate, creep deformation, and damage and stress
rupture of the material. The limitations of the models being studied, as presented in the
following paragraph, were the focal point of the problem statement in this article, and the
gaps are highlighted in the following sub-section.

The MPC Omega model for in-service equipment presents a challenge in terms of
estimating the cracking strain due to the lack of temperature-dependent material data at
elevated temperatures. In addition, the model has no method of demonstrating earlier or
ongoing degradation within the material where the rupture would most probability occur.
A polynomial or exponential curve fitting is required, as the constants in the model equation
are material-dependent. Even among identical materials, these curve-fitting methods
prevented the Omega model from being standardized for inclusion in a user-defined creep
model. However, Maruyama et al. [17] proposed a modified Omega model with better
creep life predictions for the material. On the other hand, the NB model exclusively focused
the secondary creep regime and did not account for any other regime predictions. When
primary and tertiary creep is prominent, its inaccuracy is evident, as recorded by Golan
et al. [18]. KR’s model seems promising, albeit that it requires a lot of material constants and
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removes the primary creep regime from the analysis. Integrating the KR model into finite
element (FE) analysis is problematic because it replicates within a continuous function, as
explained by Dyson [19] in their study on creep and plastic damage at rupture. The TP
model relies on a large quantity of empirical data to accurately describe a single curve for
precise modeling; numerous curves under multiple circumstances will be necessary along
with extreme extrapolation inside the matching of curves from similar families to precisely
conform the data, as recorded by Law et al. [20]. Recently, to conquer the shortcomings of
the earlier models, the SH model was created; nonetheless, this model is conservative in its
approach, yet it produces excellent results compared to other models [21].

It is significant to understand the limitations of creep failure models by analytically
computing them in the FE package Abaqus [2]. The curve-fitting approach for damage
evolution is one of the methods proposed to undo the shortcomings of the models by
tracking a material’s creep deformation behavior in the tertiary creep regime [22]. The
difficulty in determining the creep parameters required for FE analysis for any material
while implementing creep models may be overcome by regression analysis [23]. A fitness-
for-service assessment of the material can also be performed for creep prediction through
power law regression [24].

Research Objectives

The objectives of this research study were to evaluate and correlate the creep dam-
age models by standardizing them against the Omega model through curve-fitting and
regression for the material’s creep data extraction. The work included an evaluation of
the established creep damage models on various physical conditions such as temperature,
pressure, and loading conditions in order to compare and analyze them for selecting the
most suitable model for the explicit material, namely SS-304 in this case. By applying a
correlation among the models, an assessment of the models against the creep strain and
strain rate for creep deformation predictions within the specified boundary conditions
were conducted.

This study quantified the limitations of the KR, NB, SH, and TP models at different
operating temperatures, pressure, and loading conditions in standardization with the
Omega model by correlation analysis through computational modeling. The Omega model
was used for curve-fitting the SH, TP, NB, and KR models for computational analysis.
The FE simulations were performed at several isotherms and at varying stress levels.
Each model’s material constants were also analytically evaluated by a comparison of the
deformation rate and creep strain rate and, ultimately, the damage advancement. Data with
sigmoidal behavior and additional creep rupture and a minimum creep strain rate were
used for the correlation in the study to test the models’ predictive power. The significance
of the work was incorporated by comparing the feasibility of the models’ fitness and
suitability in predicting creep damage.

2. Creep Damage Constitutive Models
2.1. Norton Bailey Model

According to Abdallah et al. [25], Norton’s power law was invented in 1929 and is
depicted in Equation (1), which is the most acknowledged and universally used minimum
creep strain rate law based on the Arrhenius rate equation.

.
εcr = B′σn exp

(
−Qc

RT

)
tm (1)

where B is the material constant and
.
εcr represents the minimum creep strain rate, R

represents the universal gas constant, T represents the temperature, σ stands for the
applied stress, and the power-law exponent n involves some of the variables used to
calculate a material’s kinetic energy under various conditions. At a constant temperature,
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Equation (1) becomes significantly more straightforward. A constant temperature simplifies
Equation (1), yielding Equation (2).

.
εcr = Aσn tm, (2)

where, without considering time, ‘t’, Equation (2) becomes:

.
εcr = Aσn (3)

where

A = B′exp
(
−Qc

RT

)
(4)

The temperature-dependent material constants, A, n, and m are unaffected by stress.
A has units that are the same as time t and stress, but neither n nor m have units. The
time-differentiated version of Equation (3) that Segletes et al. [26] studied is known as the
power-law creep.

2.2. Omega Model

The life fraction utilized in the Omega model (damage parameter, ω) is described as
follows in Equation (5):

ω =
t
tr

=

.
εΩt

1 +
.
εΩt

(5)

where tr is the rupture life, t indicates the current time, Ω is the material creep damage
constant, and

.
ε is the current creep strain rate. At the point in time when the rupture occurs,

t→ tr and t/tr → 1, and Equation (5) collapses. Thus, the life fraction rises from zero to
(nearly) one (0 ≤ t/tr < 1). According to Prager [7], the creep strain will have the following
relationship, as shown in Equation (6):

1− .
ε0Ωt =

1
e

.
εΩ

(6)

where Ωt is the time-dependent damage constant,
.
ε0 stands for the primary creep strain

rate constant, and
.
ε is the creep strain. Equation (7) is obtained by rearranging the natural

logarithms on both sides:
.

