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Abstract: With the continuous improvement of machine learning methods, building the interatomic
machine learning potential (MLP) based on the datasets from quantum mechanics calculations has
become an effective technical approach to improving the accuracy of classical molecular dynamics
simulation. The Spectral Neighbor Analysis Potential (SNAP) is one of the most commonly used
machine learning potentials. It uses the bispectrum to encode the local environment of each atom in
the lattice. The hyperparameter jmax controls the mapping complexity and precision between the
local environment and the bispectrum descriptor. As the hyperparameter jmax increases, the descrip-
tion will become more accurate, but the number of parameters in the bispectrum descriptor will
increase dramatically, increasing the computational complexity. In order to reduce the computational
complexity without losing the computational accuracy, this paper proposes a two-level ensemble
feature selection method (EFS) for a bispectrum descriptor, combining the perturbation method and
the feature selector ensemble strategy. Based on the proposed method, the feature subset is selected
from the original dataset of the bispectrum descriptor for building the dimension-reduced MLP. As
a method application and validation, the data of Fe, Ni, Cu, Li, Mo, Si, and Ge metal elements are
used to train the linear regression model based on SNAP for predicting these metals’ atomic energies
and forces them to evaluate the performance of the feature subsets. The experimental results show
that, compared to the features of SNAP and qSNAP, the training complexity improvement of our EFS
method on the qSNAP feature is more effective than SNAP. Compared with the existing methods,
when the feature subset size is 0.7 times that of the original features, the proposed EFS method based
on the SSWRP ensemble strategy can achieve the best performance in terms of stability, achieving an
average stability of 0.94 across all datasets. The training complexity of the linear regression model is
reduced by about half, and the prediction complexity is reduced by about 30%.

Keywords: machine learning potential; ensemble learning; feature select; descriptors

1. Introduction

In recent years, machine learning potential (MLP) [1–4] has been widely utilized in the
fields of physics, chemistry, and materials science, and has gradually taken the place of the
computational model paradigm. [5,6]. Instead of the complex mathematical model in the
empirical potential function, MLP uses machine learning methods to establish the mapping
relationship between material structure and properties. MLP has an accuracy close to
density functional theory (DFT) and enables large-scale molecular dynamic simulations. It
has made many breakthroughs in predicting the structure and evolution process of different
elements [7,8]. The conventional calculation process of MLP can be divided into three
steps [9,10]: Firstly, the local environment of atoms is encoded into atomic feature vectors
using descriptors; secondly, the atomic feature vector is mapped to atomic energy using a
regression model. Finally, the total energy of the structure is obtained by accumulating the
atomic energy. Descriptors are key to establishing the effective machine learning potential.
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At present, a variety of descriptors have been proposed, such as the Atom-Centered
Symmetry Functions (ACSFs) [11], Smooth Overlap of Atomic Positions (SOAP) [12]
kernel, and the rotational harmonic tensor [13]. Among them, ACSFs are composed of
many functions with different parameters, which can be used for Behler–Parrinello neural
networks [14], but they easily lead to redundancy because of their linear correlation. The
Gaussian approximation potential [15] builds a regression model based on the Gaussian
process and uses the SOAP kernel as the descriptor, which usually contains thousands of
elements and incurs enormous computing costs. The moment tensor potential based on
linear regression was proposed by Shapeev et al., which uses the rotation covariant tensor
to describe the local environment of atoms [16]. The number of rotationally covariant
tensors will sharply increase with the increase in the system size, and the calculation cost
is expensive. The Spectral Neighbor Analysis Potential (SNAP) can be based on linear
regression [17]. The local environment of each atom is characterized by a set of bispectrum
descriptors, but there is a correlation between the descriptors, so it contains redundant
information. The Quadratic Spectral Neighbor Analysis Potential (qSNAP) is a quadratic
model based on SNAP, which contains more bispectrum descriptors and results in a greater
computing complexity than SNAP. In summary, based on these typical descriptors, the
size of the descriptors set is potentially enlarged for better defining the atomic structure,
but at the expense of highly increased computational costs. The data dimension reduction
strategy is an efficient way to reduce the expensive computational complexity caused by
the sharp increase in the number of elements in the descriptor features set.

The high feature dimension of descriptors directly affects the computational complex-
ity of machine learning models. The high-dimensional features of descriptors generally
have the characteristics of sparseness, linear correlation, and redundancy. Reducing redun-
dant information while ensuring its performance is an effective means to reduce computing
costs. Feature selection, as a feature engineering, can be used to reduce redundant features.
The purpose of this paper is to reduce descriptor redundancy using the feature selection
method. That is, the problem of reducing the redundancy of descriptors is transformed
into feature engineering, and the feature selection method is studied. The feature subset of
descriptors that has a high correlation with the atom’s performance is selected for the sub-
sequent prediction model, which efficiently reduces the computational complexity during
the training of the model without losing the prediction performance of the MLP model.

Feature extraction [18] and feature selection [19–21] are the two major techniques for
feature reduction in machine learning. Feature extraction transforms the original feature
space into another one. While feature selection acquires a subset from the original feature
set. A subset of descriptor features set with a high correlation to the target can be chosen
using feature selection, which could lower computing complexity while maintaining the
prediction performance. In general, feature selection methods include the filter, wrapper,
and embedded methods. The filter method is more suitable for high-dimensional data
that selects the optimal subset by calculating the value of the features and sorting them.
The computational performance of filtering methods is much better than the wrapper and
embedded methods. Therefore, this paper studies a descriptor feature selection method
based on the filter method.

Material attribute reduction has used a feature selection strategy. For instance, Xia
Jun Fan et al. [22] conducted an ACSFs feature selection based on the Behler–Parrinello
neural network using the Pearson correlation method. However, the performance of the
feature subset obtained by this method was unstable and is easy to fall into local optimum.
Imablzano et al. used feature selection methods such as the CUR decomposition, the Pear-
son correlation coefficient method, and the farthest point sampling to sparse the training
set [23,24], but this method focuses on selecting training samples to reduce training costs.
Recently, Li Wei et al. [21] applied the two-step feature recursive elimination method to the
feature selection of inorganic magnetic materials, which uses cross-validation to evaluate
the feature performances one by one, with a relatively high computational complexity.
Ensemble learning [25–27] is a machine learning method that uses a series of base learn-
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ers and aggregates the results of each base learner through an appropriate aggregation
strategy to obtain a better performance. The improvement of existing ensemble methods
is also the focus of current research. For example, Ivan Izonin et al. [25,26] improved an
ensemble learner of two general regression neural networks, which used an extended-input
successive geometric transformations model with a neural-like structure. The ensemble
feature selection method combines ensemble learning [28] and feature selection [29] and is
an efficient method that helps to obtain a stable feature subset with a good performance.

The highlights of this paper include:
1. A two-level ensemble feature selection (EFS) method is proposed to reduce the

redundancy of the atomic bispectrum descriptor feature to obtain the feature subset of
descriptors for predicting their energies and force.

2. The Stability Square Weight Rank Product (SSWRP) ensemble strategy is proposed
to enhance the stability of selected feature subset.

3. The data of Fe, Ni, Cu, Li, Mo, Si, and Ge metal elements are used to obtain their
feature sets of the qSNAP bispectrum descriptor, and the linear regression model is used to
predict the atomic energies and force of the feature subset.

