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Abstract: Basic Oxygen Furnace (BOF) steelmaking is an important way for steel production. Cor-
rectly recognizing different blowing periods and abnormal refining states is significant to ensure
normal production process, while accurately predicting the end-point time helps to increase the
first-time qualification rate of molten steel. Since the decarburization products CO and CO2 are
the main compositions of off-gas, information of off-gas is explored for BOF steelmaking control.
However, the problem is that most of the existing research directly gave the proportions of CO
and CO2 as model input but barely considered the variation information of off-gas to describe the
production state. At the same time, the off-gas information can be expected to recognize the last
blowing period and predict the end-point time earlier than the existing methods that are based on
sub-lance or furnace flame image, but little literature makes an attempt. Therefore, this work proposes
a new method based on functional data analysis (FDA) and phase plane (PP), defined as FDA-PP,
to describe and predict the BOF steelmaking process from the metallurgical dynamics viewpoint.
This method extracts the total proportion of CO and CO2 and its first-order derivative as dynamics
features of steelmaking process via FDA, which indicate the reaction velocity and acceleration of
decarburization reaction, and describes the evolution of dynamics features via PP. Then, the FDA-PP
method extracts the features of phase trajectories for production state recognition and end-point
time prediction. Experiments on a real production dataset demonstrate that the FDA-PP method has
higher production state recognition accuracy than the classical phase space, SVM, and BP methods,
which is 87.78% for blowing periods of normal batches, 90.94% for splashing anomaly, and 81.29%
for drying anomaly, respectively. At the same time, the FDA-PP method decreases the mean relative
prediction error (MRE) of the end-point time prediction for abnormal batches by about 10% compared
with the SVM and BP methods.

Keywords: basic Oxygen Furnace steelmaking; intelligent manufacturing; functional data analysis;
phase plane; blowing period recognition; anomaly monitoring; end-point time prediction

1. Introduction

Basic Oxygen Furnace (BOF) steelmaking is important in the iron and steel industry,
through which over 70% of crude steel is refined all over the world [1]. A successful BOF
steelmaking process should have a normal production process, accurate end-point time,
and stable product quality. In reality, the process control often relies on the experience and
skill of operators, so that the abnormal production state, insufficient refining time, and
unqualified molten steel sometimes appear, which would threaten production safety and
increase energy and resource consumption. Therefore, lots of models [2–4] are studied
to recognize different blowing periods and abnormal refining states in order to optimize
process parameters and ensure normal production process, as well as to predict the end-
point time or oxygen blowing volume (dividing the oxygen blowing volume by the oxygen
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flow can obtain the end-point time) in order to increase the first-time qualification rate of
molten steel and avoid re-blowing operation.

With the trend of intelligent manufacturing in the iron and steel industry [5,6], data-
based methods [7–9] are developing for the above targets relying on the abundant pro-
duction data, including: the sub-lance measurements, the furnace flame image, and the
off-gas. Han Min et al. [10] and He Fei et al. [11] employed the adaptive-network-based
fuzzy inference system (ANFIS) and the back-propagation neural network (BP) respectively
to predict the oxygen blowing volume, where the model inputs were the metal’s carbon
content and temperature measured by TSC sub-lance. But the sub-lance measurements are
unavailable for the production state recognition. Meanwhile, the sub-lance detection is al-
ways carried out within the last 1 min, and needs to suspend the process operations, which
breaks the production rhythm. The furnace flame image supports both the production state
characterization and the end-point prediction and can be collected without production
interruption. Prof. Li Ailian’s team studied the ResNet network [12] and the improved
DenseNet network [13] to recognize different blowing periods relying on the furnace flame
image. Wen Hongyuan [14] extracted the features of the furnace flame image and used the
multiple linear regression (MLR) model and the BP model to predict the end-point time.
But due to that, the end-point time prediction relied on the feature mutation of the furnace
flame image which occurred very late, the time margin given by the existing model was
only 20~40 s [14], too small to optimize operation parameters and adjust the steel quality.

The off-gas also supports both the production state characterization and the end-point
prediction. The industry has been exploring the use of off-gas information for process
control. Mats Bramming [15] built a multiway partial least squares (MPLS) model using the
off-gas information and other process data to explain and predict the splashing anomaly.
Our previous works [16] proposed a Mahalanobis distance-based functional derivative
support vector data description (MD-FDSVDD) model to identify the splashing anomaly
from the amplitude variations of off-gas. Compared with the furnace flame image, the
off-gas data are sensitive to the change of decarburization rate since the decarburization
products CO and CO2 are the main compositions of off-gas. Thus, the off-gas data can be
expected to predict the ending time with a larger time margin as the decarburization rate
changes when the last blowing period begins.