εC0 =
−1
Ω

ln
(
1− .

ε0Ωt
)

(7)

By considering derivatives regarding time and replacing (1− .
ε0Ωt) as follows, Equation (8)

can be further simplified:
.

εc =
.
εc0 eεc Ω (8)

As depicted in Equation (8), i.e., the Omega model, the exponent of the cumulative
creep strain is assumed, and the first creep stage is not considered. The Omega model is
the simplest since it has only two constants, ε0 and Ω [6]. Equation (7) can calculate the
constant Ω using experimental data. When Ω is high, the material has a low creep strain
rate for the bulk of its life before rapidly increasing its creep strain rate before failing. In the
tertiary creep regime, a low value of Ω means that an ample amount of time is disbursed in
this regime [27].

2.3. Kachanov–Rabotnov Model

The formulae for strain rate and damage evolution are given in Equations (9) and (10)
for the standard KR law, as applied by Stewart and Gordon [28].

.
ε = A

(
σ

1−ω

)n
, (9)
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.
ω =

Mσχ

(1−ω)φ , . . . . . . 0 ≤ ω < 1 (10)

where φ, M, and χ are the tertiary creep damage constants, similar to Norton’s power-law
for secondary creep, and the creep strain, which can be calculated using isochoric creep
behavior [29]. Equations (11) and (12) were created by taking Equation (10) and performing
variable separation, indefinite integration, and simplifications.

t(ω, σ) =
1− (1−ω)φ+1

(φ + 1)M σχ
, (11)

ω(t, σ) = 1 − [1− (φ + 1)M σχ t]
1

φ+1 , (12)

where ω represents the current damage, and time, t can be calculated using
Equations (11) and (12), which can determine the current time and stress and how much
damage is now occurring. Using the KR model, Gordon and Stewart [10] developed the
strain (SA) and damage (DA) approaches. Secondary and tertiary creep stages were treated
using the methods based on the material’s behavior analysis.

2.4. Theta Projection Model

The TP model (primary–secondary–tertiary) was created by Evans and Wilshire [11].
The theta creep strain is expressed in Equation (13) as follows:

.
ε = θ1[1− exp(−θ2t)] + θ3 [exp(θ4t)− 1] (13)

As shown in Equation (13), the primary creep strain scale and curvature are controlled
by the material constants θ1 and θ2, while, in the canvass of the secondary creep strain,
its scale and curvature are regulated by the material constants θ3 and θ4, as recorded by
Liu et al. [30]. Rearranging Equation (13) to obtain the time duration, t, at a given strain
value, ε, assumes a negligible primary creep strain:

tr=
1
θ4

ln
(

ε

θ3
+ 1
)

(14)

where ε = εr. The theta life prediction and life fraction/damage can be accessed through
Equation (15).

tr=
1
θ4

ln
(

εr

θ3
+ 1
)

(15)

ω =
t
tr
=

ln
(

ε
θ3
+ 1
)

ln
(

εr
θ3
+ 1
) (16)

where tr stands for rupture life, ω denotes the damage, and εr represents the creep ductility.
The damage evolves from zero to unity, i.e., 0 ≤ ω < 1 [31].

2.5. Sine-Hyperbolic Model

As indicated in Equation (17), the steady-state/minimum creep strain rate,
.
εc , is

obtained by considering a balance in-between the hardening and the recovery mechanisms
in the secondary stage of creep analysis [13]. Using McVitty’s law, the SH model was
constructed to allow non-linear bending in the minimum creep strain rate vs. stress on a
log–log scale [32].

.
εc = B sinh

(
σ

σs

)
, (17)
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where the constants indicate the creep coefficient and secondary creep mechanism transition
stress B and σs, respectively, h(ω) is introduced into the overall creep strain rate, and h(ω)
is solved for in Equation (18).

h(ω) =
εcr

B sinh
(

σ
σs

) (18)

where h(ω) = exp (λωp), and λ and p are material constants that do not have a unit.
Incorporating damage into Equation (18), the new equation takes the form of Equation (19).

ω(t) = { 1
λ

ln [
εcr(t)

B sinh
(

σ
σs

) ]}
1/p

(19)

where ω(t) is the analytical damage calculated from the creep strain rate εcr. The moment
just before the cracking, time t is taken into account, t ≈ tr and

.
ωcr = 1, and the creep strain

becomes as shown in Equation (20):

εcr = ε f inal ≈ B sinh
(

σ

σs

)
exp (λ) (20)

where

λ = ln [
ε f inal

εmin
]; εmin= B sinh

(
σ

σs

)
(21)

The symbol λ represents a material constant that can be calculated directly from the
available experimental data for this case. The ideal value for p was suggested here to be
3/2 units less than the value of λ. Appropriately, the creep strain rate of the sin-h model is
given by Equation (22). In this scenario, it is possible to derive the material constant (λ)
directly from experimental data. According to this theory, p should be 3/2 units less than
the actual number. Equation (22) represents the sin-h model’s creep strain rate [33].

