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Abstract: The influence of annealing treatment on the microstructure and the corrosion behaviour
of a complex bronze Al-Ni alloy was analysed. The microstructural characterization after thermic
treatment shows that the retained β-phase disappears and the KII-phase undergoes a spheroidization
process. Moreover, there is an augmentation of K-phase precipitates within the α-phase, particu-
larly KIV and KV, which homogenizes the distribution of alloying elements between the phases.
The corrosion behaviour was investigated by means of selective corrosion tests, potentiodynamic
measurements, and electrochemical impedance spectroscopy. All of the experiments showed that
thermic treatment greatly improves the corrosion resistance of the alloy. As such, annealing treatment
influences a microstructure to be more dealloying resistant, which allows the development of a more
protective air-formed passive film. On the other hand, the lower current registered after anodic peaks
and Electrochemical Impedance Spectroscopy data seem be correlated with a more protective layer
formed on annealed material. As such, this protective character is due to a greater incorporation of
Al3+, Ni2+ and Cu2+ in the passive film, as revealed by X-ray Photoelectron Spectroscopy results.

Keywords: copper alloy; EIS; dealloying corrosion; XPS; cyclic voltammetry

1. Introduction

Nickel aluminium bronze alloys have been developed to produce materials with
better properties than pure copper for specific purposes [1]. Among Cu-based alloys,
aluminium bronzes are used extensively, because they possess superior properties such as
high strength, low corrosion susceptibility, and wear and impact resistance [2]. Bronzes
alloyed with about 10% in weight of aluminium show an optimal compromise between
mechanical properties and corrosion resistance. Furthermore, small quantities of Fe and
Ni may be added to aluminium bronzes to modify their mechanical properties and cor-
rosion resistance [3,4]. Bronze aluminium alloys containing between 8 wt.% and 14 wt.%
aluminium and approximately 2 to 4 wt.% nickel and iron [5] are the most widely used,
especially for propulsion and seawater handling systems. These alloys are metallurgical
complex materials, in which small variations in composition can result in the development
of markedly different microstructures, which turn into large variations in properties [6].

Generally, these alloys are employed in an “as-cast” condition, but in the literature
there are recommendations to improve their properties by submitting them to different ther-
mal treatments. Their phase transformations and mechanical behaviour as a consequence
of the heat treatments have been studied widely, but the effect of heat treatment on the
corrosion resistance of these materials is not fully understood [7–9]. It is known that some
treatments can improve the mechanical properties but make the corrosion resistance worse.
Therefore, a trade-off between mechanical properties and corrosion resistance should be
considered in the thermal treatment design.

The aim of this work is to study the influence of a heat treatment (annealing) in the
corrosion resistance of a complex aluminium bronze in a chloride-containing environment.
The goal is to explore the influence of the microstructural changes in the properties and/or
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composition of the passivation layer developed at their surface, and to clarify the mecha-
nisms of the corrosion processes involved. For this purpose, characterization techniques
such as X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and
optical microscopy (OM) were combined with electrochemical techniques such as potentio-
dynamic polarization and electrochemical impedance spectroscopy (EIS). Furthermore, the
dealloying corrosion resistance of these materials was studied according to the standard
test for the dealloying of brasses.

2. Materials and Methods
2.1. Preparation of the Samples

The nominal chemical composition of the aluminium bronze alloy employed (supplied
by Fundivisa, Vilagarcía de Arousa, Spain) is presented in Table 1.

Table 1. Chemical composition in wt.% of the material used in this study.

Element Cu Al Ni Fe Mn Si Zn Others

wt.% 78.86 8.34 4.77 4.79 1.17 0.13 1.89 0.046

The experimental parameters for annealing were 675◦ (±10 ◦C) for 2 h followed by air
cooling, according to the ASTM B148 procedure. The annealed samples were designated as
“BR”, and the “as cast” material was identified as “B”.

Specimens of 2.5 cm × 2.5 cm × 0.2 cm were cut and prepared for characterization as
follows: first, they were abraded with SiC-sand paper (Struers, Copenhague, Dinamarca)
starting from 220 grit, and then sequentially with 500-, 1200- and 2400-grit grades. Finally,
the samples were polished with diamond paste from 9 down to 1 µm, and finished to
0.04 µm with colloidal SiO2 (Struers, Copenhague, Dinamarca).