However, for the existing research, most of the data-based models directly gave
the amplitude of off-gas composition as input to a model and then obtained the output
of the production state. This end-to-end calculation ignored part of the metallurgical
dynamics features of BOF steelmaking, i.e., the variation information of decarburization
rate, leading to a hard determination of production state with similar amplitude of off-gas
composition (i.e., similar decarburization rate). As the BOF steelmaking process contains
complex multi-phase physicochemical reactions, lots of operation parameters will affect the
decarburization rate [17–20], and different parameters have diverse effects. On this basis,
employing the variation information of off-gas composition is significant to explain how
the decarburization rate is going to change with the influence of operation parameters, so
that to provide an accurate description of the production state.

Therefore, this work proposes a new data-based method from the viewpoint of met-
allurgical dynamics to characterize the steelmaking production state and predict the end-
point time. This method is based on the theories of functional data analysis (FDA) and
phase plane (PP), defined as FDA-PP. The FDA-PP method firstly smooths the discrete
sequences of the total proportion of CO and CO2 in the off-gas via FDA to obtain their con-
tinuous functions and first-order derivative functions. Then, the phase plane is constructed
by the fitting functions and derivative functions. The phase trajectory characterizes the
decarburization rate as well as the influence of the operation parameters on the decarburiza-
tion rate, describing the evolution of the production state. Next, a boundary that indicates a
stable production state is estimated on the phase plane via support vector data description
(SVDD) to recognize different blowing periods and abnormal production state. When the
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phase trajectory indicates that the last blowing period begins, the future phase trajectory is
predicted via case-based reasoning (CBR), further estimating the end-point time.

Based on the above, the proposed FDA-PP method has four aspects of contributions
and advantages. First, the FDA-PP method takes comprehensive consideration of the
decarburization rate as well as its variation trend and establishes a metallurgical dynamics-
based model for production state characterization. Second, this work is an attempt that
using the off-gas data to characterize different blowing periods and predict the end-point
time. Although the evolution of off-gas compositions was used to successfully recognize the
splashing and drying anomalies, little literature tried to use it to identify different blowing
periods. At the same time, to the best of our knowledge, the off-gas information hasn’t
been used for the end-point time/oxygen blowing volume prediction. Third, the FDA-PP
method can be expected to predict the end-point time with 2~4 min in advance since the
prediction is implemented at the beginning of the last blowing period. Fourth, based on
the FDA, problems of irregular data such as uneven refining durations, different sampling
frequencies, noise, and missing values, can be settled, and the evolution characteristics of
the time-series data can be retained in the smoothed curves.

The remainder of this article is organized as follows: Section 2 gives an overview
of BOF steelmaking and illustrates the connection between the metallurgical dynamics
features with the phase plane; Section 3 describes the procedures to realize the FDA-PP
method; Section 4 verifies the FDA-PP method and compares it with some commonly used
methods; Section 5 makes a conclusion.

2. Problem Statement

This section first introduces the BOF steelmaking process and then analyzes the
connection between the metallurgical dynamics of BOF steelmaking with the phase plane.

2.1. Overview of BOF Steelmaking

BOF steelmaking is an important way for steel production and its primary purposes are
to remove the carbon content of molten steel from 4~5% to around 0.04~0.06% and increase
the temperature from around 1250 ◦C to around 1680 ◦C [21]. Figure 1 is a schematic
representation of the blowing process. The molten iron and the steel scrap are the main
materials. The oxygen blowing from the top provides an oxidizing condition, while the
nitrogen or argon blowing from the bottom acts as a stir. The auxiliary materials are added
to help control the steel quality. Through controlling the oxygen lance height, the bottom
blowing flow, and the weight of auxiliary materials, the molten steel is obtained [20].
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Figure 1. The schematic representation of BOF steelmaking.

The main reactions during the blowing process are the decarburization reactions, where
the carbon of molten iron is oxidized by the oxygen blowing through [C] + [O] = CO ↑
and [C] + 2[O] = CO2 ↑ . Since carbon monoxide and carbon dioxide are released with
the off-gas, the off-gas compositions reflect the decarburization rate of the steelmaking
process [20]. According to the change of decarburization rate, the oxygen blowing can be
separated to three blowing periods [22]: the first blowing period, the main blowing period,
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and the end blowing period, as shown in Figure 2a. Correspondingly, the change of the
total proportion of CO and CO2 in the off-gas also shows three periods, as can be seen in
Figure 2b. In the first blowing period, the total proportion of CO and CO2 in the off-gas
gradually rises with increasing decarburization reaction. In the main blowing period, the
decarburization rate keeps on a high value, so the total proportion of CO and CO2 holds
on a large percentage. In the last blowing period, the total proportion of CO and CO2
decreases as the decarburization rate decreases.
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The splashing and drying anomalies usually happen in the main blowing period and
their influences on the total proportion of CO and CO2 are shown in Figure 2c,d. When the
splashing anomaly happens, the total proportion of CO and CO2 drops first and then rises
up. When the drying anomaly happens, the trends of CO and CO2 increase first and then
decrease, showing opposite evolutions to the splashing batch.