εcr= B sinh
(

σ

σs

)
exp
(

λω
3
2

)
(22)

The five models’ mathematical formulations were compared by a correlation method
in the article in order to systematically assess the outcome of the research study. ANOVA
and response surface methodology tools were implemented for the correlation study and
to measure the significant contribution of the factors on the target response, i.e., the creep
strain rate in this case, by applying the models for creep response and prediction.

3. Methodology

The analytical creep strain and strain rate were first calculated by regression analysis
of creep plots through an extrapolative prediction of the models. The TP, KR, and SH
creep damage models were curve-fitted to NB models in the computational analysis by
standardizing them with the baseline Omega model. The results were afterwards compared
with the models, with the statistical data analysis executed through response surface
methodology (RSM) and analysis of variance (ANOVA). The regression equations were
modified accordingly for every model to extract the creep data. The overall methodology
flowchart is depicted in Figure 1.
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Figure 1. The overall methodology flowchart for acquiring creep data for the FE dog-bone specimen
using the Omega–Norton–Bailey regression model [22].

Finite element modelling and geometry were then created in the FE package Abaqus
for dog-bone specimens based on an elastic–perfectly plastic model. The SS-304 dog-bone
specimen’s material and physical characteristics were taken from ASME BPVC section II,
subpart D [34]. The simulations were computed for each model by integrating the material
constants of the creep parameters and stress exponents under the user-defined boundary
conditions and meshing. Direct comparisons of the creep and plastic strain results were
analyzed for each model to quantify the characteristics at different operating temperatures,
pressure, and loading conditions for the SS-304 material. Sensitivity analyses were then
performed to consider the uncertainties in the data analysis.

3.1. Creep Strain Analytical Analysis

Creep strain and the creep strain rate were calculated analytically for the SS-304 FE
dog-bone specimen using Omega’s creep baseline material model, which is based on API-
579/ASME FFS-1 standards [35]. Curve-fitting was utilized for the SS-304 material model
to convert the stress exponent (n) and the creep parameter (A) obtained by regression for
the KR, Omega, TP, and SH models to the embedded Norton–Bailey model available in the
Abaqus material library. Table 1 shows the factors that were employed in the analytical
calculations to determine typical material behavior. Coefficient values were reserved
from the API-579/ASME FFS-1 standards [35] after a detailed examination of the material
behavior. The coefficients and material properties were selected from the defined standards
to standardize the established models for comparison and analysis.
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Table 1. Material coefficients for the SS-304 material type from MPC Omega (MPa, ◦C) [35].

Parameter Strain Rate—(εc0) Parameter Omega—(Ω)

Type-SS 304

A0 −19.17 B0 −3.40

A1 37,917.40 B1 10,521.29

A2 −12,389.36 B2 −7444.83

A3 4112.12 B3 3266.58

A4 −936.22 B4 −552.00

The parameters and formulations for the MPC Omega model are explained in the
API-579/ASME FFS-1 standards. Using the material coupon SS-304 dog-bone specimen,
the analytical creep strain was computed based on the API-579/ASME FFS-1 standards [35]
and utilizing the closed-loop Equations (23)–(30) that were designed and included in the
standards for the Omega model.

log10
[ .
εc0
]
= −[ (A0 + ∆sr

Ω) + (
A1 + A2S1 + A3S2

1 + A4S3
1

Tre f + T
) ], (23)

Ωm = ΩδΩ+1
n + αΩ + nBN , (24)

Ωn = max[(Ω − nBN , 3)], (25)

log10 [Ω] = [(B0 + ∆cd
Ω ) + (

B1 + B2S1 + B3S2
1 + B4S3

1
Tre f + T

) (26)

δΩ = βΩ.(
σ1 + σ2 + σ3

σe
− 1), (27)

nBN = −(
A2 + 2A3S1 + 3 A4S2

1
Tre f + T

), (28)

Tre f = 460 f or ◦F; Tre f = 273 f or ◦C

σe =
1√
2

[
(σ1 − σ2 )

2 + (σ1 − σ3 )
2 + (σ2 − σ3 )

2
]1/2

, (29)

S1 = log10 [σe]. (30)

3.2. Regression Analysis of Creep Plot through Extrapolative Prediction

The MPC model Omega was utilized for inelastic analysis in the API-579/ASME FFS-1
creep evaluation standards. The dog-bone FE geometry was developed based on the ASTM
standards and the Omega-NB regression model, as depicted in Figure 1, for the process flow
for obtaining the creep data [24]. The data was then uploaded into the FE analysis software
along with additional parameters to calculate the plastic strain and creep results [31].

The procedure details are explained with the Omega model; the creep strain values
can be obtained using Equation (8). The MPC Omega model’s strain rate was stress- and
temperature-dependent [23]. The strain rate can be computed by treating the temperature
as constant. As previously explained, the strain rate was then calculated using the NB creep
model, Equation (3). Given that it is based on the creep power-law, using the power-law
regression equation for the NB model was a wise choice [36].

