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Abstract: The accurate calibration of material parameters in crystal plasticity models is essential for
applying crystal plasticity (CP) simulations. Identifying these parameters usually requires unfeasible
single-crystal experiments or expensive time costs due to the use of traditional genetic algorithm
(GA) optimization. This study proposed an efficient and interpretable method for calibrating the
constitutive parameters with macroscopic mechanical tests. This approach utilized the Bayesian
neural network (BNN)-based surrogate-assisted GA (SGA) optimization method to identify a group of
constitutive parameters that can reproduce the experimental stress–strain curve and crystallographic
orientation by crystal plasticity simulation. The proposed approach was performed on the calibration
of typical high-entropy alloy material parameters in two different CP models. The use of the surrogate
model reduces the call count of simulation in the parameter searching process and speeds up the
calibration significantly. With the help of infill sampling, the accuracy of this optimization method is
consistent with the CP simulation and not limited by the accuracy of the surrogate model. Another
merit of this method is that the pattern that the BNN surrogate found in the model parameters can
be interpreted with its integrated gradients, which helps us to understand the relationship between
constitutive parameters and the output mechanical response. The interpretation of BNN can guide
further experiment design to decouple particular parameters and add constraints provided by the
attached experiment or prior knowledge.

Keywords: interpretable calibration; crystal plasticity; Bayesian surrogate; genetic algorithm;
Bayesian neural network

1. Introduction

Under the impetus of digitalization and intellectualization tide of manufacturing,
advanced simulation technology is required to accurately predict the manufacturing pro-
cess and map the forming history to the product’s performance [1]. The crystal plasticity
(CP) model utilizes the knowledge gained from experimental and theoretical studies of
deformation physics of single crystals and polycrystals to predict anisotropic deformation
behavior in a natural way. These models give insight into the evolution of crystallographic
texture, dislocation density, stored mechanical energy, deformation-driven athermal trans-
formations (e.g., twinning), etc.

The constitutive laws in the CP model, including the phenomenological model and
the physics-based model, involve a set of adjustable parameters to provide the physics of
the material behavior. The model accuracy strongly depends on the selected value of the
adjustable material parameters. Therefore, the identification of material parameters is an
essential prerequisite for the high predictive ability of the CP model. Theoretically, most of
the constitutive parameters can be obtained from the mechanical response of a single crystal.
However, these experiments are often unfeasible as typical engineering materials are often
available as polycrystals, and a special method is required to probe into the mechanical
behavior of single grains. One approach often used for polycrystals is a nanoindentation
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experiment. Another strategy involves the use of a coupled experimental–numerical
procedure [2]. Since significant experimental effort is needed in these methods, identifying
CP constitutive parameters via the inverse optimization methods from macroscopic stress–
strain data determined by specific tensile or compression testing is generally preferred [3,4].

The procedure for the calibration of constitutive parameters with a macroscopic
mechanical response is equivalent to solving the inverse problem of the CP model. The
physic-based CP simulations, especially those of a full-field nature, often take minutes or
hours to run [5]. Such optimization methods often require hundreds of simulations on
different sets of parameters and take days or weeks to precisely calibrate the CP model.
Thus, developing a computationally efficient and robust methodology to identify the
constitutive parameters is significant for industry digitalization [6].

Many studies have employed gradient-based optimization methods for this pur-
pose [4,7]. However, the main drawback of the gradient-based methods is that they are
sensitive to the initial point, and the results are often inconsistent [8] since the constitutive
laws are constructed with highly nonlinear equations, especially when encountering the
micromechanics of complex engineering materials with multiple deformation mechanisms.
Moreover, the gradient of the CP model is not always accessible. The reasons mentioned
above limit the application of the gradient method in the parameter calibration of the
CP model.

Another approach takes advantage of direct search methods, such as genetic algo-
rithms (GAs) [9], searching the space by randomly generating solutions and providing
new solutions based on the evaluation of the objective functions at the sampled points. As
they negate the need for evaluating the gradient of the objective, direct search methods
are able to optimize complex functions. These methods are capable of searching for the
global optimum and do not have those drawbacks present in the gradient-based methods.
However, these improvements come at the cost of computation efficiency [10].

The efficiency of GAs in CP parameter calibration is directly related to the call count
of the CP simulation, which has the highest computational cost in fitness value calculation
in the GA optimization process. Due to the expensive computational cost of numerical
simulations using the CP model, it is rarely feasible to search a design space completely
using simulation. The cost of the routine use of GAs can be cut down with the help of
a surrogate model. So far, many studies have built surrogate models for the CP model
to predict the physical response of a typical material, e.g., the texture evolution [11,12],
dislocation density evolution [13], and stress distribution [14].

Data-based static models have been widely utilized to build the surrogate model for time-
costing simulations in the optimization process [15,16]. In the research of Sedighiani et al. [6],
a polynomial was fitted to approximate the constitutive response with the help of response
surface methodology and using a GA to search the response surface in place of CP simu-
lation. An artificial neural network (ANN)-based surrogate for CP simulation [17] is also
a feasible approach to accelerating the process of GA searching. Data-based surrogate
models, after training on a sufficient number of samples, can make an accurate prediction of
the mechanical response much faster than their original counterpart. The surrogate-assisted
GA (SGA) utilizes the surrogate model in fitness calculation and reduces the overall compu-
tational cost in the optimization procedure. Though some simulations are required to train
the data-based surrogate model, the computational cost is still considered to be significantly
lower than the cost of running the simulations required for GA searching.

However, the accuracy of the aforementioned surrogate-based method for CP parame-
ter optimization is limited by the surrogate models. The optimization is completely based
on the prediction of surrogate models after they are trained once on the initial samples
provided by CP simulation. Additionally, this random initial sampling in the parameter
space is redundant. It performs the same density of sampling at the promising point and
around the optimum. In this study, a Bayesian neural network (BNN)-based surrogate is
employed, and the infill sampling criteria (ISC) are utilized to allocate new sample points as
well as to iteratively update the BNN surrogate during the optimization process. Moreover,
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the pattern learned by the BNN surrogate is further studied, providing insight into the
calibration process thanks to the integrated gradients method. The remainder of this article
is organized as follows. The next section details a BNN SGA with Expected Improvement
(EI) as the ISC. In Sections 3 and 4, we apply this methodology to calibrate the parameters
of high-entropy alloys for phenomenological CP and a dislocation-density-based CP model
with an experimentally determined mechanical response, based on which the impact of the
ISC is discussed and the calibration result is analyzed with the information provided by
the integrated gradients of the BNN surrogate.