2.2. Metallurgical Dynamics and Phase Plane of the BOF Steelmaking

The phase plane is a method that can describe the evolution of a system’s dynamics
state [23,24], usually plotted with the first-order derivative and the second-order derivative.
In this work, we take the decarburization reaction as the objective and use the phase plane
to describe the evolution of the production state during the steelmaking process.

Since the total proportion of CO and CO2 in the off-gas reflects the reaction velocity
of the decarburization reaction in the metal pool [20], its first-order derivative indicates
the reaction acceleration of the decarburization reaction, which is extracted to construct
a phase plane in order to describe the dynamics evolution of decarburization reaction,
i.e., the production state of BOF steelmaking. Figure 3a is the phase plane of the normal
steelmaking process. We can see the phase trajectory begins at the origin point, develops
clockwise from the first quadrant, holds on in a narrow region at the transverse axis, and
goes back to the origin point from the fourth quadrant. The evolution of the phase trajectory
is accordant to the dynamic characteristics of BOF steelmaking. In detail:

• Within the first blowing period, the phase trajectory shows increasing decarburiza-
tion velocity and decreasing decarburization acceleration. The reason is that in the
beginning, the silicon and manganese in the metal pool are preferentially oxidized
and the carbon is following. With the silicon and manganese gradually consumed, the



Metals 2023, 13, 2 5 of 15

decarburization rate is enhanced. At the same time, as the carbon-oxygen reactions
gradually reach their balances, the decarburization acceleration decreases.

• Within the main blowing period, the phase trajectory shows a stable state with the
max decarburization velocity and nearly zero decarburization acceleration. The reason
is that when the carbon concentration is high enough so that the transportation rate
of oxygen limits the decarburization rate; thus, under a certain oxygen blowing, the
decarburization reactions reach their balance condition and remain at their highest
reaction velocities.

• Within the last blowing period, the phase trajectory shows decreasing decarburization
velocity and a first decreasing then slightly increasing decarburization acceleration.
The reason is that when the carbon concentration of the metal pool is too low so that
the transportation rate of carbon limits the decarburization rate, with the unchanged
oxygen blowing, the decarburization acceleration would be negative and decrease
rapidly, further leading to decreasing decarburization velocity. With the carbon con-
centration tending to be zero, the decarburization acceleration and velocity are close
to zero.
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off-gas erupts, the decarburization reaction recovers, so the decarburization velocity and 
acceleration rapidly increase. On this basis, the phase trajectory of the splashing anomaly 
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first quadrant, and finally goes back to the stable-state region. As for the drying anomaly, 
the decarburization reaction is promoted first because of the rapidly released off-gas and 
then returns to the normal level, so the phase trajectory exceeds the stable-state region and 
develops clockwise from the first quadrant to the fourth quadrant before returning to the 
stable-state region. 
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Figure 3b,c are the phase planes with splashing and drying anomalies respectively.
Because of the abnormal fluidity of the slag emulsion [22], the splashing anomaly happens
when the off-gas hardly traverses the slag emulsion and accumulates in the converter,
whereas the drying anomaly happens when the off-gas rapidly traverses the slag and
is released from the converter. Corresponding to this mechanism, when the splashing
anomaly happens, the accumulated oxidation products CO and CO2 prevent the decarbur-
ization reaction, so the decarburization velocity and acceleration rapidly decrease; after the
off-gas erupts, the decarburization reaction recovers, so the decarburization velocity and
acceleration rapidly increase. On this basis, the phase trajectory of the splashing anomaly
exceeds the region of the stable state, develops clockwise from the fourth quadrant to the
first quadrant, and finally goes back to the stable-state region. As for the drying anomaly,
the decarburization reaction is promoted first because of the rapidly released off-gas and
then returns to the normal level, so the phase trajectory exceeds the stable-state region and
develops clockwise from the first quadrant to the fourth quadrant before returning to the
stable-state region.

Based on these evolution features of the phase trajectory, different blowing periods
and abnormal production states can be recognized.

3. Method Description
3.1. Extraction and Characterization of Dynamics Features

In order to describe and predict the production state of BOF steelmaking, the smoothed
function and the first-order derivative function of off-gas compositions, i.e., the total
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proportion of CO and CO2, are extracted by the FDA and then used to construct the phase
plane to characterize the dynamics features of the decarburization reaction.

Functional data analysis [25] is a theory that regards a set of discrete observations
as the sampling of a continuous function. Suppose x(t) is a continuous function and
t = [t1 t2 . . . tK]

T is the sampling instant, then the discrete observations

x̂ = [x̂1 x̂2 . . . x̂K]
T can be acquired as:

x̂ = x(t) + e =
[
x(t1) x(t2) . . . x(tK)

]T
+ e (1)

where K is the number of sampling points and e is the noise matrix. In order to express the
continuous function x(t), the FDA theory employs a linear combination of basis functions
φ(t) =

[
φ1(t) φ2(t) . . . φN(t)