2.2. Metallographic Characterization

The microstructure was examined using optical microscopy (OM) employing an
Olympus GX51 equipped with an image analysis program (Olympus Analysis Five, Ham-
burg, Germany) and scanning electron microscopy (SEM) using a JEOL 5410 (Tokyo,
Japan), equipped with energy dispersive X-ray spectroscopy (EDX). Prior to the microstruc-
tural characterization, the samples were etched in a FeCl3-HCl-ethanol solution (Scharlab,
Barcelona, España).

2.3. Evaluation of the Resistance to Dealloying

The resistance of the materials to dealloying was studied according to the UNE-EN
ISO 6509 standard test for the dealloying of brasses. The test consists in a microscopic study
of the dealloyed layer after exposure to 1 wt.% CuCl2 solution. The surface tested was
2 cm2, delimited using an O-ring bearing cell in which the volume of the solution/metal
surface ratio was 100 mL/cm2. The evolution of the corrosion was monitored visually. At
the end of the exposure, the samples were rinsed and dried. The exposed surface and cross
sections were examined at the optical microscope. The depth of the attacked zones was
measured using an image analysis program.

2.4. XPS Characterization

The chemical composition of the B (as cast) and BR (annealed) samples was examined
“ex-situ” by XPS surface analysis. The survey spectra were recorded using a Thermo
Scientific K-Alpha instrument (Waltham, MA, USA); they revealed C1s, O1s, N1s, Cu2p,
Ni2p, and Al2s peaks. A monochromatic X-ray source Al Kα (148.86 eV) was used for all
of the samples and experiments. The X-ray monochromatic spot was 400 µm in diameter,
and the corresponding sampling area was 0.335 mm2. The residual vacuum in the analysis
chamber was maintained at around 3 × 10−9 mbar (3 × 10−7 Pa). Photoelectrons were
collected from a take-off angle of 900 relative to the sample surface. The measurements
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were performed in Constant Analyzer Energy mode (CAE) with 100 eV pass energy from
the survey spectra and 20 eV pass energy for high resolution spectra.

The binding energies’ (BEs) positions were referenced to the C1s photo peak at 285.0 eV
(C1s hydrocarbon peak). An electron flood gun was also employed to minimize surface
charging (charge compensation).

The atomic concentrations were determined from the XPS peak areas using the Shirley
background subtraction technique and the Scofield sensitivity factors. The samples were
fixed to the sample holder using a metallic clip to ensure the electrical conductivity.

2.5. Electrochemical Characterization

The electrochemical experiments were performed at room temperature in a conven-
tional three-electrode all-glass cell, where the working electrode was the bronze aluminium
alloy (0.28 cm2 exposed area). A Pt mesh was used as a large-surface auxiliary electrode,
and a saturated calomel electrode (SCE) was used as a reference. The employed solution
was 3.5 wt.% NaCl solution (Scharlab, Barcelona, España). Electrochemical measurements
(Potentiodynamic polarization, Cyclic Voltammetry and Electrochemical Impedance Spec-
troscopy) were conducted using a potentiostat PGSTAT 30 Autolab (Ecochemie, Utrecht,
The Netherlands). The polarizations were performed at 1 mVs−1 scan rate. The use of a
low scan rate was chosen to give time enough for the relaxation of the redox processes
occurring in the passive layer.

The EIS was recorded at the open circuit potential (OCP) from 1 MHz down to
1 mHz. The amplitude of the superimposed AC signal was 10 mV rms. In order to verify
reproducibility, each experiment was carried out at least twice.

3. Results and Discussion
3.1. The Effect of Annealing on the Microstructure

The metallographic structure of the B (as-cast) and BR (annealed) samples is shown in
Figure 1. The structure of the “as-cast” samples consists of light etched areas of the α-phase,
which is an FCC Cu-rich solid solution; some retained β-phase; and several intermetallic
phases, which are referred as the K-phase. The KI phase is an iron-rich solid solution with
a globular or rosette-shaped morphology. The KII phase is also an iron-rich, rosette-shaped
solid solution but of smaller size than the KI phase, and distributed at the α boundary.
The KIII phase appears at the α-β boundary forming α+KIII eutectic, and it is Ni rich. The
KIV phase represents an enrichment in Fe, and appears forming fine precipitates within
the α-phase.