The rest of this paper is organized as follows: in Section 2, we introduce bispectrum
and SNAP formalism. In Section 3, a two-level ensemble EFS method based on data
perturbation and function perturbation is introduced, which combines the advantages of
GBDT, RF, and Pearson, enhancing the stability and confidence of the results. In the EFS
method, an ensemble strategy SSWRP is presented to enhance the stability. In Section 4, the
popular SNAP and qSNAP are applied to the EFS method to reduce the feature dimension
of bispectrum descriptors. Six different scenarios are designed to evaluate the prediction
performance and computational complexity of the proposed EFS method. In Section 5 we
discuss the result obtained. In Section 6, our conclusion is given.

2. Bispectrum and SNAP Formalism

The power spectrum [30], the Fourier transform of the autocorrelation function, quan-
tifies how much energy the signal has in each frequency band, which should be invariant
to translations of the signal intuitively. Unfortunately, in computing the spectrum, we lose
all phase information. The bispectrum is a generalization of the power spectrum; the idea
behind the bispectrum is a triple correlation to obtain a border set of invariants through the
coupling of different angular momentum channels [17,31].

In earlier studies, the bispectrum and SNAP formalisms have been extensively dis-
cussed [32,33]. We will only provide a summary of the key concept here: The basic idea of
the bispectrum is to map a 3D local atomic neighbor density into a set of coefficients that
satisfy the invariant properties. The atomic neighbor density around atom i at location r is
expressed as

ρi(r) = δ(r) + ∑
rii′<Rc

fc(rii′)wi′δ(r− rii′), (1)

where wi’ is the dimensionless weight to distinguish the atom types, and i’ denotes a
neighbor atom. The weight is set to be one in this work as only one element is present. The
cutoff function fc(r) ensures that the neighbor atomic density goes smoothly to zero when
the distance rii’ is greater than the cutoff radius Rc.

The angular information in the 3D local density function can be projected onto spher-
ical harmonic functions Yl

m(θ, φ). In the bispectrum approach, the radial component is
converted into a third polar angle, defined by θ0 = θmax

0
r

Rc
. Thus, the density function

can be represented in the 3-sphere (θ, ϕ, θ0) coordinates instead of (θ, ϕ, r). The density
function defined on the 3-sphere can then be expanded using 4D hyperspherical harmonics
as follows:

ρ(r) =
∞

∑
j=0, 1

2 ,...

j

∑
m=−j

j

∑
m′=−j

uj
m,m′U

j
m,m′(θ, φ, θ0), (2)
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where the coefficients uj
m,m′ are obtained as the inner products between the density function

and the basis, given by the following:

uj
m,m′ = U j

m,m′(0, 0, 0) + ∑
rii′<Rc

fc(rii′)wi′U
j
m,m′(θ, φ, θ0). (3)

The bispectrum coefficients Bj1,j2,j can then be obtained via the following equation:

Bj1,j2,j =
j1

∑
m1,m′1=−j1

j2

∑
m2,m′2=−j2

j

∑
m,m′=−j

(
uj

m,m′

)∗
× H

jmm′

j1m1m′1
j2m2m′2

uj1
m1,m′1

uj2
m2,m′2

, (4)

where the constants H

jmm′

j1m1m′1
j2m2m′2

are coupling coefficients and ‖j1 − j2‖ ≤ j ≤ ‖j1 + j2‖,
jmax limits these indices j1, j2, and j.

In the SNAP formula [33], the energy ESNAP and force Fj
SNAP are related to the bispec-

trum coefficients B by the following equations:

ESNAP = β0 + β ·
N

∑
i=1

Bi, (5)

Fj
SNAP = −β ·

N

∑
i=1

∂Bi

∂rj
, (6)

where β0 and the vector β are the coefficients in the linear model, which are fitted by the
DFT data, and ESNAP and FSNAP are associated with the structural bispectral coefficients B
and their derivatives ∂B

∂r .

3. Two-Level Ensemble Feature Selection (EFS) Method of Bispectrum Descriptors

In Figure 1, we present an overview mapping of EFS-qSNAP from its structure and
attributes (energy and force). First, the local environment of atoms in the structure is
mapped to a bispectrum descriptor set, and then the dimension of the bispectrum descriptor
is reduced and the feature subset of the bispectrum descriptor is obtained using ensemble
learning and feature selection. Finally, the training and prediction of the linear regression
model are conducted based on the feature subset obtained.
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Figure 1. The mapping of EFS-qSNAP from crystal structure to its energy and force.

Theoretically, to predict energy and force directly based on a bispectrum, the descriptor
feature set can achieve optimal prediction performance, but the computational complexity
will increase sharply with the increase in descriptor feature dimension. Therefore, this
paper proposes a feature selection method to obtain a subset of descriptors with better per-
formance, simplify the training complexity of the model and reduce the computational cost.
Assume that the number of atoms in a structure is d, and the atoms location information is
{r1, r2, ..., rd}. Map them to the bispectrum descriptor feature set Feai = {fik}, i = 1, ..., d, k = 1,
..., and K, where K is the number of bispectrum descriptor features corresponding to the
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analyzed material, and jmax limits the size of K. In SNAP, KSNAP = (jmax + 1)(jmax + 2)(jmax
+ 3/2)/3; In qSNAP, KqSNAP = KqNAP(KqNAP + 1)/2. The EFS method is used to select
features from Feai, i = 1, ..., and d, to obtain the subset Feai’ = {fik’}, k’ = 1, ..., K’, and K’ < K.
Then, the linear regression model is constructed to obtain the atomic energy {ε(r1), . . . , and
ε(rd)}. Add these energies together to achieve the total energy of structure.

3.1. The Framework of the Two-Level Ensemble Feature Selection Method

Figure 2 shows the framework of the two-level EFS method. The proposed two-
level EFS method fuses the feature weights of different datasets at level 1 and the feature
weights of different feature selectors at level 2. The bootstrap method is used to realize
data perturbation for obtaining different datasets based on the original data. Three kinds of
different feature selectors are constructed as base feature learners. They are GBDT (Gradient
Boosting Decision Tree), RF (Random Forest), and the Pearson correlation coefficient
method. Both GBDT and RF are ensemble models based on a decision tree, but their data
sampling strategies are different. GBDT is based on a boosting framework, which helps to
improve the model prediction performance. Based on the improved bagging framework,
RF randomly samples the input data and features to obtain feature subsets as training data,
which helps to enhance the generalization ability of the model. The Pearson correlation
coefficient method is a measure based on linear correlation. There is no dependency
between these three models. This is a benefit for further improving the generalization
performance of these models and it helps to enhance the stability of the selected features.
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Firstly, n bootstrap datasets D1~Dn are generated as training data using data pertur-
bation, and then n feature importance sequences Ll

m are obtained using three base feature
selection models, where m = 1, 2, and 3 is the number of the base feature selector, l = 1, ...,
and n. Then, using the idea of function perturbation, a rank product (RP) strategy [28] is
used to fuse the n feature sequences corresponding to all the feature selectors to obtain
the important sequence list Lm containing each feature’s importance. Moreover, in order



Metals 2023, 13, 169 6 of 23

to improve the stability of a selected feature [29,30], the similarity of the feature subsets
corresponding to each feature selection method under different datasets is further used
as a weight. Here, the Stability Square Weight Rank Product (SSWRP) ensemble strategy
is used to give a higher weight value to the feature selector with higher stability. Finally,
according to the final feature importance value, sort the bispectrum descriptor features,
and set the feature subset size parameter γ to obtain the feature subset Feai’ as the input of
the following linear regression model.