The curve-fitting for varying loads and temperatures could then be accomplished
by comparing the generic power-law regression equation to the NB power-law [22]. For
the analysis example, the extrapolation assumed that the existing trend in the material’s
behavior would continue along with time. For each established model used in this research,
the regression Equations (31) and (32) were modified accordingly to calculate the creep
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parameters and the stress exponent for each model and by introducing a damage evolution
parameter to model the tertiary creep damage of the SS-304 material [35].

n =
i ∑
(
ln σln

.
ε
)
−∑(ln σ)∑

(
ln

.
ε
)

i ∑[(ln σ)2]−[ (∑(ln σ)2 ]
(31)

A = e
∑ (ln

.
ε)−n ∑ (ln σ)

i (32)

where the creep parameter is A, the stress exponent is n, and the sample size is i.
Graphical representations of the strain rate vs. stress from Omega to NB and Omega to

the other models developed from the curve-fitting procedures are shown in Figure 2. The
curve-fitting for the provided stress–strain values was observed to be accurate. Particularly
for exponential data, the power-law regression delivered an accurate fitting [26]. An
acceptability criterion for the prediction plot was a coefficient of determination R2 value of
0.9803, which was significantly higher than the criterion set by the ASME FFS-1/API-579
standards for this plot. To assess the effects of material degradation at the tertiary stage of
creep for the SS-304 material, the tertiary creep damage constant (ω) was derived in the
regression equations [22].
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MPC Omega to the NB, TP, and KR models based on strain hardening [26].

3.3. Finite Element Geometry Modelling and Pre-Processing

The FE model of a dog-bone geometry was developed as per the ASTM E-139 tensile
creep testing standards [37], as shown in Figure 3a. The analyzed data had a maximum
of 100 increments and an 18,000 h increment [36]. The creep deformation was modeled
using the Omega–Norton–Bailey regression model. The FE dog-bone model results were
first obtained for the Omega model, which was taken as the baseline model for model com-
parison in this research study [37]. The same FE model was then utilized for obtaining the
creep damage data and to run the FE simulations while implementing other mathematical
models. Consequently, the simulations were run separately for all the creep damage models,
but the FE dog-bone model geometry remained the same for running the simulations and
for the analysis. The same pre-defined boundary conditions were implemented for each
model, and the material’s deformation behavior was observed to be different for every
creep model.
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constant throughout the region.

Based on the assumptions employed in the analysis, the isotropic material SS-304 was
chosen for the assessment. Under particular boundary circumstances and in the presence
of a thermal field, a uniaxial force was applied to the specimen. An elastic–perfectly plastic
model was chosen to simulate the plasticity, plastic deformation, and elasticity [38]. The
displacement was measured at one end of the specimen with a 2 mm/min amplitude
and was fixed at the other end. By applying particular thermal fields across the model
at temperatures ranging from 0 to 700 ◦C for the SS-304 material, a thermal environment
was created. A steady longitudinal load was applied once the desired temperature was
obtained, inducing dislocation and distortion in the material’s grain structure. The load
was maintained for the analysis duration or until the specimen ruptured with a 35% UTS
load of standard pre-stress. Figure 3b,c depicts the specimen for the boundary conditions
and thermal analysis, as the pre-defined temperature field with direct specification was
instantaneous and kept constant throughout the region up to 720 ◦C for running the
simulations that were defined in Abaqus [39].

The simulation involved is a case of creep visco-plastic behavior with the boundary
conditions of one end fixed and a uniaxial load being applied to the other end. The simula-
tions were run while applying the creep models one by one for the same thermal boundary
and stress conditions applied to the same FE dog-bone specimen for the comparison of the
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models [40]. Meshed geometry was used to construct the thermal environment with the
pre-defined boundary conditions. The area of maximum creep deformation is highlighted
in red in the figure, where the maximum concentration of the applied load resulted in spec-
imen deformation due to creep. After conducting the mesh convergence study, an element
mesh size of 3.1 gave accurate results with less computational time, and the number of
elements selected was set at 1713 [33]. The graph in Figure 4a depicts the selection of a
suitable mesh size while performing the mesh convergence study shown in Figure 4b.

Figure 4. (a) Meshing of FE dog-bone model. (b) Mesh convergence plot.

The isotropic material SS-304′s material properties, Young’s modulus, and Poisson’s
ratio were obtained from ASME BPVC section II, part D, subpart 2 [34]. The physical
properties of the SS-304 material, plastic strain for plasticity, and yield stress standards were
also obtained from ASME BPVC section II, part D, subpart 2 [34]. The thermal conductivity,
density, and thermal expansion coefficient were also obtained from the standards for
creating the thermal environment for the simulation, as tabulated in Table 2.

Table 2. Material and physical properties of SS-304 material [34].