Annealing—the BR (annealed) condition—results in the elimination of the retained
β-phase, the spheroidization of KIII, the increasing density of fine KIV-phase precipitates in
the α-phase, and the presence of KV-phase precipitates in the α-phase, in the form of fine
precipitates which are cylindrically shaped and rich in Ni and Al.

3.2. Dealloying Corrosion Analysis

The major corrosion problem encountered in bronze–aluminium alloys in seawater
applications is dealloying corrosion. Dealloying is the selective dissolution of one element
or phase in the material [10–12]. In the case of aluminium bronze alloys, aluminium is the
preferentially dissolved element [13,14].

Dealloying in bronze–aluminium was studied according to the UNE-EN ISO 6509
standard test for the dealloying of brasses. The discussion focused on the most representa-
tive results obtained in samples exposed to the solution for 24h. The cross sections and the
surfaces of the B (as-cast) and BR (annealed) tested samples are shown in Figures 2 and 3.
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Figure 2. Cross section view after the dealloying test for (a) “as-cast” samples and (b) annealed samples.

After 24 h of immersion, intergranular corrosion is distinctly developed in both
samples. As it can be observed in Figure 2a,b, the cross sections show that the attack is
more intense, both in terms of pit depth and density of pits for the B (as-cast) samples
than for the BR (annealed) samples. Moreover, the corrosion process in the BR (annealed)
sample (Figure 3b) has just contoured the grains, while the attack has progressed beneath
the surface for the B (as-cast) sample (Figure 3a).

The resistance for this type of corrosion is evaluated through the quantification of the
average pit depth. The average corrosion depths of both materials obtained from the cross
section images (Figure 2a,b) are shown in Table 2.
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Figure 3. Surface aspect of the (a) “as-cast” samples and (b) annealed samples after the dealloying test.

Table 2. Average depths of the corroded zones measured in the cross sections of samples B (as cast)
and BR (annealed) after the dealloying test.

Sample Average Corrosion Depth of Pits (µm)

Sample B 60
Sample BR 20

The decrease of 66% in the average pit depth for BR (annealed) indicates that annealing
markedly improves dealloying corrosion resistance.

In general, the dealloying corrosion of multi-phase copper alloys is reported [13] to
be confined to the retained β and α+KIII phases. In the case of the retained β-phase, the
selective dissolution was explained by galvanic coupling with the α-phase. As the retained
β-phase is aluminium rich, at the corrosion potential it reaches a more anodic potential



Metals 2022, 12, 1473 7 of 20

than the α-phase, and undergoes selective dissolution. For (α+KIII) eutectoid, because the
α-matrix (α+KIII)/eutectoid interface is a small area with very high difference in alloying
elements (Al, Fe, Ni), galvanic cells can be easily developed and dealloying corrosion
resistance decreases.

Annealing treatment promotes a microstructure that is more dealloying resistant [14,15].
After annealing treatment, some observations can be noted: the retained β-phase disap-
pears and the KIII-phase undergoes a spheroidization process. Moreover, there is an
augmentation of K-phase precipitates within the α-phase, particularly KIV and KV, which
homogenizes the distribution of alloying elements between the phases, as can be observed
in Table 3. This fact decreases the difference of electrical potential and the number of sites
available for galvanic coupling [15]. Furthermore, the more homogeneous distribution
of the microconstituents in the BR (annealed) samples do not allow the formation of a
continuous path for the penetration of the selective dissolution, which limits the corrosion
depth to the near-surface layers exposed to the solution.

Table 3. Chemical composition of the phases for the B (as cast) and BR (annealed) samples (wt.%)
obtained by EDX analysis.