3.2. Data Perturbation and Function Perturbation

The bootstrap [34] method is introduced to realize data perturbation to obtain a
stable and effective feature subset of the bispectrum descriptor, (q)SNAP. The bispectrum
descriptor dataset D is taken as the original training set, and the bootstrap method is used
to randomly select 70% of the structures in dataset D to generate n training subsets D1~Dn,
which are, respectively, used as the training data for the three feature selectors. n represents
the index of the training subsets. In this paper, we set n to be 20. Based on the GBDT
model, RF model, and the Pearson correlation coefficient method, the EFS method, which
ensembles linear description and nonlinear description, is proposed, and three feature
selectors 1, 2, and 3 are obtained, respectively. The feature importance analysis is carried out
based on different mechanisms to realize the linear and nonlinear description of features
and obtain more stable feature subsets. During the training of the model, this paper takes
the bispectrum descriptor vector Feai of all the atoms in the analyzed structure as the input
and sets the energy and force of the atomic structure obtained based on DFT, as the true
values y and y_ predict represent the predicted value of each model.

Both GBDT [35–37] and RF [38,39] are ensemble models based on classification and
the regression tree algorithm. This paper uses these two models as basic learners for feature
selection. The basic idea of the feature importance calculation based on the GBDT and
RF model was as follows: firstly, calculate the Gini reduction in the bispectrum descriptor
feature fk corresponding to the analyzed structure in a single decision tree [40], and then
calculate the mean value of the Gini reduction in the bispectrum descriptor feature fk in all
decision trees to obtain the global importance Vfk

of the bispectrum descriptor feature fk in
the model, as shown in Equation (7) below.

Vfk
= ∑t∈T ∑C∈c Vfk ,i,c, (7)

where Vfk ,i,c represents the change of the Root Mean Square Error (RMSE) of the bispectrum
descriptor feature fk in the process of node c splitting in the decision tree i, c represents the
set of all nodes in the decision tree t, and T represents the set of the decision tree in the
ensemble model. After normalization, we can obtain the importance Vfk

′ of feature fk in
selector one and selector two:

Vfk
′ = Vfk

/∑ K
i=1Vfk

. (8)

Base feature selector one: the GBDT model. Set the learning rate of the GBDT model
to be 0.1, the number of base learners of the model to be 100, the maximum depth of the
tree to be five, the minimum number of samples contained by each non-leaf node to be two,
and the minimum number of samples contained by each leaf node to be one.

Base feature selector two: the RF model. Set the number of base learners of the
model to be 1000, the maximum depth of the tree to be five, the minimum number of
samples contained in each non-leaf node to be two, and the minimum number of samples
contained in each leaf node to be one. After training the model, the importance of all the
bispectrum descriptor features of the analyzed material can be calculated according to
Equations (7) and (8).

Base feature selector three: the Pearson correlation coefficient. The Pearson correlation
coefficient [41,42] is usually used to measure the degree of correlation between two vectors,
whose value range is [−1, 1]. If its value is greater than zero, it means that the two
vectors are positively correlated; if its value is less than zero, the two vectors are negatively
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correlated; if its value is equal to zero, there is no correlation between the two vectors. The
Pearson correlation coefficient between the bispectrum descriptor feature fk and the output
variable y is defined as follows:

ρ fky =
Cov( fk, y)√

Var( fk)
√

Var(y)
. (9)

In Equation (9), Var represents the variance, and Cov (fk, y) represents the covariance
of the bispectrum descriptor features fk and y. Normalize the absolute value of the Pearson
correlation coefficient, then we obtain the Pearson correlation between the bispectrum
descriptor feature fk and y, named Pfk

. As Equation (10):

Pfk
=
∣∣∣ρ f y

∣∣∣/∑ fk∈Fea

∣∣∣ρ f y

∣∣∣. (10)

3.3. Two-Level Ensemble Strategy

First-level fusion strategy is used to aggregate the results of the data perturbation and
obtain the feature importance sequence of each base feature selector. In this paper, the RP
strategy is used to aggregate feature importance during data perturbation. For the base
feature selector m, the importance of its feature fk is calculated as follows (11):

R fk ,m =
n

∏
l=1

Rl
fk ,m. (11)

where R fk ,m represents the importance of the bispectrum descriptor feature fk in the base
feature selector m, and Rl

fk ,m represents the importance of the bispectrum descriptor feature
fk in the base feature selector m in the dataset Dl.

Second-level fusion strategy is used to aggregate the results of the function perturba-
tion to obtain the ensemble feature importance of all bispectrum descriptor features. In this
paper, the SSWRP strategy is proposed to aggregate the feature importance sequences L1
to L3. This strategy can make the feature sequences with higher stability Sn have greater
weights. The ensemble importance of features based on the SSWRP strategy is defined in
Equation (12):

R fk
=

3

∏
m=1

(
R fk ,m

)(1−Sm)2

, (12)

R fk
=

3

∏
m=1

(
R fk ,m

)1−Sm
. (13)

where Rfk represents the ensemble importance of the bispectrum descriptor feature fk, and
Sm represents the feature stability of the base feature selector m.

To illustrate the performance of the proposed SSWRP feature importance strategy,
further compare its performance with the existing Stability-Weighted Rank Product (SWRP).
The definition of the SWRP strategy is shown in Equation (13). Comparing Equations (12)
and (13), it can be seen that, when the feature importance and stability of the base feature
selector are equal, the ensemble feature importance obtained by the proposed SSWRP
ensemble strategy in this paper is greater than that of the SWRP [43]. Figure 3 shows the
increasing trend comparison of ensemble importance Rfk with the increasing stability Sm
and R fk ,m, based on the SSWRP and SWRP strategies. Apparently, the ensemble importance
Rfk obtained by the SSWRP is bigger than the SWRP strategy. Furthermore, Figure 4 shows
the comparison of the ensemble importance multiplier obtained using the SSWRP and
SWRP strategies when the feature important is 0.33 in Figure 4a and the stability is 0.75
in Figure 4b. It can be seen that, when the importance or stability of each basic feature
selector is equal, the ensemble importance obtained by the SSWRP is bigger than that
of the SWRP. When the stability of each base feature selector is close to one, the SSWRP
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makes each multiplier close to one too, which effectively avoids the problem of over-
fitting feature selection. The experimental results show that, when the feature importance
of the bispectrum descriptor redundant feature is close to zero, the SSWRP effectively
improves the removal ability of these redundant features and can identify redundant
features more effectively.
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After obtaining the ensemble feature importance Rfk of the bispectrum descriptor, it is
necessary to further determine the size of the feature subset. This paper introduces γ to
measure the size of the feature subset. The relationship between the original feature scale K
and the feature subset scale K′ is as follows (14):

K′ = γK. (14)

where γ is between [0, 1]. We can see that, the value of γ determines the size of the feature
subset. Apparently, the bigger the value of γ, the bigger the size of the feature subset. In
this paper, γ is set as 0.7. If γ is 0.7, it means that 70% of the most important features were
selected to form a feature subset.
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3.4. EFS Method for LR Model Calculation Complexity Analysis
3.4.1. Model Training Complexity Analysis

In the linear regression model Y = XθT [44,45], K represents the feature dimension of
the input matrix X; u represents the samples dimension; and θ represents the coefficient
matrix. The output matrix Y can be expressed in Equation (15). The linear regression
model’s solution can be expressed in Equation (16).