2. Methodology

In this section, a novel approach is proposed to identify constitutive parameters of
CP laws from macroscopic stress–strain curves using a BNN SGA. The construction of the
BNN surrogate model is introduced, and the BNN SGA using EI as the infill sampling
criteria in the acquisition process is detailed. The workflow of this method is presented in
Figure 1. The experiment data are resampled and normalized to provide access to fitness
for CP simulation and surrogate-predicted mechanical responses. The optimization started
with a group of random initialized constitutive parameters, set as the initial population
in the GA, which are optimized during iteration. After the surrogate model is trained on
the data provided by CP simulation, the acquisition process is adopted to generate new
solutions as well as assign a surrogate model for those solutions that are not expected to see
improvement, and their fitness value is calculated with the surrogate model output in the
next iteration. When the stop criteria of the optimization process are met, the best solution
corresponding to the optimal constitutive parameters is output. The detailed optimization
process of the BNN SGA is described in the following sections.
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2.1. Optimization Algorithm

GA is a powerful optimization method that is able to search for the global optimum
rather than getting stuck in local optimums [18], and is thus considered an alternative
for optimization with a nonlinear objective function. It is based on a randomized search
technique that imitates the principles of natural selection and evolution processes. In this
study, a GA is employed to optimize the input CP parameters until the difference between
the simulation-predicted mechanical response and experimentally determined response
is minimized. PyGAD v2.16.0 (University of Ottawa, Ottawa, ON, Canada) [19], an open-
source Python library for GAs, is utilized and modified to perform the multi-processing
surrogate-assisted GA optimization in our implementation.
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A GA consists of a series of different steps. As shown in Figure 2, the first generation
is generated by uniform sampling during initialization, which provides training data
for the first update of the surrogate model. In the selection process, the fitness value is
calculated for each solution, based on which the parents are selected to produce the next
generation. The genes in the offspring solutions are then modified with mutation and
crossover operators. In this study, the mutation is implemented by randomly adding value
to the genes, and the crossover operator swaps the genes of the parents after the crossover
point. The selection, crossover, and mutation processes are iteratively performed on the
new generation until the global optimum is found.
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The experimentally measured stress–strain curve is set as the target response, and an
objective function is introduced based on the stress–strain curve. The root mean squared
error (RMSE) is used to measure the difference between experimental and simulated results
at the selected sample points, and is set as the objective function of the optimization:

dl(θ) =

√√√√ 1
N

N

∑
i=1

(
σ̂i(θ)− σi

σmax

)2
(1)

where σi is the experimentally measured stress at the ith strain sample point, σmax is
the maximum value of the measured stress, σ̂i(θ) is the predicted stress from the BNN
surrogate or CP simulation for a group of constitutive parameters θ at the ith strain sample
point, N is the number of sample points, and dl(θ) denotes the relative difference between
two curves under load condition l for the parameters. The reciprocal of the objective
function is used to calculate the final fitness of solutions:

fitness =
1

dl(θ)
(2)

In elitist selection process, a few of the best solutions with the highest fitness are
preserved and passed on to the next generation without modifying their genes. Elitist
selection maintains the elite solutions and guarantees that achievement in fitness can be
passed from generation to generation. The parameters for GA optimization are listed In
Table 1.



Metals 2023, 13, 166 5 of 25

Table 1. The parameters for GA optimization.

Parameter Value

Population size 32
Number of parents 16
Number of elitists 4

Mutation rate 0.1
Mutation type Adding random value
Crossover rate 0.2
Crossover type Single-point crossover

Number of parallel processing 12

The calculation of fitness can be implemented as parallel processing since the solutions
are independent of each other during that process. However, in most GA applications,
parallel processing does not reduce the computational cost compared to regular processing
since multi-processing usually has a heavy computational cost. If the cost of assigning
multi-processing is negligible compared to that of the fitness calculation, the overall run
time can be significantly reduced by using multi-processing. In the context of CP model
calibration, CP simulation always has a much higher computational cost than creating
multi-processing. The calibration cost could then be slashed by using multi-processing.

2.2. BNN-Based Surrogate Model

Surrogate models work as a replacement for the expensive simulation in optimization.
Previous studies suggested using an ANN and its variants to build the surrogate for
the CP model [11,12]. Once sufficiently trained on the samples, the ANNs can obtain
high accuracy in prediction, and this process runs very fast owing to the efficient matrix
operation. Moreover, ANNs allow for incremental learning, and the model can be refined
after being trained on new samples during optimization.

ANNs are proposed as a tool for classification and regression and do not provide
uncertainty information around their predictions [20]. Since EI computation requires un-
certainty information, coupling an ordinary ANN in the SGA method with EI as infill
sampling criteria is not feasible. Meanwhile, the BNN could provide the posterior proba-
bility distribution p(W|Xtrain, ytrain) over the weights [21], rather than the direct value of
weights, and thus provides the uncertainty for EI calculation. Though using the traditional
BNN is rarely feasible due to its expensive computational cost in training, this can be solved
by using the MCDropout-based BNN.

The MCDropout method allows efficient BNN training by applying the Dropout
technique in the training for the original ANN. Dropout is a regularization technique used
in ANN training to reduce the flexibility of ANNs and prevent them from overfitting [22].
It is proven that adding dropout layers before the weight layer in a neural network is
mathematically an approximation to the deep Gaussian process [20] i.e., the BNN. For the
MCDropout-based BNN, the distribution of predicted parameters can be accessed with
Monte Carlo (MC). estimation, i.e., performing stochastic forward propagation through the
network for certain times and then calculating the average and variance of the prediction.

In this study, the MCDropout-based BNN is utilized as the surrogate model to predict
the stress–strain curve for the input constitutive parameters. The BNN provides the
distribution of the predicted objective value to calculate EI in the acquisition process. The
neural network is first trained on the sample provided by CP simulation in the initial
generation and then updated on the sample points with the highest EI and assigned to
perform CP simulation in subsequent generations’ acquisition process.