Sample B Sample BR

Element α Phase KIII α Phase (BR) KIII (BR)

Cu 84.5–85.6 30.9–43.0 76.23 28.68
Al 7.8–8.6 18.9–26.5 9.82 19.68
Ni 2.7–2.8 24.0–29.0 6.11 24.00
Fe 1.8–3.5 10.5–16.0 6.57 25.76

3.3. X-ray Photoelectron Spectroscopy Analysis

XPS measurements were used to determine the surface composition and chemical
environment of the air-formed films on the B (as cast) and BR (annealed) samples. This is a
useful technique to get a semi-quantitative approximation of the composition of the oxides
formed on air. In order to create the chemical assignments, the deconvolution of the C1s
spectra was performed and referenced to the main peak at 285 eV, which is assigned to the
hydrocarbon peak.

Survey scans of the XPS spectra for the B (as-cast) and BR (annealed) samples show
that the main elements on the air-formed layer are Cu, O, Ni and Al. The high-resolution
spectra for those elements are depicted in Figure 4, employing the B sample.

The O1s signal was adjusted to one peak at 530.1 eV, and was assigned to O2−.
The copper 2p level splits into two sublevels, 2p3/2 and 2p1/2. The high-resolution

spectrum of Cu 2p3/2 was resolved in two different peaks—Cu0 at 932.5 eV and Cu+ at
934.2 eV—and two satellite peaks at 943.8 and 946.9 eV. It is generally accepted that XPS
can be used to distinguish between Cu metal, Cu2O and CuO. CuO is characterized by the
presence of a shake-up satellite at 9 eV higher binding energy than the main peak. In the
Cu2O spectrum, that satellite is not present.

The Ni 2p3/2 signal could be fitted with two peaks: one at 852.8 eV corresponding to
the metallic state and another at 856.2 eV, which could be assigned to Ni2+, and a satellite
peak at 862 eV. The Al2s signal is fitted to a peak at 119.2 eV assigned to Al3+.

The main components of the air-formed oxide layers for both materials are O2−, Cu+,
Cu2+, Al3+, and Ni2+. Table 4 presents the calculated atomic concentration of surface
elements from the survey spectra.
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Table 4. Chemical elemental composition obtained from the XPS survey spectra in at.%.

Samples O2− Cu Al3+ Ni

- - Cu/Cu+ Cu2+ - Ni0 Ni2+

B 64.40 30.60 8.20 2.80 0.40 0.80
BR 70.50 23.40 11.50 3.80 0.43 1.46

The main difference observed between both materials concerns the quantification of
different species. As such, the amount of Cu2+ in the BR (annealed) is higher than in B (as
cast) sample, considering the contributions of the corresponding satellite peaks. On the
other hand, the ratio of Cu/Al is slightly larger for the BR (annealed) samples than for B
(as cast) samples. Nickel is present as Ni0 and as Ni2+, and the data indicated that there is
more Ni2+ in the BR (annealed) samples than in the B (as-cast) samples.

From the XPS analysis, it can be concluded that the air-formed oxide layer is basically
a Cu2O-based oxide containing Ni2+ and Al3+ species, for both samples. The reported data
indicate that annealing promotes a larger incorporation of Al3+, Ni2+ and Cu2+ to the oxide
structure. The incorporation of Fe species was not detected.

3.4. Characterization of the Alloys by Cyclic Voltammetry

Figure 5 shows the cyclic voltammogram of the B (as-cast) and BR (annealed) samples
in 3.5% NaCl solution, at pH 7.9. The potential scan started after a cathodic reduction of
the native oxide layer at −1.5 V vs. SCE for 1 min.
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Figure 5. Cyclic voltammogram (from −1.5 to 0.75 V vs SCE) in 3.5 wt.% NaCl solution at a 1 mV s−1

scan rate for B (as-cast) and a BR (annealed) samples.

The cyclic voltammograms show well-defined oxidation and reduction peaks. As such,
in the forward scan, three oxidation peaks (A0, A1 and A2) were observed. A0 appears
at −0.25 V, and might be related with the Cu2O formation. At more anodic potential
values, two signals can be differentiated: A1 (at +0.15 V) and A2 (at +0.20 V). Both peaks
could be related to the formation of CuCl2 and CuO, respectively. In the reverse scan, two
well-defined cathodic peaks were observed, C2 and C1, associated to reduction process of
Cu ions.