X =


x(0)

x(1)

x(2)

. . .
x(u)

 =


1 1 . . . 1

x(1)0 x(1)1 . . . x(1)K
x(2)0 x(2)1 . . . x(2)K
. . . . . . . . . . . .

x(u)0 x(u)1 . . . x(u)K

, θT =


θ0
θ1
θ2
. . .
θK

, Y =


y(0)

y(1)

y(2)

. . .
y(u)

, (15)

θT =
(

XTX
)−1

XTY. (16)

The calculation complexity of the linear regression model is O(K2(u + K)) based on the
feature dimension K.

In this paper, the EFS method reduces the original K-dimension bispectrum feature
to the K’-dimension. When the number of samples u is far greater than K, the calculation
complexity of the linear regression model on the feature subset is shown in Equation (17):

O(K′2(u + K′)) = O(γ2K2(u + γK) ≈ γ2O(K2(u + K)). (17)

It means that the calculation complexity to train the linear regression model on the
feature subset is γ2O(K2(u + K)).

3.4.2. Model Prediction Complexity Analysis

The formula to predict energy and force based on the linear regression model is shown
in Equation (18):

Y = XθT . (18)

In this paper, the EFS method reduces the original K-dimension bispectrum feature
to the K’-dimension, so the complexity based on the linear regression model is shown in
Equation (19):

O(uK′) = O(γuK) = γO(uK). (19)

The complexity of the model to predict energy and force is γO(uk) based on the feature
dimension K’.

When γ is 0.7, the calculation complexity to train the linear regression model on the
feature subset is 0.49O(K2(u + K)). It indicates that when the size of feature subset γ is set to
be 0.7, the calculation complexity to train the linear regression model will be reduced by
51%, and the complexity of the model to predict energy and force will be reduced by 30%.

3.5. Stability Index and Evaluation Criteria

This paper uses stability [46] to measure the performance of the feature subset obtained
by the feature selection method. Stability is defined in Equation (20):

Sm =
∑ f∈F(ω( f )/n)

|F| . (20)

where Sm represents the stability of the feature selector m, and n represents the number
of feature importance sequences generated; F represents the set of all features and |F|
represents the number of features which appear in F; ω(f ) represents the frequency of
feature f appearing in n importance sequences. For all base feature selectors, the feature
subset size γ is set to be 0.7 to calculate stability Sm.
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Commonly used indicators to measure the regression performance include the RMSE
(Root Mean Square Error), MSE (Mean Square Error), and MAE (Mean Absolute Error),
etc. However, when we use the MSE as a prediction indicator, it is necessary to change
the unit of energy and force. In addition, the MAE is difficult to use to distinguish the
prediction performance in the context of minimizing prediction errors and avoiding outliers
in this paper. After comprehensive consideration, the RMSE was selected as the prediction
indicator in this paper, which is shown in Equation (21):

RMSE =

√√√√ Z

∑
1
(y− y_predict)2/Z. (21)

where y_ predict represents the predicting value of atomic energy or its force of the test
structure, y represents the value of atomic energy or force of the test structure based on
DFT, and Z represents the number of test samples.

4. Experiments and Results Analysis

In this section, the proposed EFS method is used to analyze the performance of
potential function qSNAP, mainly including prediction accuracy analysis, training efficiency
analysis, material parameter prediction, and feature selection stability analysis. We first
introduce the dataset used in this paper.

The experimental environment of this paper is: a 2-way Xeon E5-2620V2 (2.1 GHz/6-core)
processor and a 128 GB (8 * 16 GB) DDR3-1333 MHz-1.35 V low-voltage memory operating
environment. Based on the Lammps molecular dynamics simulation software architecture,
it is implemented using the Python programming language.

4.1. Dataset Preparation

To investigate the applicability of the EFS method in this paper, this paper uses two
types of metal datasets, including the public dataset in the published paper [32] and the
self-built dataset. Table 1 shows the dataset information used in this paper in detail, which
contains three self-built datasets of the Fe element (bcc, fcc, and hcp), and six public datasets
of the Ni, Cu, Li, Mo, Si, and Ge elements. Each of the Fe elements contains 3000 structures
in the training dataset and 1000 structures in the test dataset. The number of structures
in the Ni, Cu, Li, Mo, Si, and Ge training datasets is 263, 243, 241, 194, 194, and 241,
respectively, and the number of structures in the test datasets is 31, 32, 29, 23, 23, and 29,
respectively. The feature dimension is 56 for all elements on SNAP, except for Mo, which is
30. Similarly, the feature dimension is 1509 for all elements on qSNAP, except for Mo, which
is 465. The number of training samples varies from 30,455 to 289,545, depending on the
structure of different metal elements. Accordingly, the number of test samples varies from
3589 to 96,515. The variation range of both the sample number and feature dimension is
large, which can meet the analysis needs of this paper. The public data used in this work are
published as an open source on Github (https://github.com/materialsvirtuallab/mlearn)
accessed on 12 January 2022.

The self-built dataset relates to different crystal structures of the iron element, which
mainly reflects the potential description of the transformation behavior of different struc-
tures based on the EFS feature selection method. This dataset is constructed using the
ab initio molecular dynamics (AIMD) simulation for structure sampling. Based on three
typical crystal structures of iron (bcc, fcc, and hcp), the initial configurations are obtained
by cell expansion and perturbation of cell parameters and then the AIMD are implemented
at 300K. The Schrödinger equation with Kohn–Sham approximate methods is used for
every change of atomic coordinates and configurations in the simulation, to obtain accurate
atomic energies and forces, and thus obtain the self-built dataset of the iron element.

https://github.com/materialsvirtuallab/mlearn
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Table 1. Dataset Information.

Datasets Training
Structure

Testing
Structure jmax

Feature
Dimension (SNAP)

Feature
Dimension (qSNAP)

Training
Sample

Test
Sample

bcc Fe 3000 1000 4 56 1509 146,265 48,755
fcc Fe 3000 1000 4 56 1509 289,545 96,515
hcp Fe 3000 1000 4 56 1509 145,530 48,510

Ni 263 31 4 56 1509 82,523 9505
Cu 243 32 4 56 1509 82,510 9565
Li 241 29 4 56 1509 34,969 3988

Mo 194 23 3 30 465 30,455 3589
Si 194 23 4 56 1509 39,913 4600
Ge 241 29 4 56 1509 42,444 4729

Figure 5 shows the energy vs. volume distribution for the Fe bcc, hcp, and fcc struc-
tures. It can be seen that, the energy shows a decreasing trend as the volume of the structure
increases. Figure 6 shows the energy and volume distribution histograms for the Fe bcc,
hcp, and fcc structures, where Figure 6a is the energy distribution histogram, and Figure 6b
is the volume distribution histogram. Apparently, it is approximately normal distribution
on both energy and volume for the Fe bcc, hcp, and fcc structures. At the same time,
considering the influence of sample size and sample distribution on the performance of the
model, the datasets of different sizes and different distributions are further adopted.
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Figure 5. Energy vs. volume relations for bcc, hcp, and fcc Fe.

From the volume–energy relationship, it can be seen that the self-built dataset only
involves the structures near the ground state of the potential energy surface. There are many
structural samples in the low energy region, among which there are 2750, 3349, and 2418 bcc,
fcc, and hcp structures in the [−8.5, −7.5] energy region, accounting for 68.75%, 83.72%,
and 60.45% of each dataset, respectively. The amount of data in the structural samples
in the high energy region is small; there are only 103 bcc structures in the energy range
of [−4.5, −3.5], which conforms to the sampling characteristics of molecular dynamics at
limited temperature.
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Figure 6. Distribution for bcc, hcp, and fcc Fe. (a) Energy distribution histogram; (b) volume
distribution histogram.