2.2.1. Hyperparameters and Structure of BNN

The BNN utilized in this study consists of two parts, one from the input layer to output
layer 1, and another from output layer 1 to output layer 2. The BNN is trained stepwise,
instead of directly predicting the objective. It is trained to first predict the stress–strain curve
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in the form of feature parameters, and then to predict the objective from the curve features
(Figure 3). This middle layer makes the output feature accessible for the surrogate model
and allows for the extraction of BNN learned pattern. The first part, denoted as BNN1, is
trained to capture the relationship between the stress–strain curve and the CP parameters,
and works as the surrogate for CP simulation. The latter part, denoted as BNN2, predicts
the objective dk(θ) distribution with the help of MCDropout. Both parts of the network
have three dense layers, making them capable of capturing nonlinear relationships. The
major hyperparameters and structure of the BNN are listed in Table 2.
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Table 2. Hyperparameters and structure of BNN.

Layers Cell Number Activation Notes

Input layer - - Normalized CP parameter θ
Dense layer 1 32 ReLU -
Dense layer 2 16 ReLU -

Output layer 1 - Sigmoid Output the curve features
Dense layer 3 16 ReLU -

Dropout layer 1 16 - Dropout rate = 0.2
Dense layer 4 8 ReLU -

Dropout layer 2 8 - Dropout rate = 0.2
Output layer 2 1 Sigmoid Output the objective dl(θ)

Activation functions transform the output of weight, typically nonlinearly, enabling
the network to learn nonlinear functions. ReLU stands for the Rectified Linear Units, which
is introduced in [23]. The dropout rate controls the percent of closed cells in the forward
propagation. It should be mentioned that the BNN inputs (i.e., the CP parameters) have
been normalized, and the output stress–strain curve is represented by a certain number of
features. These transformations on the data extend the BNN to fit the data with different
scales and units.

2.2.2. Data Processing

The activation for the output layer of BNN is the sigmoid function, which has a range
of (0,1). Hence, the output must be rescaled or transformed to reproduce the physical
quantities. Though there are no exact bounds for the input data, rescaling is performed
on the input to speed up and stabilize the training process. If the BNN input vector has
various scales in different dimensions, the gradient descent method for BNN training
cannot effectively optimize the parameters in the BNN. In typical BNN applications, the
data are normalized before training, or batch normalization (BN) [24] is added before the
activation in the first layer.
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In this study, input CP parameters were rescaled before being fed into the input layer,
and the features of the stress–strain curve were extracted as the training target for output
layer 1. The objective value was dl(θ), which has already been normalized and can be
directly set as the target for output layer 2. To normalize the CP parameters with different
units, the CP parameters were rescaled into a range of (0, 1) using the min–max scaler:

θi =
θi − θi min

θi max − θi min
(3)

where θi is the lth normalized CP parameter, θi is the ith original CP parameter, and
θi min and θi max are the manually estimated lower and upper bound for the ith CP parame-
ter, respectively. The normalized CP parameter θ is utilized as the input for BNN1.

The stress–strain value (σ, ε) is a high-dimensional datum. It would be unfeasible for
the BNN-based surrogate model to predict the stress at a massive number of sample points
with a few input parameters. Simply reducing the number of sample points can lessen
the difficulty of training the surrogate model, but it may fail to capture the features of the
stress–strain curve. To overcome the “dimension curse”, the dimension of stress–strain
curve data should be reduced before feeding it into the surrogate model. As shown in
Figure 3, a prior model, the linear-elastic exponential-plastic model fp, is used to describe
the stress–strain curve:

σi = fp
(
εi, E1, εb, εy, np

)
=


E1(εi + εb)

np
(
εi ≥ εy

)
E2εi

(
εi < εy

)
E2εy = E1

(
εb + εy

)np

(4)

where σi, εi is the ith stress and strain sample value, respectively, εy is the yield strain, εb
is the bias for the exponential part, and np is the exponent, E1 is the variable controlling
the value of yield stress, and E2 is the elastic modulus. The parameter E2 can be solved
thanks to the continuity of the curve, and there are four independent feature parameters(

E1, εb, εy, np
)

describing the stress–strain curve.
The feature parameters

(
E1, εb, εp, np

)
have different scales and cannot be directly

fitted by the BNN. To enable the BNN to predict feature parameters, the stress–strain should
first be normalized before fitting the linear-elastic exponential-plastic model:

σ =
σ

σmax
(5)

ε =
ε

εmax
(6)

where σ, ε are the normalized values of σ, ε, respectively, which have a range of (0, 1).
σmax, εmax are the maximum stress and strain value, respectively, of the experimental
measured stress–strain curve. The normalized stress and strain values are used to calculate
the normalized feature parameters of the linear-elastic exponential-plastic model f norm

p .

σi = f norm
p (εi, k) =

{
k2(εi + k1)

k3 (εi ≥ k4)
k2
k4
(k4 + k1)

k3 εi (εi < k4)
(7)

where k1, k2, k3, k4 are the normalized curve features, whose range falls within (0, 1). These
feature parameters can be calculated by the gradient method or stochastic optimization, e.g.,
difference evolution and the Newton-CG algorithm. The mean squared error is adopted as
the objective for the four feature parameters in the linear-elastic exponential-plastic model
to fit the stress–strain curve:

k = arg min
k

{
MSE

(
σ − f norm

p (ε, k)
)}

(8)
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As shown by the calibration result in Section 4, the linear-elastic exponential-plastic
model is flexible enough to fit a variety of stress–strain curves obtained from experiments
and simulations with high accuracy. Moreover, the computational cost of fitting the linear-
elastic exponential-plastic model is negligible compared to that of CP simulation.

The BNN1 is trained to correlate the parameter of the crystal plasticity model and
these four featured parameters rather than the discrete stress–strain points. It reduces the
stress–strain data from high-dimensional data (one sample point corresponds to one dimen-
sion) to several featured parameters ranging from 0 to 1. This is beneficial for the training
of BNN. In addition, the analytical equation helps us to interpret the relationship between
the mechanical response and parameters of the CP model by using integrated gradients.
It gives specific meanings for the output of the BNN, which enables the interpretation of
the calibration.