The anodic sweep was reverted at different potentials with the aim to correlate the
anodic and cathodic peaks. Two different measurements were carried out: in the first
scan, the potential was reversed at 0 V (Figure 6), and in the second one, the potential
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was reversed at +0.25 V (Figure 7). As can be seen in Figure 6, two reduction peaks were
observed: C0 and C1. The peak C0 is missing in Figure 7, while a reduction peak, denoted
as C2, appears at potential values which are more anodic than that of C1.
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The presence of C1 and C2 peaks supports the assignment made previously. The
disappearance of the C0 peak can be justified, assuming that all of the Cu+ formed at A0
was oxidized at the more anodic potentials and reduced at the C1 and C2 peaks.

The equilibrium potentials for the Cu2O/Cu and CuCl/Cu redox processes at 25 ◦C
are given by Equations (1) and (2), respectively [16].

E Cu2O/Cu = 0.461 − 0.0591 pH (1)



Metals 2022, 12, 1473 11 of 20

E CuCl/Cu = 0.117 − 0.0591 log[Cl−] (2)

Equation (1) yields an equilibrium potential of −0.25 V vs. SCE, and Equation (2)
yields −0.10 V vs. SCE; both correlate well with the previous assignation of A0 and
A1 peaks.

The increment in the anodic current observed at −0.1 V may be due to the activating
effect of chloride ions. Copper dissolution proceeds according to Equations (3) and (4) [16]:

Cu + Cl− � CuCl + e− (3)

CuCl + Cl− � CuCl−2 (4)

The anodic dissolution of copper is under the mixed control of the copper electrodisso-
lution and the diffusion of soluble CuCl2− from the Helmholtz plane into the bulk solution.
The local increment in the concentration of CuCl2− can result in the deposition of CuCl on
the electrode surface, which protects the electrode and consequently decreases the current
density [17]. This layer is porous [9,18], and the electrochemical reaction can continue
through it. After the deposition of CuCl at the alloy surface, the deposit could be partially
hydrolysed to give the more stable Cu2O [18]. The CuCl formed in peak A1 is obtained
directly from Cu0 and a small fraction from the Cu2O formed in A0.

The equilibrium potential for the oxidation Cu2O/CuO is +36 mV vs. SCE [19];
then, peak A2 may be related to the formation of CuO or Cu(OH)2. The formation of
cupric-hydroxy chloride compounds on these materials is not expected [20].

As the potential scan reverses, the anodic peak A3 is observed; it is more common for
the BR (annealed) samples, together with two reduction peaks. The signal assigned to the
A3 peak could be related to a limited oxidation of copper to Cu+ ions at the metal/Cu2O
interface [21].

Comparing the voltammograms of the B (as cast) and BR (annealed) samples shown
in Figure 5, both curves are similar in their morphology; nevertheless, a more in-depth
analysis allows important distinguishing differences that could be explained in terms
of the influence of their microstructures. As such, the curve corresponding to the B (as-
cast) sample shows the highest current density for anodic peaks A1 and A2. This highest
current can be explained by the enhanced dissolution of this material result, probably from
the dealuminisation reaction [22]. Peaks A1 and A2 are followed by a “passive” region
of limiting current density. The relative value of this limiting current depends on the
protective properties of the film formed anodically on the surface of the samples. The lower
current registered for the BR (annealed) condition correlates with a more protective layer
formed on its surface.

Moreover, the existence of a hysteresis loop on the return scan for B (as-cast) samples
at the more positive potentials it is likely due to the loose protective properties of the
surface corrosion layer [22]. The BR (annealed) samples do not present such a hysteresis
loop, which seems to be related with the greater stability and better protective properties of
the film formed on these samples.

After cyclic voltammetry, the morphology of the corrosion products covering the B (as
cast) and BR (annealed) samples was analysed by SEM. Figure 8a,b shows the corroded
surfaces for both materials. The surface of both samples was completely covered with
corrosion products. Nevertheless, SEM images reveal a more compact structure for the film
developed on the BR (annealed) samples, while the film developed on B (as cast) is more
cracked (Figure 8a). The results are consistent with the less-protective character for B (as
cast) detected from the cyclic voltammograms.
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Figure 8. SEM images showing the surface morphologies for (a) a B (as-cast) sample and (b) a BR
(annealed) sample after cyclic voltammetry in 3.5 wt.% NaCl solution.