For the public dataset, this paper uses the datasets provided in the literature [2],
which cover six metal elements, namely Ni, Cu, Li, Mo, Si, and Ge. The sample size is
approximately 1/10 of the self-built datasets. On datasets of different sizes, we can analyze
the effect of the sample size and sample distribution on the model’s performance. Despite
the small size of the dataset (fewer than 300), the samples have rich and strong differential
localized atomic features, including crystal ground state structures, strain structures, surface
structures, structures at different temperatures, and defect structures with vacancies, which
further increases the difficulty of feature selection.

4.2. Model Training and Parameter Optimization

The key to SNAP is to train a good linear regression model, in which, the sample
weight is an important hyperparameter that affects the performance of the multivariate
linear model, and it provides different weights to different samples [47]. In this paper, we
set the sample weight of force to be one and set sample weight of energy to be ωe, and its
cost function is as follows:

J =
1

ωe · Senergy + S f orce

ωe

Senergy

∑
1

(
yenergy − y

)2
+

S f orce

∑
1

(
y f orce − y

)2
. (22)

where ωe represents the sample weight of energy; Senergy and Sforce represent the number of
energy samples and force samples, respectively. yenergy and yforce represent the predicted
value, respectively, y represents the true value.

The Bayesian optimization algorithm [48] is used to search for an optimal sample
weight of energy and train the final potential model. The search space for the energy sample
weight is set to be [50, 500], and the number of iterations is set to be 40.

4.3. Prediction Performance Analysis of the EFS Method
4.3.1. Scenario 1: Prediction Performance Comparison between qSNAP and EFS-qSNAP on
Different Metal Datasets

This part mainly presents the RMSE comparison of prediction performance for energy
and force between the EFS-qSNAP and qSNAP features. Here, EFS-qSNAP means the
feature subset qSNAP, which is obtained based on the EFS method, and qSNAP means the
original SNAP or qSNAP feature. Tables 2 and 3 give the RMSE comparison results for the
energy and force.
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Table 2. RMSE comparison of energy between qSNAP and EFS-qSNAP.

Dataset
RMSE of Energies/eV

SNAP EFS-SNAP qSNAP EFS-qSNAP

bcc Fe 0.06 0.06 (0.0%) 0.03 0.03 (0.0%)
fcc Fe 0.22 0.23 (−4.5%) 0.08 0.07 (12.5%)
hcp Fe 0.11 0.11 (0.0%) 0.04 0.04 (0.0%)

Fe (bcc, fcc, and hcp) 0.23 0.25 (−8.7%) 0.10 0.10 (0.0%)
Ni 1.17 1.24 (−6.0%) 1.04 0.97 (6.7%)
Cu 0.87 0.93 (−6.7%) 1.16 1.14 (1.7%)
Li 1.31 1.32 (−0.8%) 0.85 0.86 (+1.2%)

Mo 9.06 9.17 (−1.2%) 3.96 3.94 (0.5%)
Si 8.06 8.14 (−1.0%) 6.28 5.75 (8.4%)
Ge 10.96 9.75 (+11.0%) 10.55 9.24 (12.4%)

Table 3. RMSE comparison of force between qSNAP and EFS-qSNAP.

Dataset
RMSE of Atomic Forces/eV/Å

SNAP EFS-SNAP qSNAP EFS-qSNAP

bcc Fe 0.01 0.01 (0.0%) 0.01 0.01 (0.0%)
fcc Fe 0.17 0.18 (−5.9%) 0.14 0.13 (+7.1%)
hcp Fe 0.03 0.03 (0.0%) 0.02 0.02 (0.0%)

Fe (bcc, fcc, and hcp) 0.13 0.15 (−15.3%) 0.06 0.06 (0.0%)
Ni 0.08 0.08 (0.0%) 0.07 0.06 (+14.3%)
Cu 0.08 0.08 (0.0%) 0.05 0.05 (0.0%)
Li 0.04 0.04 (0.0%) 0.04 0.04 (0.0%)

Mo 0.37 0.40 (−8.1%) 0.33 0.33 (0.0%)
Si 0.34 0.39 (−16.6%) 0.29 0.26 (+10.3%)
Ge 0.29 0.30 (−3.4%) 0.20 0.18 (+10.0%)

As can be seen from Table 2, compared with SNAP, the change of energy RMSE of
EFS-SNAP on 10 datasets is between−8.7% to 11%. The metal element Fe (bcc, fcc, and hcp)
performs the worst. Its RMSE is about 8.7% larger than that of SNAP. The metal element
Ge performs the best. Its RMSE is about 11.0% lower than that of SNAP. On the bcc Fe and
hcp Fe datasets, both the energy and RMSE remain unchanged. In addition, the energy
RMSE of EFS-qSNAP also shows a better performance than qSNAP for most datasets. The
fcc Fe and Ge are 12.5% and 12.4%, respectively, which are the two optimal datasets. The
prediction performance of EFS-qSNAP on bcc Fe, hcp Fe, and Fe (bcc, fcc, and hcp) datasets
remains the same as qSNAP.

Table 3 shows that, the force RMSE of EFS-SNAP varies between −16.6% and 0% on
the 10 datasets, compared to SNAP. For datasets of bcc Fe, Fe hcp, Ni and Cu, the force
RMSE remains the same as SNAP. Fe (bcc, fcc, and hcp) and Si datasets are −15.3% and
−16.6%, respectively, which are the two worst datasets. Similar to energy, EFS-qSNAP
also outperforms qSNAP in terms of force RMSE on most datasets. Especially on the Ni
dataset, the maximum performance improvement is obtained, which is 14.3%. EFS-qSNAP
maintains the same force RMSE as qSNAP on bcc Fe, hcp Fe, Fe (bcc, fcc, and hcp), Cu, Li,
and Mo datasets.

In summary, for energy and force, the EFS-qSNAP shows a better prediction perfor-
mance than the qSNAP on most datasets. Compared with SNAP, the prediction perfor-
mance of EFS-SNAP shows a descending trend on most datasets. The reason for this may
be that the qSNAP feature dimension is 1509 on all datasets, except for Mo, which is 465.
It’s much more than SNAP, which is 56 on all datasets except for Mo, which is 30. This
means that, there is more redundant information in the qSNAP features of these datasets.
Compared to SNAP, feature selection is more suitable for qSNAP features. This achieves a
good conclusion for the next application of material analysis.
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4.3.2. Scenario 2: Prediction Performance Comparison of qSNAP and EFS-qSNAP on Fe
Different Scale Training Structures

Figure 7 shows the RMSE trend comparison of the energy between EFS-qSNAP and
qSNAP as the number of Fe training structure increases on bcc Fe, fcc Fe, hcp Fe, and Fe
(bcc, fcc, and hcp). The training data size increases from 100 to 3000 Fe structures.
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Figure 7. RMSE comparison of energy between EFS-qSNAP and qSNAP, with the number increase in
Fe training structures (a) bcc Fe; (b) fcc Fe; (c) hcp Fe; and (d) bcc, fcc, and hcp Fe.