Material Model Elastic–Perfectly Plastic

Young’s modulus (201,000–17,100) MPa @ −25 ◦C to 720 ◦C

Poisson’s ratio 0.31

Density 8000 kg/m3

Thermal expansion coefficient 17.3 × 10−6 ◦C−1

Thermal conductivity 16.2 W m−1 ◦C−1

Yield stress (207–126) MPa

Plastic strain (0–0.015)

For the material constants in the models involving NB, KR, SH, and TP, the creep
parameters and stress exponents were calculated using curve-fitting for the damage pro-
gression and regression analysis [22]. The values of the creep parameter and the exponent
for stress are shown in Table 3. Tertiary-stage creep and material behavior until rupture
were considered when determining the values to model the primary, secondary, and tertiary
creep curves.
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Table 3. Material constants for SS-304 for creep models at (680–720) ◦C and (20–60) MPa.

Norton–Bailey
Model

Kachanov–Rabotnov
Model Sin-h Model Theta Projection

Model Temperature (◦C)

Creep parameters

1.93 × 10−18 2.10 × 10−18 4.71 × 10−15 2.47 × 10−15 680

4.71 × 10−18 5.15 × 10−18 1.06 × 10−14 8.24 × 10−15 690

1.13 × 10−17 1.23 × 10−17 2.35 × 10−14 2.68 × 10−14 700

2.67 × 10−17 2.90 × 10−17 5.13 × 10−14 8.51 × 10−14 710

6.18 × 10−17 6.73 × 10−17 1.10 × 10−13 2.64 × 10−13 720

Stress exponent

7.10 7.08 7.11 7.91 680

7.03 7.01 7.03 7.65 690

6.69 6.94 6.96 7.40 700

6.88 6.87 6.89 7.16 710

6.82 6.80 6.82 6.92 720

3.4. Sensitivity Analysis of Established Models Using RSM and ANOVA

In these case studies, the creep strain model was built using the response surface
methodology (RSM) by analyzing the simulation results with the Design-Expert software
version 12. The corresponding design matrices for the established models were developed
using a central composite design (CCD), taking into account four independent design
factors, namely stress (A), the exponent for stress (B), the creep parameter (C), and the
damage parameter (D), with one response (strain rate) being reported in Table 4 [38].
Sensitivity studies were carried out on the results to quantify the effect of the uncertainties
for the response output against the variable inputs.

Table 4. Independent design factors and response for RSM.

Independent Design Factors Response

Models Values Stress (A)
MPa

Stress
Exponent (B)

‘n’

Creep Parameter
(C)

MPa− n h−1

Damage Parameter
(D) ‘ω’

Strain Rate
10−5/h

Norton–Bailey Low 3 6.82 1.93 × 10−18 0 1.11 × 10−8

High 81 7.16 6.18 × 10−17 0 15.89

Theta Projection Low 3 6.72 8.24 × 10−15 0.05 8.71 × 10−9

High 81 8.11 2.64 × 10−13 0.40 17.28

Kachanov–Rabotnov
Low 3 6.66 5.15 × 10−18 0.05 3.83 × 10−7

High 81 7.08 1.23 × 10−17 0.40 521.65

Sine-Hyperbolic Low 3 6.68 1.10 × 10−13 0.05 1.99 × 10−5

High 81 7.25 4.71 × 10−15 0.40 11.74

As the analytical Omega model was considered and used for the curve-fitting of the
other models, an RSM analysis was not applied to the model. In the case of the Norton–
Bailey model, as the damage parameter factor was not available, the creep and damage
parameters were not considered in the analysis. The independent variables exhibited a non-
linear connection with the response variable, strain, which was a source of non-linearity in
the considered models [41]. The quadratic models best described the correlations among
the independent components and the response variable in these circumstances [42].

The quadratic models were determined to be significant based on the statistical analy-
sis, with a coefficient of determination R2 value of more than 80%. Once the appropriate
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model was selected, the evaluation involved 3D surface plots showing the connection
between the design components and the outcomes. These graphs were used to understand
how all of the responses behaved and correlated to each other. The optimization criteria for
each design parameter were then specified with a suitable significance. The ideal values
of the design parameters were established in the following surface plots. Analysis of
variance (ANOVA) was also used to assess the differences between two or more means and
variables through significance tests. For each model, design matrices with 30 simulation
runs were created after assigning low and high values to specified factors. To increase the
dependability of the design and analysis, these matrices also included replicas of the core
points [43].

4. Results and Discussions
4.1. FE Analysis of Dog-Bone Specimen of SS-304

The creep models were applied to the dog-bone model of SS-304 using regression
analysis, as discussed in the previous section. Following a simulation of 18,000 h under
the given boundary conditions for creep using the built-in Norton–Bailey model, Von
Mises stresses were extracted from the model. As the time progressed, the induced stresses
gradually decreased from 60 MPa to around 10 MPa and approached zero, which lasted
until the end of the 18,000 h visco-elastic–plastic cycle, as shown in Figure 5. The relaxed
stresses decreased as a result of the specimen’s induced strain [40]. Relaxed stresses were
created as the model was subjected to creep strain as a result of ongoing plastic deformation
and rupturing. Other creep models were also applied to the same model geometry to attain
the respective results.
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model’s visco-elastic–plastic run-time of 18,000 h.