3.5. Electrochemical Characterisation of the Corrosion Layers Formed at the OCP

The corrosion layers formed on the B (as-cast) and BR (annealed) samples, after 1 h of
immersion time at their open circuit potential, OCP, were potentiodinamically reduced at a
1 mV s−1 scan rate. Figure 9 presents the obtained results. The measured OCP after 1 h of
immersion was around −0.26 V vs. SCE for both samples, indicating that Cu (I) oxide was
the main component of the surface products [17].

Figure 9 shows that the cathodic current values are lower for BR (annealed) samples
than for B (as cast) samples. The current density measured for the B (as cast) samples
was about 1.5 times higher than the corresponding current for the BR (annealed) samples.
By analogy with Cu, the cathodic reaction of Cu-Al alloys in an aerated sodium chloride
solution is well known to be the oxygen reduction, according to Equation (5):

O2 + 2H2O + 4e− → 4OH− (5)
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It is known that for Cu based alloys, the oxide layer is protective because it restricts
the cathodic oxygen reduction [2]. The role of Al, Ni and Fe in the passivation phenomenon
of copper alloys was assumed to be due to its incorporation into the oxide lattice, reducing
the rate of oxygen reduction at the oxide layer [23]. Thus, in agreement with the XPS data,
the lowest current reduction for BR (annealed) samples may be explained in terms of the
greater hindrance of O2 reduction by a more important incorporation of alloying elements
in the oxide layer of the BR material [24,25].

The cuprous oxide has only p-type semiconducting behaviour [26–29]; nevertheless,
the incorporation of Al3+ and Ni2+ ions in the Cu2O lattice increases the number of copper
vacancies and decreases the number of electron holes of p-type Cu2O oxide, which is
manifested in an increase of electrical resistivity [21] and a consequent lowering of the
oxygen reduction rate.

3.6. EIS Measurements

EIS measurements were performed in order to better understand the changes in
corrosion properties and the evolution of the corrosion layer formed on B (as cast) and BR
(annealed) samples as a function of the ageing time in chloride solution. The electrodes
were dipped into the 3.5% NaCl solution, at pH 7.9, and then left at the OCP to reach a
steady state.

In Figures 10 and 11, the Nyquist diagrams for the B (as cast) and BR (annealed)
materials at several immersion times are depicted. The Nyquist diagrams recorded for both
samples show a similar trend, displaying a qualitative change in size and shape at 72 h and
168 h of immersion for the B and BR conditions, respectively.

At times of less than 72 h, the Nyquist diagrams for the B (as cast) and BR (annealed)
materials consisted in two parts: a high–medium frequency impedance arc, which is related
to the charge transfer process, followed by a straight line at lower frequencies with a slope
of 45◦ (a Warburg feature). The latter indicates that the corrosion process is limited either
by the transport of oxygen from the bulk solution to the alloy surface, or by the transport of
soluble corrosion products from the interface to the bulk solution. For times over 70 h for
the B condition and 100 h for the BR (annealed) samples, the Warburg feature disappeared
and the Nyquist diagrams seem to display a finite low-frequency limit.
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Figure 11. Nyquist diagrams for a BR (annealed) sample at different immersion times in 3.5 wt.%
NaCl solution.

According to the literature [30], even at short immersion times, the electrochemical
impedance response of copper can be ascribed to the formation of a porous film, initially
mainly composed by Cu2O, on the electrode surface, and the dissolution of copper with the
formation of a CuCl layer [31] controlled by the transport of CuCl2− from the electrode to
the bulk solution. If so, the diffusion effect should be attributed to the transport of CuCl2−.

The changes in the impedance spectrum in size and shape detected after 70 h indicate
variations in the corrosion process which are likely related with changes in the oxide layer
structure. The Bode diagrams depicted in Figure 12 show the reported changes for both
materials at short and long immersion times in the chloride solution.
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Figure 12. Bode diagrams for B (as-cast) and BR (annealed) samples after different times of exposure
to 3.5 wt.% NaCl solution.