It can be seen that, as the number of Fe training structures increases, the prediction
performance of SNAP for all Fe datasets hardly changes. Our EFS-SNAP method slightly
improves the prediction performance for fcc Fe and hcp Fe, as shown in Figure 7b,c, while
it degrades for Fe (bcc, fcc, and hcp), as shown in Figure 7d, but the performance changes
for both cases are small. The reason for this may be that the feature dimension of SNAP for
these datasets is 56, it always keeps less than the training samples for these datasets, even
if the training structure is 100. After feature dimension reduction, this condition still meets.
It further verifies that for the SNAP feature, the feature dimension reduction is not helpful
for improving its prediction performance.

The prediction performance of qSNAP gradually improves as the number of sample
training structures increases for these Fe datasets. The reason for this is that, for the qSNAP
features, the number of training samples is even smaller than the feature dimension when
the training structure number is 100, leading to a sharp drop in prediction performance.
When the number of training dataset structures is 300 and the number of samples is close to
the feature dimension of qSNAP, the prediction performance is better than 100. However,
the data still have a certain degree of sparsity. The proposed EFS-qSNAP method has the
best performance on all datasets with different training structures, except when the number
of Fe (bcc, fcc, and hcp) structures is 100. The reason for this is that, with the number
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increase in training dataset structures, the feature dimension of qSNAP is much less than
the training sample number, so the model can be trained efficiently, which is helpful for
maintaining good prediction performance. Our EFS method makes the feature dimension
reduction in qSNAP further alleviate the redundant information, causing an improvement
of the prediction performance.

Therefore, when we execute a high-dimension simulation, the qSNAP feature is more
suitable for large-scale Fe datasets. In addition, our EFS method is more suitable for
high-dimension qSNAP features and dimensionality reduction.

4.3.3. Scenario 3: Prediction Performance Comparison on Different Feature Select Methods

In order to verify the prediction performance of the feature subset selected by the
EFS method, t-test, Lasso, Pearson, GBDT, and RF feature selection methods are used
as benchmarks. The t-test focuses on describing the significance of features, and the
Lasso method focuses on selecting features with multicollinearity. Tables 4–7 show the
RMSE comparisons of energy and force prediction results for our EFS method and these
benchmarks. The feature subset obtained by all methods uses the same size (γ = 0.7) and
the linear regression is used as the prediction model.

Table 4. Energy RMSE comparison between EFS and benchmark methods on SNAP.

Dataset
RMSE of Atomic Energies/eV

t-Test Lasso Pearson RF GBDT EFS

bcc Fe 0.07 0.08 0.07 0.07 0.06 0.06
fcc Fe 0.26 0.25 0.26 0.22 0.22 0.23
hcp Fe 0.12 0.12 0.12 0.11 0.11 0.11

Fe (bcc, fcc, and hcp) 0.28 0.29 0.28 0.26 0.24 0.25
Ni 1.26 1.25 1.25 1.25 1.24 1.24
Cu 0.97 0.95 0.96 0.94 0.93 0.93
Li 1.35 1.35 1.34 1.31 1.32 1.32

Mo 9.17 9.17 9.20 9.21 9.23 9.17
Si 8.16 8.19 8.17 8.16 8.14 8.14
Ge 9.76 10.11 9.78 9.62 9.71 9.45

Table 5. Force RMSE comparison between EFS and benchmark methods on SNAP.

Dataset
RMSE of Atomic Forces/eV/Å

t-Test Lasso Pearson RF GBDT EFS

bcc Fe 0.01 0.01 0.01 0.01 0.01 0.01
fcc Fe 0.19 0.20 0.20 0.18 0.19 0.18
hcp Fe 0.03 0.04 0.03 0.03 0.03 0.03

Fe (bcc, fcc, and hcp) 0.20 0.19 0.18 0.17 0.18 0.16
Ni 0.09 0.09 0.09 0.09 0.08 0.08
Cu 0.10 0.09 0.08 0.09 0.08 0.08
Li 0.04 0.05 0.04 0.04 0.04 0.04

Mo 0.41 0.45 0.43 0.39 0.41 0.40
Si 0.41 0.43 0.42 0.39 0.41 0.39
Ge 0.34 0.33 0.30 0.31 0.33 0.30

Table 4 shows the RMSE comparison of energy for the SNAP potential based on
the EFS and these benchmark methods. It can be seen that, for most datasets, the RMSE
performance based on the feature subset of the EFS method maintains the best result, except
for the sets fcc Fe, Fe (bcc, fcc, and hcp) that exhibit a small decline.

Table 5 shows the RMSE comparison of force for the SNAP potential based on the
EFS and these benchmarks. Apparently, the RMSE performance of force based on the EFS
method still remains the best for all datasets, except for the Mo set, which achieves a RMSE
of 0.4, which slightly decreases compared to the RF method with an RMSE of 0.39.
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Table 6. Energy RMSE comparison between EFS and benchmark methods on qSNAP.

Dataset
RMSE of Atomic Energies/eV

t-Test Lasso Pearson RF GBDT EFS

bcc Fe 0.03 0.04 0.03 0.03 0.03 0.03
fcc Fe 0.09 0.10 0.09 0.08 0.08 0.07
hcp Fe 0.04 0.05 0.04 0.04 0.04 0.04

Fe (bcc, fcc, and hcp) 0.12 0.11 0.12 0.09 0.11 0.10
Ni 1.07 1.11 1.09 1.00 1.01 0.97
Cu 1.18 1.21 0.19 1.14 1.16 1.14
Li 1.03 1.02 1.03 0.89 0.92 0.86

Mo 4.03 4.04 4.04 3.94 4.00 3.94
Si 5.69 5.70 5.66 5.47 5.37 5.45
Ge 9.17 9.19 9.12 8.98 8.91 8.86

Table 7. Force RMSE comparison between EFS and benchmark methods on qSNAP.

RMSE of Atomic Forces/eV/Å

t-Test Lasso Pearson RF GBDT EFS

bcc Fe 0.01 0.01 0.01 0.01 0.01 0.01
fcc Fe 0.15 0.15 0.15 0.13 0.14 0.13
hcp Fe 0.02 0.02 0.02 0.02 0.02 0.02

Fe (bcc, fcc, and hcp) 0.07 0.07 0.07 0.06 0.06 0.06
Ni 0.07 0.08 0.08 0.08 0.06 0.06
Cu 0.07 0.07 0.07 0.06 0.06 0.05
Li 0.05 0.06 0.05 0.04 0.04 0.04

Mo 0.35 0.34 0.35 0.33 0.32 0.33
Si 0.20 0.20 0.17 0.19 0.18 0.18
Ge 0.11 0.12 0.11 0.10 0.10 0.10

Table 6 shows the RMSE comparison of energy for the qSNAP potential based on the
EFS and these benchmarks. Expect for the datasets Fe (bcc, fcc, and hcp) and Si, the EFS
method still provides the best RMSE of energy for all datasets. For the dataset Fe (bcc, fcc,
and hcp), the RMSE of the EFS method is 0.10, which is slightly higher than that of the
RF method, which is 0.09. For the dataset Si, the GBDT method provides the best energy
RMSE of 5.37, but our EFS method achieves a higher energy RMSE of 5.45.

Table 7 shows the force RMSE comparison for qSNAP based on the EFS and these
benchmarks. The RMSE of force obtained by our EFS method is generally at a lower level
than most benchmarks for all datasets, except for datasets Mo and Si. This means that the
force accuracy predicted by our EFS method is the best for most datasets. Therefore, the
feature subset obtained by the EFS method has a better prediction performance than the
single feature selection method in general.