]T to approximate the discrete observations x̂, which is
as follows:

x(t) = φ(t)Tc = x̂− e (2)

where c =
[
c1 c2 . . . cN

]T is a coefficient vector associated with the basis function
system φ(t). Usually, the coefficients c are calculated by Least Squares with a roughness
penalty item, i.e.,:

min
e

eTe = min
c

{(
x̂−φ(t)Tc

)T(
x̂−φ(t)Tc

)
+ λPENm[x(t)]

}
(3)

where φ(t) =


φ1(t1) φ1(t2) . . . φ1(tK)
φ2(t1) φ2(t2) . . . φ2(tK)

. . . . . . . . . . . .
φN(t1) φN(t2) . . . φN(tK)

 is the sampling matrix of the basis function

vector φ(t), PENm[x(t)] =
∫
[Dmx(t)]2dt is the roughness penalty that is an integrated

squared linear differential operator to ensure the continuous control of the function’s
smoothness, m is the derivative order of the roughness penalty, λ is a parameter defining
the smoothness of the fitted curve. According to Equation (3), the basis function coefficients
are inferred to be:

c =
[
φ(t)φ(t)T + λR

]−1
φ(t)x̂ (4)

where R =
∫ dmφ(t)

dtm
dmφ(t)

dtm

T
dt. Substituting Equation (4) into Equation (2) will obtain the

continuous function x(t). The details to determine the tuning parameters, including the
order of basis functions, the number of basis functions N, the derivative order of roughness
penalty m, and the coefficient of roughness penalty λ, can be found in our previous
work [16]. Then, with the continuous function obtained, we can extract their derivatives to
reveal their underlying dynamical features. For example, the first-order derivative function
can be calculated by the following equation to characterize the function’s instantaneous
change rate over time.

x′(t) =
d[x(t)]

dt
=

d
[
φ(t)T]

dt
c (5)

After the continuous function and the first-order derivative function of the total
proportion of CO and CO2 are obtained based on the theory of FDA, the phase plane
can be constructed to characterize the dynamics features of BOF steelmaking. Here, the
transverse axis is the total proportion of CO and CO2, evaluating the reaction velocity of
the decarburization reaction, and the longitudinal axis is the first-order derivative of the
total proportion of CO and CO2, evaluating the reaction acceleration of decarburization
reaction. For other applications, other derivatives even some integration can be used to
explain the system’s dynamics state.

After the phase plane is constructed, the evolution features of the phase trajectory
are used to recognize different blowing periods and anomalies, as well as to predict
end-point time.
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3.2. Production State Recognition with Dynamics Features

According to the evolution features of phase trajectory described in Section 2.2, the
boundary of the stable-state region is estimated via the SVDD [16] to determine the pro-
duction state, where the phase trajectories of CO + CO2 of normal batches in the main
blowing period are used as the training dataset. The calculation of SVDD can be found in
Appendix A. Since the phase trajectory of the splashing anomaly exceeds the stable-state
region from the fourth quadrant as the phase trajectory of the last blowing period does,
the phase plane of CO2 is constructed to distinguish the splashing anomaly from the last
blowing period. The boundary of the stable-state region of the CO2 phase plane is also
estimated via the SVDD.

Then, based on the phase trajectories and their boundaries, the production state is
determined at each moment by successively checking whether the phase trajectory of
CO + CO2 exceeds the boundary of the stable-state region, whether the phase trajectory of
CO + CO2 exceeds the boundary from the left side, and whether the phase trajectory of CO2
exceeds the boundary of the stable-state region. The check procedure is given in Figure 4.
For example, if the previous production state is the main blowing period and the current
phase trajectory of CO + CO2 exceeds the boundary, the location of the phase trajectory
of CO + CO2 needs to be checked. If the phase trajectory of CO + CO2 is on the left of the
boundary, a further check of the phase trajectory of CO2 is necessary to distinguish the
splashing anomaly from the last blowing period; otherwise, we can infer that the drying
anomaly happens.
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3.3. End-Point Time Prediction with Dynamics Features

After the phase trajectory indicates that the last blowing period begins, the end-point
time is forecast by predicting the phase trajectory in the last blowing period via case-based
reasoning (CBR) [26]. The statement of CBR can be found in Appendix B. Here, the slope
curves of the phase trajectories instead of the phase trajectories are employed as attributes to
describe the cases/samples, since different batches have different ranges of phase trajectory
in the last blowing period. And a lagging window is used to extract the former part of
slope curves as the condition attributes and the latter part as the solution attributes. The
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similar cases are found out according to their distances to the testing case in the problem
space are less than a threshold, and their solution attributes are averaged as the solution to
the testing case.

The whole procedure of the proposed FDA-PP method is shown in Figure 5. This
method firstly smooths the sampling sequences of off-gas data to continuous functions and
extracts their first-order derivative functions to construct the phase plane to characterize
the metallurgical dynamics features of BOF steelmaking. Then, based on the evolution
features of phase trajectories, a boundary that indicates the region of stable production
state is estimated to recognize different blowing periods as well as splashing and drying
anomalies. Finally, when the last blowing period begins, the end-point time is forecast
through referring to the completed batches with similar slope curves of phase trajectories.
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Figure 5. The schematic diagram of the proposed FDA-PP method. Figure 5. The schematic diagram of the proposed FDA-PP method.