During the analysed time period, the OCP shifted towards more anodic values from
−0.25 V SCE to −0.15 V SCE. Figure 13 displays the evolution of the OCP with time. Ac-
cording to the corrosion mechanism of these alloys, a progressive covering of the electrode
surface by a precipitated CuCl layer allows an explanation of the evolution of the OCP.
Furthermore, the progressive anodic shift of the OCP takes place in parallel to the disap-
pearance of the Warburg feature in the impedance spectra. Then, it could be postulated
that as the potential becomes more anodic, a layer of CuCl builds up, leading to a blocking
effect and the appearance of a second capacitive loop, which can be assigned to a diffusion
process of the anodic species within the CuCl salt layer. Instead of a semi-infinite diffusion
(Warburg feature), a finite length diffusion is now considered [32]. Furthermore, the OCP
values measured for the “as-cast” material evolve more rapidly, which may indicate faster
oxidability for B samples with respect to the annealed samples.
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Because of the observed changes in the EIS response, for the fitting of the experimental
data, two different equivalent circuits were required, which include either a Warburg
element, Zw, or bounded diffusion impedance, Zd, as depicted in Figure 14. For short
immersion times, the experimental data could be reasonabley fitted using the Warburg
element, while for longer immersion times, Zd was employed.
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Figure 14. Electrical equivalent circuit used for the fitting of EIS experimental data. Zw was employed
in the first 70 h for the B samples and the first 100 h for the BR samples. Zd was employed for longer
immersion times.

In Figure 14, Re represents the electrolyte resistance, R1 corresponds to the charge
transfer resistance, and Cdl corresponds to the double-layer capacitance. α1 is a Cole-Cole
dispersion parameter of the R1Cdl time constant. The impedance, Z(ω), of that circuit is
given in Equation (6), where j =

√
−1 andω = 2πf.

Z(ω) =
R1

(jωR1Cdl)
α1 + R1

R1+(Zd or ZW)

(6)

The Warburg, Zw, and diffusion bounded impedance, Zd, are defined in Equation (7) [33,34].

ZW = σ√
ω
(1− j))

Zd = Rd
tanh

(√
(jωτd)

αd
)

√
(jωτd)

αd

(7)

In Equation (7), the parameters α, Rd and τd contain information about the diffusion
coefficient of the diffusing species. τd is the time constant of the diffusion process. A
Cole-Cole type dispersion parameter, αd, was also included for this time constant.

In the fitting procedure, the experimental data were truncated at 105 Hz to avoid
the capacitive contribution of the reference electrode, which is evident in Figure 12 at the
high-frequency limit.

The good agreement between the experimental and fitted data to the proposed equiva-
lent circuits is shown in the Nyquist diagrams depicted in Figure 15, corresponding to a B
(as-cast) sample at 24 h and at 192 h of immersion.
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The values of the calculated best-fitting parameters for both materials using the
proposed equivalent circuits are displayed in Tables 5 and 6.
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Table 5. Values of the fitting parameters for a B (as-cast) sample at different immersion times in the
chlorinated solution.

Time
(h)

Re
(Ω cm2)

R1
(Ω cm2)

Cdl
(µFcm−2) α1

W
(Ω cm2 s−1/2)

Rd
(Ω cm2) τd (s) αd

1 17 1111 183 0.82 128 - - -
4 17 2028 280 0.82 124 - - -
24 17 1729 253 0.80 124 - - -
48 17 2465 193 0.77 299 - - -
72 17 1959 194 0.75 - 10,550 42.0 0.80

144 17 4381 378 0.70 - 15,684 116.4 0.84
168 16 5108 442 0.70 - 12,553 76.4 0.95
192 17 6400 631 0.67 - 15,038 128 0.68

Table 6. Values of the fitting parameters for a BR (annealed) sample at different immersion times in
the chlorinated solution.