In this scenario, the t-test, Lasso, Pearson, GBDT, and RF are used as benchmark
feature selection methods to illustrate the difference in their prediction performance on
their respective feature subsets. From the above results, it can be seen that the linear
regression model based on the feature subset of the EFS method has the best prediction
performance on most datasets. However, it only slightly improves or remains the same
compared to these baseline methods.

4.3.4. Scenario 4: Comparison of Prediction Performance for Different Feature Subset Sizes

For illustrating the relationship between the feature subset size of the EFS method
and the prediction performance on energy and force, we provide performance change
trends with the increase in the feature subset size. Figure 8 shows the performance trend
curves on these datasets. Here, we only provide the prediction performance on SNAP.
The horizontal axis represents the proportion of the feature subset size to the original
bispectrum descriptor feature set. The vertical axis is the relative RMSE of energy and



Metals 2023, 13, 169 17 of 23

force. Relative RMSE means that the RMSE of each subset size is normalized with respect
to the value at size 1.0. When γ = 1.0, it means that the feature subset size is equal to
the feature dimension of the original bispectrum descriptor, that is, there is no dimension
reduction. When γ = 0.3, it means that the feature subset size after feature selection is only
30% of the original bispectrum descriptor feature set. When γ is in the range of 1.0~0.7, the
energy RMSE on most datasets generally shows a trend of steady change or slow rise. It
indicates that when the feature subset scale is reduced to about 70%, the change in energy
and force prediction performance is not significant. If γ is in the range of 0.7~0.3, the RMSE
of energy and force tends to increase significantly, especially on the Cu, Mo, Si, and hcp Fe
datasets. On the fcc Fe dataset, however, there are different laws. After its energy RMSE
slowly increases with the size of the feature subset in the range of 1.0~0.5, the energy RMSE
becomes smaller and smaller as the size of the feature subset continues to decrease. In
addition, the RMSE corresponding to its force keeps a very gentle increasing trend in this
process. It indicates that fcc Fe may have more serious feature redundancy. It needs to be
verified in future work.
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Figure 8. Trend analysis of the influence of feature subset size on prediction performance. (a) Force
RMSE on Fe (bcc, hcp, and fcc); (b) force RMSE on Ni, Cu, Li, Mo, Si, and and Ge. (c) Energy RMSE
on Fe (bcc, hcp, and fcc); (d) energy RMSE on Ni, Cu, Li, Mo, Si, and Ge.

In summary, when γ is set to be 0.7, the energy and force prediction performance can
be guaranteed, which helps to reduce the computational complexity.
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4.4. Stability and Complexity Analysis of the EFS Method
4.4.1. Stability Analysis
Scenario 5: Stability Comparison between the EFS and Benchmarks

Here, we compare the stability of the EFS method proposed in this paper with five
benchmark feature selection methods, namely the t-test, Lasso, RF, GBDT, and the Pearson
correlation method, respectively. For Fe element, the data of four structures obey normal
distribution. The stability results of the proposed EFS method are close to those of bench-
mark methods. Therefore, only the stability comparisons of the Ni, Cu, Li, Mo, Si, and
Ge datasets are presented here. The feature subset size γ is set to be 0.7, and their feature
stabilities are calculated according to Equation (8).

Table 8 shows the stability S comparison between our EFS method and all benchmarks.
We can see that the stability of our EFS method is more than 0.9 on all six datasets, main-
taining the best result. RP+SWRP is an ensemble learning method, which is based on the
same basic feature selectors as the EFS method but uses RP and SWRP ensemble strategies.
The RP+SWAP method provides the second-best stability on six datasets. Then, the third
is the stability of the Pearson method, which is better than that of the t-test. The Pearson
method only considers the linear correlation between the bispectrum descriptor features
of the input data and the variables to be predicted. If the bispectrum descriptor features
do not obey normal distribution, or the relationship between the bispectrum descriptor
features and variables to be predicted is nonlinear, this method may lead to the failure
of the feature selection. The stability of the t-test is generally between 0.85 and 0.90 on
most datasets, which is less than those of the EFS, RP+SWAP, and Pearson methods. The
reason for this may be that the t-test only considers the significance of features and lacks
the description of data details. The stability of the Lasso method is generally less than 0.87,
which may be related to the regularization parameters of the Lasso method. The stability
of the GBDT and RF methods has a large fluctuation range, and the stability of the GBDT
method is the worst, with an average stability of 0.81, which is between 0.73 and 0.89. The
reason for this may be that there are differences in the training datasets of each base learner,
resulting in unstable feature subsets.

Table 8. Stability comparison between EFS and benchmarks.

Datasets t-Test Lasso
Base Feature Selector

RP+SWRP EFS
RF GBDT Pearson

Ni 0.87 0.87 0.92 0.78 0.84 0.93 0.93
Cu 0.86 0.82 0.86 0.82 0.91 0.93 0.95
Li 0.83 0.86 0.84 0.89 0.90 0.93 0.95

Mo 0.88 0.73 0.79 0.73 0.90 0.89 0.91
Si 0.90 0.78 0.87 0.78 0.90 0.95 0.96
Ge 0.86 0.84 0.86 0.83 0.87 0.96 0.96

Average 0.88 0.82 0.86 0.81 0.89 0.93 0.94

The EFS method proposed in this paper combines the advantages of the three feature
selectors and describes the features more comprehensively from linear and nonlinear
aspects, respectively, making the stability much more than 0.9 on the six datasets, which
reflects that the EFS method proposed in this paper has good stability in feature selection.

Scenario 6: Stability Comparison of the Different Feature Subset Size

In order to illustrate the changing trend of stability with the size of the feature subset,
the Ni, Li, and Ge datasets are selected to show the relationship between them. Figure 9
provides the relationship between stability and feature subset size. The results show that
when the size of the feature subset γ is in the range of 0.1 to 0.3, the stability of the GBDT
method is higher than that of the other benchmark methods, but as γ increases, the stability
of the GBDT method decreases on the three datasets. When the size of the feature subset
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γ is in the range of 0.7–0.9, the RF method has higher stability among the benchmark
methods. The Pearson method has better performances in all stages compared with the
other benchmark methods for the Li and Ge datasets. Compared with the RP+ SWRP
method, the EFS method in this paper has a larger stability when γ is in the range of 0.1 to
0.5, and so there is an obvious stability improvement. When γ is in the range of 0.6 to 1.0,
the stability of the RP+SWRP method and the EFS method is very close on the Ni and Ge
datasets, while the stability of the EFS method is better than that of the RP+SWRP method
on the Li dataset.
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Figure 9. The relationship between stability and feature subset size.

In summary, compared with all the benchmark methods, the stability of the EFS
method always remains at the maximum when the size of the feature subset γ is larger than
0.5 for the three datasets. The reason for this may be that the EFS is an ensemble method,
which combines the advantages of three base feature selection methods. This enables our
EFS method to have a greater feature subset selection ability.

4.4.2. Performance Analysis on the Computational Complexity of the EFS Method

The influence of the EFS feature selection method on the qSNAP model training time is
given in Table 9. Where the qSNAP column represents the training time of the model when
building a linear regression potential model based on the original bispectrum descriptor
feature. The EFS-qSNAP column represents the training time for constructing the linear
regression prediction model based on the bispectrum descriptor feature subset obtained by
the proposed EFS method.

Table 9. Computational complexity comparison between qSNAP and EFS-qSNAP.