4. Experiment on BOF Steelmaking

In this section, we validate the performance of the proposed FDA-PP method on the
BOF steelmaking process.

4.1. Data Acquisition and Modeling Calculation

The data of BOF steelmaking are collected from a 260 tons converter in a Chinese steel
plant. The proportions of CO and CO2 in the off-gas are analyzed by the mass spectrometer
with sampling frequency 0.5 Hz. Totally 476 batches/heats without re-blowing are selected,
including 375 normal batches, 66 splashing batches, and 35 drying batches. The data
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partition can be found in Table 1. 150 normal batches are randomly selected for training
and the rest 326 batches are used for testing.

Table 1. Data partition of the steelmaking data.

Normal
Abnormal

Total
Splashing Drying

Training 150 / / 150
Testing 225 66 35 326
Total 375 66 35 476

In addition, the true end-point time is collected in Figure 6, which is calculated through
subtracting the lagging time (30 s in this work) from the duration of the last blowing period.
The true end-point time reflects how long in advance the FDA-PP method could predict
the end-point. As seen in Figure 6, the true end-point time of over 90% batches is 100~240 s.
Thus, the FDA-PP can be expected to predict the end-point and provide a time margin of
about 2~4 min for operation optimization.
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Following the calculation procedure in Figure 5, firstly, 30 B-splines basis functions
with order 5 are used to smooth the off-gas compositions data and extract their first-order
derivatives, where the roughness penalty is the integrated squared third derivative operator
with λ = 105. It should be noted that the time range of the fitting curve is equal to the
actual blowing time of each batch. Based on the fitting curves and the first-order derivative
curves, the phase plane of the total proportion of CO and CO2 is built to characterize the
production state, and the phase plane of CO2 is built to help distinguish the splashing
anomaly from the last blowing period. Then, the phase trajectories in the main blowing
period are used to estimate the boundaries of the stable-state region for the production state
recognition, where the bandwidths of RBF kernel are σ = 3 for the phase plane of the total
proportion of CO and CO2 and σ = 1.5 for the phase plane of CO2. After that, the slope
curves of phase trajectory in the last blowing period are recorded, where the slope curves
within the lagging time window of 30 s (i.e., 15 sampling points) compose the condition
attributes base and the slope curves after the lagging time window compose the solution
attributes base. The criterion for similar case selection is that the Euclidean distance with
the target batch ranks in the former 15%. Based on the predicted phase trajectory, the
end-point time is finally estimated.

In order to further illustrate the performance of the proposed FDA-PP method, the
classical phase space (PS) is calculated as comparisons, as well as two commonly used
methods in BOF steelmaking, the SVM and the back-propagation neural network (BP). The
details of these methods are summarized as follows:

• PS: This method sets the embedding dimension as 2 and the delay time as τ = 5
to construct the phase space, and uses the phase trajectories to complete the rest
calculation procedures as the FDA-PP method does.

• SVM: This method is calculated with 13 process variables, including the information of
raw materials (i.e., the temperature of molten iron, the carbon content, silicon content,
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manganese content, phosphorus content of molten iron, the weight of molten iron,
the weight of pig iron, the weight of scrap steel), the cumulative weight of auxiliary
materials, and the operation parameters (i.e., the total proportion of CO and CO2,
the height of oxygen lance, the cumulative volume of oxygen blowing, the flow of
bottom blowing). Among them, the information of auxiliary materials and operation
parameters is recorded as sequences. Since the SVM is a supervised classification
method, 10 normal batches, 10 splashing batches, and 10 drying batches are trained
for production state recognition. For the end-point time prediction, still 150 normal
batches are used for training.

• BP: This method is carried out with the same variables and data partition as the SVM
method does, where the size of the hidden layer is set as 60 for the production state
recognition and 5 for the end-point prediction.

To avoid randomness of individual results, the FDA-PP method as well as all the
compared methods are tested 50 times based on the random data partition. The results are
discussed in the following sections.

4.2. Results of the Production State Recognition

Table 2 shows the accuracy of the production state recognition. For the normal batches,
we collect the recognition accuracies of the first blowing period, the main blowing period,
and the last blowing period, where correctly identifying the blowing periods not only
provides guidance for process control but also gives a start signal for the end-point time
prediction. For the abnormal batches, we collect the recognition accuracies of the splashing
and drying anomalies, where correctly alarming the anomalies can help workers take action
to restrain the anomalies.

Table 2. Accuracy of production state recognition.