The material’s yield stress and ultimate tensile strength were surpassed by the contin-
uous loading, which caused cracking. To show creep, the FE model of the SS-304 specimen
was subjected to uniaxial tensile stress to demonstrate the creep damage. Deformation
occurred in the middle of the specimen, which was fixed using symmetric boundary con-
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ditions. Figure 6a displays the specimen’s Von Mises stress distribution after running the
simulations to obtain the creep deformation [44]. Significant stresses were created at the free
end and at the center, whereas lesser stresses were distributed around the specimen’s fixed
end. The material began to deform as soon as the load was applied. It transitioned from
an elastic to a plastic state under the effect of the temperature environment and specified
boundary conditions. For the imposed stresses, Figure 6b,c shows the creep and plastic
strain in the specimen. The following sub-sections discuss the comparison of the models
for creep deformation.
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4.2. Model Comparison—Minimum Creep Strain Rate

The minimum creep strain rate was calculated using Norton‘s power law in the KR
model as opposed to the McVitty’s sine-hyperbolic law in the SH model. Creep power laws
were also used in the development of the Omega and TP models. The ability of the KR
and SH models to predict the minimum creep strain was also examined. These rules were
calibrated using five isotherms of the minimum creep strain rate data from the simulations.
Figure 7a depicts these five models’ creep strain rate predictions at 720 ◦C and 60 MPa.
Figure 7b was plotted while taking the natural logs of the creep strain rates to smoothen the
models’ curves. When the simulation data was examined, it was discovered that the 680 ◦C,
690 ◦C and 700 ◦C isotherms were non-linear, whilst the 710 ◦C and 720 ◦C isotherms were
linear. The sigmoidal behavior shown in the simulations and tests could not be accurately
replicated by the KR rupture predictions since they were linear on a log–log scale [45]. The
KR model can be re-calibrated to handle either high- or low-stress scenarios, but not both
at the same time [46]. The NB, Omega, and TP models all had the same problem of being
unable to forecast sigmoidal behavior at higher isotherms. The SH rupture predictions
could successfully model the sigmoidal behavior and bend on a log–log scale. The constant
σs regulates the bend in the SH model. Compared to the KR, NB, Omega, and TP models,
the SH model better fit the simulation data over a wide range of stresses. When the applied
stress range was constrained, the KR model performed well compared to the other models.
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4.3. Model Comparison—Creep Deformation and Damage

The KR, sin-h, and Theta models could simulate the complete creep deformation
curve, including the secondary and tertiary creep regimes. However, the Omega and
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Norton–Bailey models were deficient in predicting the entire creep curve [47], as depicted
in Figure 8. Using the simulated data, it was observed that all the models could accurately
forecast the creep deformation of the SS-304 material. While the ductility and rupture
time differed slightly between the models, this was not sufficient for declaring one model
superior to the other [48]. There were three aspects to the damage evolution prediction:
critical damage, rupture time, and the damage rate [49]. For the provided creep curves, the
KR, Theta, and sin-h models anticipated identical rupture periods; however, the critical
damage and damage trajectory differed. The NB and Omega models were not intended
to estimate the damage evolution during the material’s tertiary creep stage. Using the
analytical damage calculation, it was discovered that the critical damage in the KR and
Theta projection models had a range from 0.2 to 0.3, meaning that the rupture occurred
when the damage was substantially less than unity. The theory of continuum damage
mechanics (CDM) contradicts this, as it highlights that the damage trajectory is nearly
infinitely long as it approaches rupture [50]. The critical damage in the sin-h model always
resolved to unity due to the material constant λ. As a result, the damage trajectory was
always finite toward rupture [51].
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4.4. Model Comparison—Stress-Rupture

The stress-rupture prediction was calibrated into three stress-rupture isotherms to ex-
amine the ability of the KR, Theta projection, and sin-h models to forecast stress-rupture [52],
whereas the NB and Omega models lacked the ability to predict the stress-rupture curves
involving damage evolution parameters. The stress-rupture predictions are shown at
720 ◦C in Figure 9. When the KR, Theta projection, and sin-h models were compared, it was
found that the sin-h models fitted the simulation data best. The KR rupture forecast was
linear on a log–log scale, allowing it to represent the region appropriately. Extrapolated
rupture predictions can be used to test the physical realism of the KR, Theta, and sin-h
rupture predictions.
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The nominal yield strength and ultimate tensile strength of SS-304 at 720 ◦C were
shown as a physical reality check. The sigmoidal bend was controlled by the parameter σt
in the sin-h model. As the rupture duration approached zero, the sin-h rupture predicted
bends at the yield strength and achieved a result that was less than but close to the nominal
ultimate tensile strength of SS-304. Furthermore, as the rupture period approached zero,
the KR rupture prediction did not bend at the yield strength. Instead, it achieved a value
that was 1.35×more significant than the ultimate tensile strength. Penny [53] found that
the weakness in the KR rupture prediction was caused by the “brittle curve” phenomena
and revised the KR model to handle the high-stress to low-stress bend by adding additional
components and material constants but kept the flaw that the critical damage is less than
unity. As a result, to introduce the bend, two sets of constitutive equations were used. Near
rupture, the critical damage was modest (between 0.2 and 0.4), and the damage trajectory
was nearly endless. Without these additional issues and limits, the sin-h model replicated
the transition from high- to low-stress regions. Figure 10 depicts the stress versus the
minimum creep strain rate of the models.