2.2.3. Implementation and Training of the Surrogate Model

The workflow of the BNN surrogate is presented in Figure 4. In the process of
prediction, the first part of the BNN accepts normalized parameters as input and outputs
the curve feature vector:

ŷ1 = kpred = BNN1(x1) (9)

where x1 = θ is the input for BNN1, kpred is the feature vector predicted by BNN1, equals
to ŷ1, the output of BNN1.
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The target feature parameters y1 used for training BNN1 are calculated from the
simulation output stress by optimizing feature parameters:

y1 = ksim = arg min
k

{
MSE

(
σsim − f norm

p (ε, k)
)}

(10)

where σsim is the normalized computational von Mises stress, and ksim is the feature vector
calculated from the simulation result.

For the second part of the BNN, the predicted feature parameters ŷ1 are accepted as
input, and the RSME of the curve features defined in Equation (1) is set as the target output
for BNN2. The BNN2 is trained with Dropout method, whose predict value and confidence
is obtained by MC estimation.

ŷ2(x2) = E[BNN2(x2)] (11)

ŝ2(x2) =
√

D[BNN2(x2)] (12)
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where x2 = ŷ1 is the input for BNN2, ŷ2 is the objective predicted by BNN2, and ŝ2 is the
standard deviation around the prediction. E and D represent the expectation and variance
estimation, respectively. The Monte Carlo sample number NMC is set to 40 in this study.

The target objective y2 for training BNN2 is calculated from the simulation output
stress by:

y2 = dl
sim(θ) (13)

The training samples (x 1, y1) and (x 2, y2) provided by simulation are used to train
the BNN surrogate by minimizing the loss between y1, ŷ1 and y2, ŷ2. The mean square error
(MSE) between the prediction and target value is chosen as the loss function for both BNN1
and BNN2,

LMSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (14)

where n is the number of output features, and ŷi and yi are the BNN output and target
value, respectively. The BNN cost for the current batch of training data is defined as the
mean loss of all the samples:

J =
1
m

m

∑
i=1
LMSE (15)

where J is the cost function, and m is the size of the training batch. The BNN can be
incrementally updated with a new batch of data. Incremental learning negates the need
for repeated training of BNN on all the samples, significantly reducing the training time.
Using a batch to represent all the samples and training on it could cause gradient instability.
This problem can be reduced by tuning the batch size and training epochs.

Adaptive Moment Estimation (Adam) [25] is utilized to optimize the training parame-
ters of the BNN. The training parameters are listed in Table 3.

Table 3. The hyperparameters for BNN training.

Hyperparameters Value

Batch size 16
Training epochs 40

Learning rate 0.002
Momentum decay β1 0.9

Scaling decay β2 0.999

Another data-based surrogate utilized in this study is the Lookup-based surrogate,
which looks up for the similar input CP parameters from the simulated solutions’ dataset
and directly returns their result. This strategy reduces the computational cost of calculating
fitness on similar solutions. In GA searching, similar solutions can occur many times,
especially when the population’s gene converges to the optimum. Thus, the utilization of
the Lookup surrogate can effectively reduce the computational cost of the simulation for
similar solutions. The threshold for adopting the Lookup surrogate is defined as follows:

d
(
θc,θs

)
=
∥∥θc − θs

∥∥ ≤ dth (16)

where dth is the threshold for performing the Lookup surrogate model, θc and θs are the
normalization of current candidate CP parameters θc and simulated CP parameters θs,
respectively, d

(
θc,θs

)
denotes the distance between θc and θs, and the L2-norm ‖·‖ is used

to measure the distance.
The Lookup surrogate is adopted when a group of parameters is firstly assigned to be

simulated and the similar parameters group (i.e., the distance is less than dth) has already
been simulated. In this study, the dth is set to 0.001 and can be adjusted to a smaller value to
obtain higher accuracy near the end of GA searching. It should be noted that the result of
the Lookup surrogate will not be stored to train the BNN, since these samples have already
been learned by the BNN.
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2.3. MCDropout-Based BNN-Assisted GA

Many surrogate-based optimization methods have been utilized in recent studies to
calibrate the CP parameters [6,17,26]. These surrogate models are only trained on initial
samples, and optimization is performed based on the response of the surrogate model.
In surrogate-based optimization, adjustable parameters would not converge to the global
optimum if the surrogate model is built from only the initially sampled data or is simply
an updated model with the current optimum as the new sample point [27]. This is because
the surrogate model may not be sufficiently trained at the sample point in the optimization
and is not accurate enough regarding its proximity to the global optimum. An iterative
sampling refinement method is utilized to solve this problem, which allows the surrogate
model to be updated on the new sample points generated during the optimization process.
The criteria used to search the parameter space and refine the surrogate model with a
promising sample point are the so-called infill sampling criteria [28]. Among various ISC,
maximizing the EI is a widespread criterion and performs consistently well in the instances
considered in the study compared with other ISC [29].

In this study, iterative sampling refinement is utilized so that the surrogate-assisted
optimization can reaches the same accuracy as it could be achieved by directly minimizing
the original objective function (i.e., using the CP simulation physical response to calculate
the fitness value in a GA). Maximizing EI is chosen as the infill sampling criterion in the
acquisition process, which generates a new population after the surrogate is trained [30].
In the acquisition process, the second part of the BNN is utilized to predict the objective
distribution for the EI calculation.

2.3.1. Infill Sampling Criteria

The iterative sampling refinement method uses new sample points in promising
regions to refine the surrogate model. The ISC are used to determine whether to sample
the parameter space and refine the surrogate model or utilize the surrogate output, which
is one of the key techniques in surrogate-based optimization. The EI for the candidate
solution x is given by:

EI(x) = (ymin − ŷ(x))Φ
(

ymin − ŷ(x)
ŝ(x)

)
+ ŝ(x)φ

(
ymin − ŷ(x)

ŝ(x)

)
(ŝ > 0) (17)

where Φ is the cumulative distribution function for the normal law and φ is its probability
density function, ymin is the best simulated cost found so far, ŷ(x) is the predicted cost
provided by the surrogate, and ŝ(x) is the variance provided by the surrogate model for its
predicted cost. In this study, the EI is calculated based on the BNN-predicted objective and
its uncertainty according to Equations (11) and (12).