Method
Blowing Periods Recognition of Normal Batches Anomaly Identification of Abnormal Batches

First-Blowing Main-Blowing Last-Blowing Splashing Anomaly Drying Anomaly

FDA-PP 99.16% 87.78% 88.49% 90.94% 81.29%
PS 98.22% 82.33% 84.13% 67.00% 74.29%

SVM 87.28% 66.67% 71.93% 62.12% 54.55%
BP 65.59% 43.21% 50.26% 30.30% 41.67%

Table 2 illustrates that the proposed FDA-PP method has the best accuracy on the
production state recognition, where the blowing period recognition accuracy of normal
batches is 87.78%, the anomaly identification accuracies of splashing and drying batches
are 90.94% and 81.29% respectively. For the compared methods, the PS method has lower
accuracy than the FDA-PP method because the difference calculation in the PS method
would bring errors in expressing the off-gas composition’s variation and cannot isolate
the noise interference. The SVM and BP methods are inferior to the FDA-PP method and
the PS method although they utilize 13 variables to take the information of raw materials,
auxiliary materials, and operation parameters into consideration. This result demonstrates
that the dynamics features expressed by the phase plane and phase space are significant
in determining a system’s operating condition. For BOF steelmaking, different blowing
periods and anomalies would generate similar production data. The SVM and BP methods
analyze the measurements at an individual moment and miss the evolution features of
the sequence within an interval, so easily confuses different production states. The FDA-
PP and PS methods not only indicate the decarburization rate but also describe how the
decarburization rate is going to change with the influence of operation parameters, so have
better performance on the production state recognition.

We take a splashing batch and a drying batch as examples to show the results of
production state recognition, as can be seen in Figure 7. The FDA-PP method successfully
recognizes the three blowing periods as well as the splashing and drying anomalies. The
PS method successfully identifies the drying batch but confuses the splashing anomaly
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with the last blowing period. The SVM method identifies different blowing periods but
misses catching the drying anomaly, and it gives a false alarm before the splashing anomaly.
The BP method nearly cannot judge the production state of the splashing batch and falsely
regards the drying as the splashing.
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Figure 7. (a–d) Production state recognition of a splashing batch by different methods; (e–h) pro-
duction state recognition of a drying batch by different methods. Here, the events indicate that: 1-
the first blowing period, 2-the main blowing period, 3-the main blowing period, 4-the splashing 
anomaly, 5-the drying anomaly. 
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first blowing period, 2-the main blowing period, 3-the main blowing period, 4-the splashing anomaly,
5-the drying anomaly.

Furthermore, as the production state is recognized at each sampling point, the FDA-PP
method is able to be implemented on the online characterization, where the production
state at sampling point t is recognized using the sequence from the start point to the
current point.

4.3. Results of the End-Point Time Prediction

Based on the production state recognition, the end-point time is going to be predicted
as the last blowing period begins. Thus, the ending time prediction is a forecast ahead of
time and can be available for the online application, where the end-point can be predicted
using the sequence within the lagging time during the last period. Table 3 collects the mean
relative prediction error (MRPE) of the end-point time, which is calculated as follows:

δ =
1
N
·
∣∣∆t̂n − ∆tn

∣∣
∆tn

(6)

where ∆tn is the true value of the end-point time of batch n which is calculated through
subtracting the lagging time (30 s in this work) from the duration of the last blowing period,
∆t̂n is the predicted value of the end-point time of batch n, and N is the number of batches.
For the SVM and BP methods, since Section 4.2 indicates that they can hardly identify
different blowing periods, the beginning moment of the last blowing period in the SVM
and BP methods is provided by the FDA-PP method.

Table 3. MRPE of end-point time prediction.

Method Normal Batches Splashing Batches Drying Batches Mean Value

FDA-PP 18.07% 19.31% 17.01% 18.13%
PS 41.36% 49.79% 46.91% 46.02%

SVM 19.53% 31.28% 26.78% 25.86%
BP 19.44% 32.58% 29.94% 27.32%
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From Table 3 we can see that the proposed FDA-PP method is much more accurate
than the PS method and more accurate on the abnormal batches than the SVM and BP
methods. The FDA-PP method can predict the ending time with MRPE 18.07%. Especially
when the splashing or drying anomaly happens, the MRPE of the end-point time can be
controlled within 20%. As for the SVM and BP methods, although they achieve similar
MRPE on the normal batches as the FDA-PP method, their prediction errors on the abnormal
batches are about 10% larger than the FDA-PP method. The superiority of FDA-PP on
the abnormal batches is due to that the FDA-PP method predicts the end-point through
estimating the evolution of dynamics features (the phase trajectory) but the SVM and
BP methods only utilize the measurements of production data. When the anomalies
happen, the dynamics features would change, and the decarburization reaction rate would
be influenced, bringing difficulties in end-point prediction. Therefore, the SVM and BP
methods have larger prediction errors on the abnormal batches.

Figure 8 shows the distribution of the absolute deviation of the predicted end-point
time, i.e., the numerator in Equation (6). As can be seen in Figure 8, using the FDA-PP
method, the end-point time prediction of more batches can be controlled in smaller absolute
deviations than the PS, SVM, and BP methods, especially of the abnormal batches. The
FDA-PP method can ensure the absolute deviation of the predicted end-point time on 20%
splashing batches and 27% drying batches no more than 10 s, and on 60% splashing batches
and 61% drying batches no more than 30 s. As comparison, the PS, SVM, and BP methods
can hardly control the absolute deviation on abnormal batches to be in 10 s, and their ratios
of abnormal batches whose absolute deviations are no more than 30 s are less than the
FDA-PP method.