4.5. Creep Experimental Testing

The validation of the model was based on laboratory-based creep experimental testing.
The tests were conducted using a 20-ton servo-control creep testing machine based on the
standards as per the ASTM E-139 standards, on stainless-steel SS-304 specimens of a regular
size that were firmly intact by clevis couplings and as per the standard specimen size as
mentioned in Figure 3a. The temperature was controlled by a thermocouple attached to the
gauge length of the specimen. Three samples were utilized for the ambient tensile tests in
order to verify the yield strengths of the stainless-steel specimens. Another three samples
were used to determine and confirm the ultimate tensile strength of the material. A final
specimen was used to conduct the creep test. The test was conducted at 60% yield strength
of the material, and the loading conditions were a pressure of 5220 MPa and a temperature
of 720 ◦C for the creep test. The creep testing machine on which the experiments were
conducted is depicted in Figure 11. The graph in Figure 12 depicts the creep strain rate for
the test running up to 1000 h.
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4.6. Validation of Models by Creep Experiment

The four models under study were fitted against the creep experiment data, except for
the Omega baseline model, obtained for the SS-304 material at 720 ◦C, 74.28 MPa, and up
to 1000 h. The FE numerical models’ results were compared with the real creep experiment
results, as shown in Figure 13, and the maximum percentage error deviation between the
FE and creep experiment results were calculated and are tabulated in Table 5. A maximum
deviation of up to 5% for the selected points, taken as a reference between the FE and creep
experiment results, was found to be minimum. The FE simulations were later extrapolated
to 18,000 h for the models to complete the analysis.
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Table 5. Maximum percentage deviation between FE and creep experiment results for the models.

Type of Creep Test Creep Models Maximum Deviation up to 5%

FEA Experiment

1000 h

NB Model 0.1596 0.0994
KR Model 0.2282 0.0994
TP Model 0.2878 0.0994
SH Model 0.3332 0.0994

4.7. Data Optimization by Statistical Modelling

For the response analysis, the quadratic regression models were chosen for statistical
analysis of the response strain. The regular coefficient of determination (R2), modified
coefficient of determination (adjusted R2), and expected coefficient of determination (pre-
dicted R2) for each example were used to verify the applicability of the selected regression
models. Table 5 displays the fit statistics for the response strain produced from a central
composite design. The relevance of the models can be seen in the R2 values. Furthermore,
the modified R2 and anticipated R2 values were close to each other. The term “adequate
precision” refers to the comparison between the predicted values, referred to as “signal,”
and the average prediction error is referred to as “noise”. The models’ performance is
shown by the suitable relationship between the signal and noise. It was found that all the
quadratic models were significant for searching the design space [54].

The projected vs. actual responses were displayed to verify the appropriateness of
the generated models. The graph shows that the predicted and actual values for the
concerned reaction were very close. The distribution of the data points along the run order
implies that the values predicted by the model did not change much [55]. With random
dispersal, most of the values were close to the middle line. In this situation, there was
no discernible pattern of residuals above and below the central line, establishing that the
run order of the design procedure did not affect the data; consequently, the model was
significant [56]. The statistical characteristics and synergistic effects of each constituent
were determined by using ANOVA. The regression model’s applicability and suitability
were recommended by various ANOVA adequacy tests (the F-value, the lack of fit, and
the p-value) [57]. Figure 14a–d shows the plot of the interaction and correlation analysis
for each model between the parameters stress and stress exponent on the response strain,
which was also manifested in the mathematical model equations. Table 6 illustrates the fit
statistics of the models and Table 7 demonstrates the summary of the models, the relative
error, and the significance of the models.

Table 6. Fit statistics of the models.

Fit Statistics for NB Model’s Creep Strain Rate (εt)

Statistical Parameters Values

R2 0.78

Adjusted R2 0.62

Predicted R2 −0.29

Adequate precision 4.71

Fit Statistics for TP Model’s Creep Strain Rate (εt)

R2 0.84

Adjusted R2 0.74

Predicted R2 −0.07

Adequate precision 7.72
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Table 6. Cont.

Fit Statistics for KR Model’s Creep Strain Rate (εt)

R2 0.82

Adjusted R2 0.74

Predicted R2 0.26

Adequate precision 12.60

Fit Statistics for SH Model’s Creep Strain Rate (εt)

R2 0.84

Adjusted R2 0.73

Predicted R2 −0.10

Adequate precision 6.88

Table 7. Summary of the models.