2.3.2. Acquisition Process

Once the surrogate is trained on the data provided by the initial generation, the
acquisition process is activated. Figure 5 shows the workflow of the acquisition process.
The acquisition process generates and selects sample points to perform CP simulation
from the candidate solutions according to the ISC, and is employed as a trade-off between
exploration and exploitation [31]. For the selected parent solutions with higher fitness
values in the population, their offspring are generated by crossover and mutation. Then,
the BNN surrogate is utilized to predict the objective with uncertainty information for all
the offspring solutions. Their EI is computed by Equation (17). A proportion of children
with the greater EI value are assigned to perform CP simulation. The remaining children
who are less promising are set to be predicted by the surrogate model to gain speedup. In
this study, the proportion assigned to the BNN surrogate model pBNN is set to different
values, and its effect will be discussed.
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3. CP Model and Set-Up of SGA

This section employs the proposed BNN SGA optimization method to calibrate the
phenomenological CP model and dislocation-density-based CP model of a CoCrFeMnNi
high-entropy alloy (HEA). For this HEA, a twelve-slip system of the {111} 〈110〉-type
was considered, and the deformation twinning was omitted. The CP simulation toolkit
DAMASK v3.0.0 alpha4 (Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Ger-
many) [32] was employed to perform the simulations. A cubic representative volume
element (RVE) with 100 grains was used to reproduce the experimental result, as shown in
Figure 6. The average grain size is about 6 µm, and uniaxial compression along the x-axis
with a strain rate of 0.001 s−1 was applied. Python v3.8.10, NumPy v1.21.2, SciPy v1.7.1,
and TensorFlow v2.8.0 (Google, Mountain View, CA, USA) were employed to construct the
BNN SGA.
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3.1. CP Model for Calibration
3.1.1. Phenomenological CP Model

The applied phenomenological CP model, which was first proposed by Hutchinson
for FCC crystals, is the most widely used phenomenological model [33]. The evolution of
the shear rate (

.
γ

α) on each slip system is given by:

.
γ

α
=

.
γ

α
0

∣∣∣∣τα

ξα

∣∣∣∣sgn(τα) (18)

where
.

γα
0 , τα, and ξα are the reference shear rate, resolve shear stress, and slip resistance of

slip system α, respectively.
The slip resistance of slip system α, ξα, increasingly evolves from the initial value ξ0 to

a saturation value ξα
∞ governed by the shear on slip and twin systems:

.
ξ

α
= hs−s

0

Ns

∑
α′=1

∣∣∣∣ .

γα′
∣∣∣∣
∣∣∣∣∣1− ξα′

ξα′
∞

∣∣∣∣∣
α

sgn

(
1− ξα′

ξα′
∞

)
hαα′ (19)

Here, hs−s
0 , a are the hardening parameters. Ns is the total number of slip systems. hαα′

is the interaction coefficient between slip system α, and α′ is assumed to be 1.0 for coplanar
slip systems and 1.4 for non-coplanar systems.

3.1.2. Dislocation-Density-Based CP Model

The dislocation-density-based CP model is the built-in model of DAMASK. A detailed
description can be found in Ref. [32]. The shear rate is given by the Orown equation as

.
γ = ρbsv0exp

[
− Qs

kBT

{
1−

(
τeff
τsol

)ps
}qs
]

sgn(τ) (20)

where bs is the Burgers vector length of slip families, v0 is the initial glide velocity, Qs is the
activation energy of dislocation glide, kB is the Boltzmann constant, T is the temperature,
τeff is the effective shear stress, and τsol is the solid solution strength. ps and qs are the
fitting parameters for glide velocity. The effective shear stress τeff is computed as:

τeff =

{
|τ| − τpass for|τ| > τpass

0 for|τ| ≤ τpass
(21)

and the pass stress τpass is given by:

τα
pass = Gbα

s

(
N
∑
α

hαα′(ρα′ + ρα′
dip)

)0.5
(22)

where G is the shear modulus, and hαα′ are the slip–slip interaction matrices.
The evolution of dislocation densities is determined by dislocation multiplication,

annihilation, and dipole formation. The evolution of dislocation density is given by:

.
ρ =

| .
γ|

bsΛs
− 2d̂

bs
ρ
∣∣ .
γ
∣∣ (23)

.
ρdip =

2(d̂−ď)
bs

ρ
∣∣ .
γ
∣∣− 2ď

bs
ρdip

∣∣ .
γ
∣∣− ρdip

4vcl
d̂−ď

(24)

where Λ represents the mean free path (MFP) for dislocation, which governs the dislocation
storage process. vcl is the dislocation climb velocity and is given by:

vcl =
GD0Vcl

π(1−v)kBT
1

d̂+ď
exp

(
− Qcl

kBT

)
(25)
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where d̂ denotes the glide plane distance below which two dislocations form a stable dipole
and ď denotes the glide plane distance below which two dislocations are annihilated. These
are defined as:

d̂ = 3Gbs
16π|τ| (26)

ď = Dabs (27)

where Da is a fitting parameter.
The MFP describes the pileup of dislocations in front of grain boundaries, dislocation–

dislocation interaction, and the formation of twins, and is composed as:

1
Λs

= 1
D + 1

λs
(28)

1
λα

s
= 1

is

( Ns
∑

α′=1
pαα′

(
ρα′ + ρα′

dip

))0.5
(29)

where D is the average grain size, is is a fitting parameter, ραα′ are projections for the forest
dislocation density. Deformation twinning is omitted here since it infrequently occurred in
this HEA.

3.2. Set-Up of SGA
3.2.1. Experiment Data

The experimental stress–strain response is obtained by a uniaxial compression at a
strain rate of 10−3s−1. The experimentally measured stress–strain curve is set as the target
to be reproduced by a group of CP parameters. The initial orientation of the grains in the
simulation is generated according to the orientation distribution of the texture. Figure 7
illustrates the pole figures characterizing the measured initial orientation and the sampled
initial orientation used for CP simulation. As the initial orientations of the nodes within
one grain are the same, the initial orientation distribution for CP simulation is very close
to the experimental result. No evident texture was observed in the two pole figures, and
the intensity of the initial orientation for CP simulation is slightly higher than that of
the experimental one due to the smaller number of sampling grains of the RVE. The final
orientation is utilized to validate the calibration result obtained from fitting the stress–strain
curve. In this study, MTEX, the MATLAB toolbox for crystallographic textures analysis, is
employed to process the EBSD data and draw the pole figures for material textures.