Metals 2023, 13, 2 12 of 16 
 

 

where ntΔ  is the true value of the end-point time of batch n which is calculated through 
subtracting the lagging time (30 s in this work) from the duration of the last blowing pe-
riod, n̂tΔ  is the predicted value of the end-point time of batch n, and N is the number of 
batches. For the SVM and BP methods, since Section 4.2 indicates that they can hardly 
identify different blowing periods, the beginning moment of the last blowing period in 
the SVM and BP methods is provided by the FDA-PP method. 

Table 3. MRPE of end-point time prediction. 

Method Normal Batches Splashing Batches Drying Batches Mean Value 
FDA-PP 18.07% 19.31% 17.01% 18.13% 

PS 41.36% 49.79% 46.91% 46.02% 
SVM 19.53% 31.28% 26.78% 25.86% 
BP 19.44% 32.58% 29.94% 27.32% 

From Table 3 we can see that the proposed FDA-PP method is much more accurate 
than the PS method and more accurate on the abnormal batches than the SVM and BP 
methods. The FDA-PP method can predict the ending time with MRPE 18.07%. Especially 
when the splashing or drying anomaly happens, the MRPE of the end-point time can be 
controlled within 20%. As for the SVM and BP methods, although they achieve similar 
MRPE on the normal batches as the FDA-PP method, their prediction errors on the abnor-
mal batches are about 10% larger than the FDA-PP method. The superiority of FDA-PP 
on the abnormal batches is due to that the FDA-PP method predicts the end-point through 
estimating the evolution of dynamics features (the phase trajectory) but the SVM and BP 
methods only utilize the measurements of production data. When the anomalies happen, 
the dynamics features would change, and the decarburization reaction rate would be in-
fluenced, bringing difficulties in end-point prediction. Therefore, the SVM and BP meth-
ods have larger prediction errors on the abnormal batches. 

Figure 8 shows the distribution of the absolute deviation of the predicted end-point 
time, i.e., the numerator in Equation (6). As can be seen in Figure 8, using the FDA-PP 
method, the end-point time prediction of more batches can be controlled in smaller abso-
lute deviations than the PS, SVM, and BP methods, especially of the abnormal batches. 
The FDA-PP method can ensure the absolute deviation of the predicted end-point time on 
20% splashing batches and 27% drying batches no more than 10 s, and on 60% splashing 
batches and 61% drying batches no more than 30 s. As comparison, the PS, SVM, and BP 
methods can hardly control the absolute deviation on abnormal batches to be in 10 s, and 
their ratios of abnormal batches whose absolute deviations are no more than 30 s are less 
than the FDA-PP method. 

(a) (b) (c)

<10s
<30s
<60s

0

20

40

60

80

100

Pr
op

or
tio

n 
 / 

 %

0

20

40

60

80

100

Pr
op

or
tio

n 
 / 

 %

0

20

40

60

80

100

Pr
op

or
tio

n 
 / 

 %

 
Figure 8. Absolute deviation of the predicted end-point time on (a) the normal batches, (b) the 
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More physical insights into the production state prediction of BOF steelmaking are
that, first, with the predicted phase trajectory, the evolution of the total proportion of CO
and CO2 in the last blowing period can be reconstructed, then further studies such as the
steel compositions prediction and the temperature prediction can be realized associated
with information of raw materials and operation parameters. Second, although the FDA-PP
method only utilizes the off-gas data, it realizes similar even better performance than
the SVM and BP methods that process variables; thus, the off-gas can be expected to
replace the sub-lance to control the BOF steelmaking so that avoiding the production
process suspension.

5. Conclusions

This work aims at the production state recognition and the end-point time prediction,
and proposes a new data-based method associated with the off-gas data, defined as FDA-
PP. This method describes the evolution of the production state from the metallurgical
dynamics viewpoint and takes a comprehensive consideration of the decarburization rate
as well as its variation trend. As the change of off-gas compositions was only used to
recognize the splashing and drying anomalies in the existing research, this work is an
attempt that using the off-gas data to distinguish different blowing periods and predict the
end-point time.
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In order to evaluate the performance of the proposed method, the real production
data from a steel plant are studied. The results show that the FDA-PP method achieves the
production state recognition accuracy at 87.78% for normal batches, 90.94% for splashing
batches, and 81.29% for drying batches, respectively, more accurate than the PS, SVM,
and BP methods. At the same time, the MRPE of end-point time prediction by the FDA-
PP method is lower than the compared methods. Especially on the abnormal batches,
although the FDA-PP method only employs the proportions of CO and CO2 in the off-gas,
its prediction error of ending time is about 10% lower than the SVM and BP methods
that utilize 13 variables to take the information of raw materials, auxiliary materials, and
operation parameters into consideration. Moreover, the FDA-PP method can predict the
end-point time once the model judges that the last blowing period begins, so providing
2~4 min time margin for the operation parameters optimization.