Response: NB Model’s Creep Strain Rate—Model Summary

Source Std. Dev. R2 Adjusted
R2

Predicted
R2 Press

Linear 3.62 0.09 −0.08 −0.54 222.62

2FI 3.81 0.09 −0.21 −1.73 393.94

Quadratic 2.12 0.78 0.62 −0.29 186.96 Suggested

Cubic 1.91 0.87 0.69 −4.20 750.21 Aliased

Response: TP Model’s Creep Strain Rate—Model Summary

Linear 38.04 0.02 −0.16 −0.81 27,007.75

2FI 40.09 0.02 −0.29 −1.99 44,564.25

Quadratic 17.93 0.84 0.74 −0.07 15,998.53 Suggested

Cubic 21.15 0.84 0.63 −8.60 1.43 × 105 Aliased

Response: KR Model’s Creep Strain Rate—Model Summary

Linear 138.51 0.69 0.65 0.58 6.73 × 105

2FI 147.27 0.69 0.61 0.48 8.34 × 105

Quadratic 119.07 0.82 0.74 0.26 1.18 × 106 Suggested

Cubic 108.94 0.88 0.78 −6.52 1.22 × 107 Aliased

Response: SH Model’s Creep Strain Rate—Model Summary

Linear 757.0 0 −0.20 −0.86 1.07 × 107

2FI 797.95 0 −0.33 −2.08 1.76 × 107

Quadratic 356.15 0.84 0.73 −0.10 6.31 × 106 Suggested

Cubic 421.41 0.84 0.62 −8.91 5.68 × 107 Aliased
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The following three-dimensional plots provided an assessment of behavior of the
response and revealed the independent elements’ synergistic effects on the chosen response.
In general, the 3D model showed the answer as a function of two independent compo-
nents, with the remaining two elements being held constant at their mean coded values.
The functional connection between the defined dependent variables and the associated
independent variables was illustrated using three-dimensional surface plots. The response
surface plot in Figure 15a,c,e,g and the contour creep deformation maps in Figure 15b,d,f,h
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indicate the combined impacts of the modifications. For each model, the stress exponent,
creep parameter, stress, and damage parameter were measured to check their significant
contributions of their impact on the target response strain [58].
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Figure 15. (a) The combined impact of design factors on the response NB model’s creep strain rate
(εt); (b) contour creep deformation map for NB model; (c) the combined impact of design factors on
the response TP model’s creep strain rate (εt); (d) contour creep deformation map for TP model; (e)
the combined effect of design factors on the response KR model’s creep strain rate (εt); (f) contour
creep deformation map for KR model; (g) the combined effect of design factors on the response SH
creep strain rate (εt); (h) contour creep deformation map for SH model.
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The graphs of the simulation outputs with the predicted outputs for all the models are
depicted in Figure 16a–d. The correlation between the predicted and actual values for the
response strain rate was presented to a satisfactory level for all the models. The models did
not reveal any abrupt variations in the continual variance, as indicated by their relative
error values.
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5. Conclusions

In this article, the TP, KR, NB, and SH models were correlated and compared through
the FE modelling of the tensile specimen geometry for SS-304 material by curve-fitting
the creep responses with the Omega baseline model. A direct comparison of the models’



Metals 2023, 13, 197 25 of 28

responses was discussed through quantitative and qualitative analyses of the creep strain
rate, creep deformation, damage, and rupture predictions. The analysis helped in identi-
fying an appropriate model for the SS-304 material under the specified defined boundary
conditions. The following conclusions were deduced from the study:

1. The creep strain rate curve modeled by the SH model was better as compared to
the KR, NB, Omega, and TP models primarily because of the material constants in
its formulation. The model accurately modeled all three creep stages for the SS-304
material while running the simulation and extrapolating to 18,000 h.

2. The KR, NB, Omega and TP models could not represent the minimum creep strain
rate vs. stress bend accurately. However, the SH model represented the lowest creep
strain rate bend precisely.

3. The stress rupture predictions of the SH model exhibited a smooth curve for the creep
strain and damage evolution as compared to the KR, NB, Omega, and TP models in
conditions up to 720 ◦C and 60 MPa.

4. The damage evolution differed between the KR, TP and SH models, whereas the
NB and Omega models were incapable of predicting the damage evolution. The NB
and Omega models depicted zero damage evolution, whereas the KR and TP models
exhibited a conservative damage evolution. The best damage evolution criteria were
modelled by the SH model forω = 0–1.10.

5. The combined effects of the design factors on the response SH model’s creep strain
rate (εt) and contour creep deformation maps from the RSM results were better as
compared to the other models. The relative error of the SH model’s ANOVA results
was 0.84, which was comparable to the other models, which proves the significance of
the model.

6. Summary

This paper compared five established creep models for their capabilities in predicting
the creep deformation for stainless steel. The proposed correlation method helped in
selecting the most suitable model for stainless steel creep deformation predictions for the
pre-defined conditions. In comparison to the other models, the sine-hyperbolic (SH) model
had various characteristics that proved its significance in predicting creep damage, creep
deformation, and creep rupture for the stainless-steel SS-304 material as identified by the
correlation method. The concluding results also indicated the suitability of selecting the
sine-hyperbolic model over the other models from this research study and analysis.
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Nomenclature

A Norton’s power-law constant
n Stress exponent
T Temperature
R Universal gas constant
Q Activation energy
tr Rupture time
σ1, σ2, and σ3 Principal stresses
S1 Stress parameter
Qc Norton’s activation energy
α Triaxiality parameter
ω Omega damage parameter
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