Time
(h)

Re
(Ω cm2)

R1
(Ω cm2)

C1
(µFcm−2) α1

W
(Ω cm2 s−1/2)

Rd
(Ω cm2)

τd
(s) αd

1 22 3826 138 0.77 154 - - -
4 22 4083 154 0.77 152 - - -
24 22 4510 186 0.76 290 - - -
48 23 6591 215 0.76 268 - - -
72 23 6469 247 0.73 267 - - -

144 22 4187 113 0.72 - 15,792 30.2 1
168 21 3462 126 0.71 - 18,769 62.3 1
192 21 3648 130 0.61 - 17,321 68.0 1

A first look to Tables 5 and 6 reveals that the Re values for the BR (annealed) material
are higher than those obtained for the B (as-cast) material. As the electrolyte and cell
geometry are invariant, that difference in Re can only be attributed to a dissimilar surface
resistivity, which can be explained through the incorporation of Ni and Al ions into the
crystal lattice of the Cu oxides. This incorporation increases the number of copper vacancies
and decreases the number of electron holes of the p-type Cu2O oxide, which increases the
electrical resistivity of the oxide [21]. Thus, the higher Re for the BR (annealed) sample
correlates well with previous data and may be explained in terms of a greater incorporation
of Al and Ni ions into the oxide formed on its surface.

At short immersion times, both the Cdl and R1 values rise, which is in agreement
with the OCP evolution. The OCP values may be explained in terms of the accumulation
of precipitated corrosion products on the electrode surface. These products increase the
roughness of the electroactive surface, which leads to higher Cdl values. For the B samples,
the Cdl values are higher than for the BR (annealed) samples, by almost twice, which
could be ascribed to the formation of a more defective and porous surface layer. The
progressive accumulation of corrosion products also acts by blocking the porous surface,
and R1 increases. The lower R1 values for the B (as-cast) samples in comparison with
the annealed material evidences a faster charge transfer process across the double layer.
Moreover, for each of the analysed immersion times, the values of the Warburg coefficients
were slightly higher for the BR (annealed) samples. Both the higher R1 and the larger
Warburg coefficients for BR might indicate a higher corrosion resistance for this material.

At immersion times over 70 h for the B (as-cast) material and 100 h for the BR (annealed)
material, the accumulation of corrosion products on the electrode surface starts to become
important, and the blocking effect begins to dominate the corrosion process. Now, the
impedance spectra were best fitted to a model of linear diffusion through a finite layer.

For the annealed sample, Cdl and R1 remain practically constant at times over 100 h.
This could indicate that some kind of steady state was achieved. However, for the B (as
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cast) samples, the Cdl and R1 values still maintain a trend to increase even at the longest
immersion times, which could indicate that the oxide layer formed on this sample is not yet
stabilised. At that stage, Rd mostly dominates over R1; as such, it defines the corrosion rate.

4. Conclusions

The influence of annealing on the microstructure and corrosion resistance of a complex
copper aluminium alloy was studied in this paper, and the following conclusions can
be drawn:

1. The microstructure of the B (as-cast) samples consists of α grains, some retained
β-phase, and precipitates of the K-phase. Annealing induces a refinement of the
α-phase grain size; the retained β-phase disappears and increases the density of fine
K-phase precipitates in the α-phase.

2. Microstructural changes play an important role in dealloying corrosion resistance
and in the properties and structure of the oxide layer grown. As such, the dealloy-
ing corrosion resistance of annealed samples is better than that of “as-cast” sam-
ples. The better resistance for the BR (annealing) sample is justified in terms of
more homogeneous microstructure, which does not allow the existence of a contin-
uous path for dealuminisation, and also limits the presence of sites available for
galvanic coupling.

3. In chloride-containing media, the oxide layer developed on “as cast” and annealed
samples in OCP conditions is formed basically for Cu2O. Nevertheless, differences in
the composition of the air-formed layer and in the electrochemical reduction curves
evidence changes in the properties and composition of these cuprous oxides. The
obtained results indicate, as a consequence of the more homogenised microstructure,
a larger incorporation of Cu2+, Ni2+, and Al3+ into the structure of the Cu (I) oxide
formed on the BR (annealed) samples.

The greater incorporation of Cu2+, Ni2+, and Al3+ in the oxide layer improves the
corrosion resistance. This improvement is indicated by the lower current density registered
for the BR (annealed) samples in the cyclic voltammograms at all of the scanned potentials,
and by the EIS spectra, which indicate that the B (as-cast) samples are easily oxidized,
finally resulting in poorer corrosion resistance.
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