3.2.2. Input Parameters for SGA

The elastic constants C11, C12, C44, reference shear rate
.
γ0, and the magnitude of the

Burgers vector were regarded as the definitive constitutive parameters for CP simulation,
as listed in Table 4. Parameters ps and qs in the dislocation-density-based CP model can be
set to 1.0 for cuboidal shapes of local obstacles [34]. All the simulations were conducted at
room temperature, and the temperature T was thus set as 300 K. The adjustable material
parameters of the phenomenological and dislocation-density-based CP model and their
reference ranges, which need to be optimized to reproduce the experimental stress–strain
curves and pole figures, are listed in Tables 5 and 6, respectively.
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Table 4. Definitive constitutive parameters for the phenomenological CP model.

Variable Units Value Note

C11 GPa 245.1 Elastic constant [35]
C12 GPa 148.9 Elastic constant [35]
C44 GPa 191.5 Elastic constant [35]

.
γ0 s−1 0.001 Reference shear rate [32]
bs m 2.54 × 10−10 Burgers vector magnitude of slip system
ps - 1.0 p-exponent in glide velocity [34,36]
qs - 1.0 q-exponent in glide velocity [34,36]

Table 5. Ranges of the adjustable parameters for the phenomenological CP model.

Variable Units Range Note

ξ0 MPa [50, 500] Slip resistance
ξ∞ MPa [500, 2500] Saturation stress
h0 MPa [100, 700] Slip-hardening parameter
n - [5, 30] Strain rate sensitivity parameter
a - [1, 5] Slip-hardening parameter

3.2.3. Hyperparameters for SGA

Table 7 lists the hyperparameters for surrogate-assisted searching that control the use
of Lookup and BNN surrogates. The proportion of the performing BNN surrogate pBNN is
set to 0.2, 0.4, 0.6, and 0.8 in different runs, the results of which are compared and discussed
in Section 4.



Metals 2023, 13, 166 15 of 25

Table 6. Ranges of the adjustable parameters for the dislocation-density-based CP model.

Variable Units Range Note

ρ0 m−2 [5 × 1010, 5 × 1011] Initial dislocation density
ρdip0 m−2 [0.1, 0.8] Initial dipole dislocation density

v0 m · s−1 [1000, 10000] Initial glide velocity
Qs J [5× 10−20, 5× 10−19] Activation energy for dislocation glide
Qcl J [5× 10−20, 5× 10−19] Activation energy for climb
τ0 MPa [5.0, 200.0] Solid solution strength
is - [30.0, 100.0] Controlling dislocation mean free path

D0 m2 · s−1 [1 × 10−6, 3 × 10−5] Vacancy diffusion prefactor
Da - [3.0, 15.0] Minimum dipole distance

Table 7. Hyperparameters for SGA.

Hyperparameters Value

Threshold for Lookup surrogate dth 0.001
Number of MCDropout samples NMC 40

Proportion of BNN surrogate pBNN 0.2, 0.4, 0.6, 0.8

4. Results and Discussion
4.1. Optimization Process

According to the input parameters and the SGA hyperparameters listed in Tables 4–7,
four SGA searches are performed with different pBNN values. In this section, we take the
phenomenological CP model as an example, and the influence of pBNN on optimization
and the speedup provided by the SGA are discussed by analyzing the data extracted from
their optimization processes.

4.1.1. Influence of pBNN

Figure 8 shows the best fitness in each generation calculated by phenomenological
CP simulation and BNN surrogate model under various pBNN . As shown in Figure 8,
pBNN affects the fitness improvement of the solutions assigned to CP simulation. With
the increase in pBNN , the best fitness values calculated by the BNN surrogate and CP
simulation tended to mix with each other, implying a worse performance of the acquisition
process. This can be explained by two related aspects. Firstly, the BNN surrogate relies on
the samples provided by CP simulation to be incrementally trained, improving its accuracy.
On the other hand, the ISC rely on the BNN’s accuracy to provide more confidence in
assigning CP simulation to those solutions that are expected to gain higher fitness. A higher
pBNN value leads to a lack of training data for the BNN surrogate and a lack of confidence
in the ISC for model assignment in the acquisition process and thus the failure to allocate
promising sample points. A lower pBNN value guarantees the BNN surrogate’s accuracy
and the stability of the acquisition process, while losing the speedup provided by using the
surrogate model. To settle this contradiction, we defined a cumulative fitness improvement
(CFI) per CP simulation to measure the effectiveness of the SGA process:

CFI(n) =
n
∑

i=1

f itnessbest(i)− f itnessbest(i−1)
NCP(i)

(30)

where f itnessbest(i) is the best fitness found till generation i, NCP(i) denotes the number of
CP simulations performed in generation i, and n is the current generation number.
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CFI generally describes the fitness improvement contributed by each CP simulation
during the SGA optimization process. The CFI in different SGA runs for the phenomeno-
logical CP model under different pBNN is presented in Figure 9, where the pBNN = 0.4
case shows a consistently higher CFI. The CFI progressively increases when pBNN = 0.2,
indicating a stable searching process but with more computational cost. When pBNN = 0.6,
the CFI is slowly increasing with fluctuations, indicating the acquisition process started to
lose efficacy. It is worth noting that when pBNN = 0.8, due to the interference of the surro-
gate model, the SGA search has not made progress in fitness improvement, resulting in a
negative value. According to the discussion above, pBNN = 0.4 is considered the best value
for obtaining a balance between the optimization speedup and the fitness maximization.

4.1.2. The Speedup Provided by Parallel SGA

Two SGA optimization processes with pBNN = 0.4 and 0.6 are considered in this
section, and the number of parallel processes in GA fitness calculation is set as 12. Assuming
that the cost of running the surrogate model is negligible compared to the CP simulation
and the computing time for different CP simulations are similar, the computational time
cost ratio of the SGA to the original GA is equivalent to the call count ratio. The number
of surrogate (the BNN and the Lookup surrogate model) calls and phenomenological
CP simulation calls needed to calculate the fitness in each generation is presented in
Figure 10. Consequently, the speedup provided by the SGA method can be estimated with
the cumulation of the call counts using the following equation:

1
nS

=
tSGA

tGA
=

∑n
i NCP(i)

∑n
i (NCP(i) + Nsurrogate(i))