Dataset
Model Training Time/s

SNAP EFS-SNAP qSNAP EFS-qSNAP

bcc Fe 1.94 1.39 (28.35%) 32.92 18.73 (43.10%)
fcc Fe 2.03 1.55 (23.65%) 41.52 26.95 (35.09%)
hcp Fe 1.89 1.36 (28.04%) 31.18 19.21 (38.39%)

Fe (bcc, fcc, and hcp) 7.62 5.12 (32.81%) 167.42 91.67 (45.25%)
Ni 0.35 0.22 (37.14%) 2.99 1.60 (46.49%)
Cu 0.30 0.15 (50.00%) 3.87 2.35 (39.28%)
Li 0.17 0.11 (35.29%) 1.72 0.97 (43.60%)

Mo 0.08 0.05 (37.50%) 1.98 1.16 (41.41%)
Si 0.10 0.06 (40.00%) 7.13 3.54 (50.35%)
Ge 0.15 0.12 (20.00%) 2.08 1.09 (47.60%)

Average
improvement - 33.28% - 43.06%

The model training time based on the proposed EFS method is significantly reduced for
all datasets. Compared with SNAP, the model training time of the EFS-SNAP feature subset



Metals 2023, 13, 169 20 of 23

is reduced by 33.28% on average on all datasets. Especially for the Cu dataset, the training
time of the model based on the EFS-SNAP feature subset is reduced by 50% compared
with the SNAP feature subset. For the Si dataset, its model training time on the EFS-SNAP
feature subset is 40% shorter than for SNAP. The smallest improvement is for the Ge dataset,
whose model training time on the EFS-SNAP feature subset is reduced by 20% compared
to SNAP.

Compared with qSNAP, the EFS-qSNAP feature subset reduces the model training
time by 43.06% on average on all datasets. By comparing the reduction in training time
of all datasets, fcc Fe is the least, which is reduced by 35.09%. The training time of the
Si dataset was reduced the most, and its model training time on the EFS-qSNAP feature
subset was reduced by 50.35%.

In summary, compared to the features of SNAP and qSNAP, the training complexity
improvement of our EFS method on the qSNAP feature is more effective than SNAP.
The reason may be that the dimension of the qSNAP feature is much higher than SNAP.
Our EFS method is more suitable for feature reduction in high dimension bispectrum
descriptor features.

5. Discussion

Feature selection is an effective method to obtain a feature subset by reducing redun-
dant information, which is beneficial for further constructing prediction models with lower
computational complexity. It is suitable for optimizing high-dimensional MLP in molecular
dynamics simulations. For this purpose, a two-level ensemble feature selection method
is proposed, and the above experiments are executed. The t-test, Lasso, RF, GBDT, and
Pearson correlation feature selection methods and RP+ SWRP ensemble strategy are used
in different scenarios as benchmarks. Based on the experimental results, we propose the
following discussion, which can be used as a reference in subsequent research.

(1) In this paper, stability is used as a factor for obtaining the ensemble feature impor-
tance. For obtaining the feature subset size with good stability, we give the changing trend
of stability with the size of the feature subset, on the Ni, Li, and Ge datasets, and compare
the stability difference of the EFS method with the benchmark methods. The experimental
results show that, compared with all the benchmark methods, the EFS method has the
largest stability when the feature subset γ is greater than 0.5, which is conducive to the
better feature subset selection ability of the EFS method. The stability of our EFS method is
more than 0.9 on all six datasets when the feature subset γ is set to be 0.7, maintaining the
best results compared with all the benchmark methods.

(2) In order to illustrate the relationship between the feature subset size of the EFS
method and the prediction performance of energy and force, the trend of performance based
on EFS-SNAP with the feature subset size increase is discussed. It can be seen that, when
the feature subset size γ is in the range of 0.7 to 1.0, the prediction performance of energy
and force on most datasets shows a trend of little change. It indicates that we can reduce the
feature subset size to around 70%, which can reduce the computational complexity while
guaranteeing the energy and force prediction performance. Further experimental results
show that, on average, the model training time of the EFS-SNAP feature subset is reduced
by 33.28%, and the model training time of the EFS-qSNAP feature subset is reduced by
43.06% on all datasets. Generally speaking, the EFS method can effectively reduce the
training complexity of SNAP and qSNAP, and the training complexity improvement of the
EFS method on the qSNAP features is more effective than the SNAP method.

(3) For illustrating the prediction performance of the EFS method, the SNAP and
qSNAP bispectrum descriptors are used in the paper. The experimental results show that,
for energy and force, EFS-qSNAP shows a better prediction performance than qSNAP on
most datasets. Compared with SNAP, the prediction performance of EFS-SNAP shows
a descending trend on most datasets. It means that there is more redundant information
in the qSNAP features of these datasets. Compared to SNAP, feature selection is more
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suitable for the qSNAP features. This achieves a good conclusion for the next application
of material analysis.

(4) The prediction performance of our EFS method on a different number of Fe training
structures is evaluated on the SNAP and qSNAP bispectrum descriptors. The results show
that, with the increase in Fe training structures, the prediction performance of SNAP is
almost unchanged for all Fe datasets. The prediction performance of our EFS-SNAP method
is similar to that of SNAP, which means that there is almost no redundant information.
Again, it is verified that for the SNAP features, feature dimensionality reduction does
not help improve their prediction performance. In summary, compared to the feature of
SNAP and qSNAP, the training complexity improvement of our EFS method on the qSNAP
feature is more effective than SNAP. The reason for this may be that the dimension of the
qSNAP feature is much higher than for SNAP. Our EFS method is more suitable for the
feature reduction in the high dimension bispectrum descriptor feature.

(5) In order to illustrate the predictive performance of the EFS method compared
to all benchmark methods from a feature selection perspective, we further present the
predictive performance of our EFS method and other benchmark methods to SNAP. The
experimental results show that, for energy and force, the EFS method shows a better
prediction performance than all the benchmarks method on most datasets. This shows
that the EFS method is more efficient in evaluating the bispectrum features and the feature
subset obtained by this method can predict the energy and force more accurately.

6. Conclusions

This paper proposes a two-level ensemble feature selection method for effectively
reducing the redundancy of the bispectrum descriptor feature based on the perspective
of feature engineering. The idea of data perturbation and function perturbation is firstly
introduced, and the GBDT model, RF model, and Pearson correlation coefficient method are
used as the base feature selectors. A stability-weighted square sequence product aggregate
strategy (SSWRP) is proposed for the ensemble feature selector, which is considered an
important part of the feature selection method. The proposed ensemble bispectrum de-
scriptor feature select method has excellent diversity and high stability, which can achieve
the purpose of effective feature selection for the bispectrum descriptor, reduce information
redundancy, and provide input data with lower dimensions for the prediction model. The
experimental results show that the proposed EFS method can perform feature selection
effectively and train the potential function model with comparable performance. Moreover,
the proposed method can achieve effective feature reduction using the SNAP and qSNAP
analysis without losing prediction accuracy. This indicates that the proposed EFS method
can guarantee the material parameter prediction performance and is beneficial for reducing
the computational complexity of the subsequent material simulation. When the feature
subset size is 0.7 times that of the original features, the proposed EFS method based on the
SSWRP ensemble strategy can achieve the best performance in terms of stability, achiev-
ing an average stability of 0.94 across all datasets. The training complexity of the linear
regression model is reduced by about half, and the prediction complexity is reduced by
about 30%. It should be noted that this paper only provides a preliminary explanation of
the importance and correlation of the bispectrum descriptor to predict variables, and there
is still a lack of an in-depth exploration of their relationship. The EFS lacks a theoretical
derivation based on mathematics, and its practicability needs to be verified by a simulation
of its physical processes.
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