Following this work, the predicted sequences of the total proportion of CO and CO2 by
the FDA-PP method give a possibility to predict the steel compositions and temperature. In
addition, more efforts can be devoted to exploring the use of off-gas information for produc-
tion control so that replacing the sub-lance and ensuring continuous production rhythm.
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Appendix A. Calculation of Support Vector Data Description

The support vector data description (SVDD) is a single-class classification model.
It works by estimating a minimum spherical boundary around the normal samples in a
high-dimensional feature space so that the abnormal samples are outside the boundary.
Taking the phase trajectories of normal batches in the main blowing period as the training
dataset, the optimization problem of SVDD is as follows:

min
a,R,ξ

R2 + C∑
i

ξi

s.t. ‖g(zi)− a‖2 ≤ R2 + ξi, ξi ≥ 0
(A1)

where zi =
[
xn(tk) x′n(tk)

]
is the phase trajectory of batch n at moment tk, g(·) is a non-

linear function to settle the nonlinearity, a and R are the center and radius of the sphere
respectively, C is an adjustable parameter balancing the sphere volume and model error,
ξi ≥ 0 is a slack variable allowing outliers in the training dataset. Based on the Lagrange
multipliers and the Karush-Kuhn-Tucker (KKT) condition, the optimization problem in
Equation (A1) can be converted to be

max
γ

∑
i

γig(zi)
Tg(zi)−∑

i
∑
p

γiγpg(zi)
Tg
(
zp
)
= max

γ
∑
i

γiκ(zi, zi)−∑
i

∑
p

γiγpκ
(
zi, zp

)
s.t. 0 ≤ γi ≤ C, ∑

i
γi = 1

(A2)

where γi and γp are Lagrange multipliers of zi and zp, κ
(
zi, zp

)
=
〈

g(zi), g
(
zp
)〉

=

g(zi)
Tg
(
zp
)

is the kernel function. Settling the above optimization problem can obtain
the optimal values of Lagrange multipliers, and the training samples satisfying γi > 0
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constitute the support vectors, i.e., SV = {zi|γi > 0}. These support vectors determine the
boundary of the stable-state region, which can be computed as:

R2 = κ(zl , zl)− 2 ∑
zi∈SV

γiκ(zi, zl) + ∑
zi∈SV

∑
zp∈SV

γiγpκ
(
zi, zp

)
(A3)

where zl is one of the support vectors. In practice, the kernel function mostly employs the
radial basis function (RBF) kernel, that is:

κ
(
zi, zp

)
= exp

(
−
∥∥zi − zp

∥∥2

σ2

)
(A4)

where σ is the bandwidth that ensures a tight sphere. Thus, the first item in Equation (A3)
can be simplified to be κ(zl , zl) = 1. In testing stage, whether the phase trajectory exceeds
the stable-state region or not can be determined by the following equation:

r2
test = 1− 2 ∑

zi∈SV
γiκ(zi, ztest) + ∑

zi∈SV
∑

zp∈SV
γiγpκ

(
zi, zp

)
> R2 (A5)

Appendix B. Statement of Case-Based Reasoning

The case-based reasoning (CBR) is a branch of artificial intelligence, where a case/sample
is described by the condition attributes (the inputs) in problem space and the solution
attributes (the outputs) in solution space. The basic idea of CBR is that similar cases in
problem space are also close to each other in solution space. It consists of the following
steps: case description, case retrieval, case reuse, case revise and retain.

In the case description step, appropriate condition attributes and solution attributes
of cases needs to be determined. Since the phase trajectory in the last blowing period has
different range for different batch, the slope curves of the phase trajectories instead of the
phase trajectories are employed as the attribute to describe the case. In detail, a lagging
window is used to extract the former part of slope curves as the condition attributes and
the later part as the solution attributes. Furthermore, due to the blowing time needs to
be predicted, the phase trajectory is resampled to transform the time-dependent curves
(x(t), x′(t)) to the amplitude-dependent curves [α, f (α)], where α = x(t) and is normalized
to [0, 1], f (α) = x′(t).

In the case retrieval step, a criterion needs to be determined to define the similar cases
in problem space. In this work, the similar cases are found out according to their Euclidean
distances to the testing case in the problem space with a certain threshold.

In the case reuse step, an approach needs to be settled to combine the solution attributes
of the retrieval cases. In this work, the solution attributes of the similar cases, i.e., their
slope curves after the lagging window, are averaged as the solution to the testing case.
Thus, the phase trajectory in the last blowing period of the testing batch can be constructed,
further the end-point time can be forecast.

In the case revise and retain step, if the similarities between the testing case with all
the cases in the case base are less than a certain threshold, the solution attributes of the
testing case can be modified according to the suggested solution attributes, and the testing
case can be added to the case base to expand the solution attributes. In this work, the case
revise and retain step is untapped in model calculation.
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