(31)

where ns is the speedup achieved using parallel SGA compared to traditional parallel
GA optimization, tSGA and tGA are the expected time cost of running the SGA and GA,
respectively, NCP(i) and Nsurrogate(i) are the number of CP simulation and surrogate calls
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in generation i, respectively, and n is the current generation. Around the end of the
optimization process, when the genes in the population converge to the optimum and
become similar to each other, the number of Lookup surrogate calls increases, providing
more speedup than could be achieved by only utilizing the BNN surrogate. The speedup
ns of the optimization process under the considered pBNN are 2.917 (Figure 10a) and
3.765 (Figure 10b), respectively, compared to the ordinary parallel GA. When considering
the speedup provided by parallel fitness calculation, using the parallel surrogate-assisted
GA eventually led to a speedup of around 50 compared to the serial GA on the workstation
used in this study.
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4.2. Calibration Results and Interpretation

In this section, 2 separate SGA searching processes are run for 32 generations using
the numerical input mentioned in Section 3 with pBNN being equal to 0.4.
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4.2.1. Comparison of Experimental and Simulated Results

The adjustable parameters of the best solution in two runs of the phenomenological
and dislocation-density-based CP models are listed in Tables 8 and 9, respectively. The
mechanical response and pole figures are compared in Figure 11. For both CP models, the
SGA-output best solution in the two runs showed good agreement between CP simulation
prediction and the experimentally measured stress–strain curve. The error between the
target curve and two simulation runs quantified by the distances defined by Equation
(1) is 4.18% and 4.15% for the phenomenological CP model and 2.04% and 1.80% for the
dislocation-density-based CP model, respectively. Despite the good fit of the stress–strain
curve in optimization, there is a relatively large difference in the optimized constitutive
parameter h0, a, and especially for n. In run 1, parameter h0 of the best solution lies in the
range [100, 700] MPa, while in run 2, it reaches the upper bound, while for the dislocation-
density-based CP model, the parameters show a similar convergence tendency but different
converge values in two runs. These two different sets of parameters result in almost the
same mechanical response. Parameters D0, ρdip and Qcl show a large distribution range
in two runs, while is, Da, τ0 converge to a single point. The dislocation-density-based CP
model involves more parameters to characterize the mechanical response of materials than
the phenomenological model, showing fewer constraints of the stress–strain curve data
and more uncertainty in the calibration results. This difference in results from different
runs is further discussed in Section 4.2.3, with the interpretation of the BNN.

Table 8. The optimal parameters of the phenomenological CP model.

Variable Units Value (Run 1) Value (Run 2)

ξ0 MPa 141.03 142.68
ξ∞ MPa 899.36 965.65
h0 MPa 597.60 700.0
n - 28.44 8.41
a - 3.34 4.09

Table 9. The optimal parameters of the dislocation-density-based CP model.

Variable Units Value (Run 1) Value (Run 2)

ρ0 - 1.910 × 1011 5.682 × 1010

ρdip0 - 0.571 0.391
v0 m · s−1 1745.177 3253.913
Qs J 3.301 × 10−19 2.944 × 10−19

Qcl J 1.979 × 10−19 2.577 × 10−19

τ0 MPa 53.934 80.728
is - 71.101 56.150

D0 m2 · s−1 2.172 × 10−5 2.243 × 10−5

Da - 8.595 11.820

Figure 12 shows the comparison of experimental and simulated pole figures using dif-
ferent CP models. Both the pole figures obtained by the phenomenological and dislocation-
density-based CP models successfully reproduced the (011) fiber texture observed in the
measured one (Figure 12a). The orientation distribution and maximum value of texture
intensity agree well with the experimental counterpart.
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4.2.2. The Gene Evolution

Figure 13 shows the evolution of the gene corresponding to ξ0 and ξ∞ in the phe-
nomenological CP model and τ0 and is in the dislocation-density-based CP model. When
the searching process stopped at generation 32, the solutions’ gene gathered around the
same value, suggesting that the global optimum had been found. It should be mentioned
that the incremental mutation operator is employed in the GA, which randomly increases
or decreases the value of genes in the mutation process. This method is conducive to
exploring the parameter space near the optimal solution and simultaneously improving
the performance of BNN prediction near the optimum. The fine-tuning of the mutation,
with one parameter fixed and another changing, resulted in the cross-like sampling point
around the optimum.
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This evolution of sample points also indicates the adaptive nature of infill sampling
and requires fewer samples to reach the same accuracy around the optimum than the
uniform random sampling method in other CP parameters calibration studies. The regions
that are not expected to cover the optimum are sparsely sampled, while the interested
region is sufficiently probed to make an accurate prediction.

Figure 14 shows the candidate solutions’ parameter distribution in the last generation
in the two runs of different CP models. It can be observed that the converge value of
parameter ξ0 and ξ∞ of the phenomenological CP model is consistent in run 1 and run 2,
while n shows a wide range of distribution in these solutions and a, h0 converges to a
different point, as shown in Figure 14a,b. For the dislocation-density-based CP model
(Figure 14c,d), the optimized parameters in run 1 and run 2 are significantly different. This
is caused by two reasons. One is that some parameters have little impact on the mechanical
response, and the other is the coupling effects between different CP parameters. This
parameter uncertainty is severer in the complex CP model with many parameters to be
determined. These effects will be further discussed in Section 4.2.3.

4.2.3. Interpretation by BNN-Integrated Gradients

In this study, the BNN surrogate is not trained to predict the objective directly but
first learns to predict stress–strain curve features and then predicts the objective, which
provides interpretability for the BNN surrogate model. The integrated gradients [37] are
used to analyze the surrogate model, providing insight into the relationship between CP
parameters and the stress–strain curve. The integrated gradients can be approximated via
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the summation of gradients at small intervals along the path from the baseline x′ to the
input x:

IGapprox
i (x) =

(
xi − x′i

)
m

m

∑
k=1

∂F
(

x′ + k
m (x− x′)

)
∂xi

(32)

where IGapprox
i is the approximation of integrated gradients for input parameter x, and

m is the number of steps in the Riemman approximation of the integral. In this study, m
is set to 50, and the baseline x′ is set as 0, which corresponds to the lower bound of the
input material parameters. It should be noted that, in this study, the BNN’s gradients are
sampled in a manner wherein all the parameters increase simultaneously to show the input
parameters’ global impact on the feature parameters.
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constitutive parameters of solutions in the last generation, overlap points will show deeper color.

The stress–strain curve shown in Figure 3 is represented as four feature parameters in a
normalized form defined in Section 2.2.2 and utilized as the BNN1 output. Figure 15 shows
the integrated gradients of the input parameters of the phenomenological CP model to the
output feature parameters. np is the most sensitive feature, and controls the curvature of
the plasticity part. A larger ξ∞ or smaller ξ0 produces a stress–strain curve with a more
obvious exponential increase in the plasticity part, corresponding to a larger np value.
Parameters h0 and ξ∞ have a positive contribution to E1 and a negative contribution to
εy; thus, increasing h0 and ξ∞ will result in a stress–strain curve with a lower yield point
and higher saturation stress. εb is indirectly affected by yield and saturate stress, which is
shown to be the least sensitive feature in the curve.

In both run 1 and run 2, the constitutive parameter n shows a slight influence on all
the feature parameters, and a varying n may not influence the output. This causes difficulty
in accurately calibrating parameter n and accordingly shows a wide range of candidate
values (Figure 14). This accounts for the large difference in parameter n observed in the
results of two runs (Table 8). There also exists a relatively large difference in parameters
a and h0 in the two runs, which is the result of parameter coupling. In Figure 15, the
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parameters a and h0 show an opposite effect on the stress–strain curve features, indicating
that these parameters can increase or decrease simultaneously while obtaining almost the
same output features. It should be noted that the parameter εy, which controls the yield
strain, does not contribute much to the fitness calculation; thus, the different effect on εy
found in run 1 and run 2 is neglectable in parameter coupling. It can be seen that the effect
of ξ∞ is somewhat similar to that of h0, indicating a potential coupling between ξ∞, h0, a.
Thus, when h0 is limited by the upper bound, ξ∞ may act as its substitution, resulting in a
slightly larger value of ξ∞ (Table 8, run 2). Parameter ξ0 shows good consistency in two
runs, indicating that it was easily determined by the optimization process.
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Figure 16 presents the integrated gradients for the BNN surrogate of the dislocation-
density-based CP model. The parameters show more complex coupling between param-
eters in this calibration compared with the simple two-parameter coupling in the phe-
nomenological CP model. Da, is, and τ0 are the most influential parameters on the output
features; thus, by fitting the stress–strain curve, they show good convergence (Figure 14).
However, due to potential coupling with the other parameters, their converge points are
influenced. Qs is a relatively influential parameter and is constrained within a range.
ρ0, ρdip0, and Qcl show various effects in different runs. When it shows a greater impact on
the feature parameters (characterizing the mechanical response), as seen in Figure 16, its
distribution correspondingly has a narrow range, as seen in Figure 14. This results from the
different influences of these parameters on different sample regions. The BNN captures this
pattern and can successfully explain the distribution of the candidate solution’s parameters.

Though most of the CP parameters cannot be exactly determined by fitting the
stress–strain curve and showing coupling or noneffective tendency, they are constrained
to a certain extent. The interpretation of the BNN can guide further experiment design to
decouple particular parameters and add constraints provided by the attached experiment
or prior knowledge. With the knowledge extracted from the BNN, the constraint of the
macroscopic mechanical response on the model parameters is outlined, and this can be
used to guide future experiment design. In general, a parameter is well constrained by the
fitting data and converges to a consistent point when it (a) shows a significant impact on the
output features and (b) does not couple with other adjustable parameters. The parameters
showing a range distribution in the last generation of the SGA are considered only partly
constrained in a range with the experiment data, with a slighter influence on the output
features. Though a lack of constraints exists, some parameters can be determined with
a macroscope mechanical response, and others need further constraints (e.g., additional
experiment dataset as the fitting target or prior knowledge-based constraints for the GA) or
decoupling (e.g., calibrate coupled parameters separately) to be further calibrated.
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5. Conclusions

We aimed to accelerate the calibration of a CP model and maintain its accuracy
simultaneously. A BNN-based surrogate was employed, and the infill sampling(IS) method
were utilized to allocate new sample points as well as iteratively update the BNN surrogate
during the optimization process. By using the integrated gradients, the evolution of
parameters during the calibration process and the coupling effect of different parameters
were analyzed. The main conclusions can be drawn as follows:

1. A BNN SGA optimization method was proposed for calibrating crystal plasticity
models. The MCDropout-based BNN makes a prediction with uncertainty informa-
tion, and guides the GA optimization process by infill sampling. The BNN is trained
stepwise to predict feature parameters of the mechanical response and provides
interpretability for the surrogate.

2. Maximizing EI is used as the infill sampling criteria, determining which candidate so-
lutions should be selected as new sample points and performing the time-consuming
simulation. The Lookup-based surrogate, which queries the dataset and directly
returns the fitness for similar solutions, is another data-based surrogate utilized in
this study.

3. The BNN SGA method is applied to the typical phenomenological and dislocation-
density-based CP models of an HEA. The speedup of the optimization process is 2.917
and 3.765 when the proportion of performing BNN surrogates equals 0.4 and 0.6,
respectively. Using the identified parameters, the stress–strain curve and pole figure
obtained by compression tests were successfully reproduced by CP simulation.

4. This method allows for interpretation of the BNN surrogate using the integrated
gradients and extract information of the relationship between input CP parameters
and the feature of the mechanical response. The effect of the CP parameters on the
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stress–strain curve and the coupling between CP parameters was analyzed. The inter-
pretation of the BNN can guide further experiment design to constrain or decouple
particular CP parameters to refine the calibration result.

5. The SGA method proposed in this paper can be extended to calibrate CP models
including more complex deformation mechanisms, such as deformation twinning
and phase transformation. The BNN surrogate with iterative infill sampling and inte-
grated gradients can also be extended to establish an interpretable and fast multiscale
surrogate plasticity model that characterizes the microscale slip, mesoscale strain, and
macroscale mechanical response.

6. Like most optimization algorithms, this method relies on an initial parameter range.
Due to the complex nonlinear relationship between parameters of the CP model, the
range of other parameters will change dramatically if the range of one parameter is
modified, so it is not easy to determine the initial range. In this paper, the coupling
between CP parameters and the effect of CP parameters on the mechanical response
are demonstrated by means of an integral gradient, but no quantitative model is
introduced to systematically describe their coupling relationship. There is no quanti-
tative description of how the provided experimental data constrain the results of the
calibration. Future research could focus on breaking these limitations and propose a
more robust calibration method.
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