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Abstract: In the oil and gas industry, the manufacture of equipment using materials that resist
aggressive media is one of the greatest challenges. UNS S31803 duplex stainless steel is widely
used for this purpose owing to its good combination of mechanical and corrosion resistance. The
objective of this work was to evaluate the effect of induction solution heat treatment using autogenous
TIG welding on UNS S31803 DSS sheets. Sheet samples were subjected to two different treatment
parameters for a duration of 10 s and at temperatures of 1050 and 1150 ◦C. The results obtained
with the treatments were compared with those of the as-welded condition, which was the reference
condition. Quantitative and qualitative analyses of the samples were carried out, in addition to
microstructural characterization using confocal microscopy and a corrosion resistance study as per
ASTM G48 standard. We observed that the best results were obtained with a treatment of 10 s at
1150 ◦C, which was able to eliminate chromium nitrides and re-establish the proper balance of the
ferrite and austenite phases. In addition, the treatment was able to reduce hardness and provide
welds free of cracks and discontinuities, also presenting a low corrosion rate.

Keywords: duplex stainless steel; welding; corrosion; solution heat treatment

1. Introduction

The dual-phase microstructure of duplex stainless steels (DSSs) consists of equally
balanced volumetric fractions of ferrite and austenite. This steel is commonly used in the
manufacture of equipment in the oil and gas industry due to its combination of favorable
characteristics, such as mechanical and corrosion resistance. However, the service behavior
of this material depends on its microstructure, which is strongly influenced by thermal
processes, such as welding, which can lead to microstructural changes [1,2].

UNS S31803 is a DSS that combines these two properties. The use of this material
in aggressive media has been increasingly explored in the oil industry, and its use has
occurred in numerous areas, especially in the production of flexible pipelines. However,
this DSS, when subjected to high temperatures, can have its microstructural characteristics
altered, and these changes can lead to the loss of important properties. Excess ferrite and
undesirable precipitates might cause catastrophic deterioration of properties, especially
corrosion resistance and toughness [3].

Most applications of DSSs require some welding process, and for this reason, their
weldability has been the subject of extensive investigation [4]. Although modern DSSs are
designed to have excellent weldability, being able to be welded by most processes, it is
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necessary to adapt the welding procedure due to the fact that dual-phase microstructures
are sensitive to the imposed conditions [4,5]. For example, when welding a DSS with high
heat input, ferrite can be converted to CrN and Cr2N, while austenite does not undergo the
same process [6]. Thus, some precautions need to be taken regarding the parameters and
welding procedures performed, aiming at the preservation of mechanical properties and
corrosion resistance [4]. Therefore, practices such as carrying out the process of welding
in narrow ranges of welding energy and performing temperature control, for example,
must be adopted. However, this might not be always possible or sufficient; therefore,
it is necessary to carry out post-weld heat treatments (PWHTs), which aim to reduce
the residual stresses generated due to solidification in order to avoid the propagation of
welding cracks and, mainly, to solubilize the undesirable precipitates in order to re-establish
the equilibrium of the ferrite and austenite phases [7]. A literature review [8,9] showed
that there is a strong relationship between the PWHT parameters, microstructure, and
pitting corrosion behavior of welded joints. The main types of heat treatment associated
with welding operations are annealing, normalizing, tempering, solubilization, quenching,
preheating, postheating, and stress relief.

Currently, most studies [10,11] have applied heat treatments to dissolve the secondary
phases and improve the ferrite/austenite balance, and for this, the solution heat treatment
is applied. This consists of a treatment that makes a dissolution, in the solid state, of
elements that were previously precipitated, followed by cooling fast enough to allow these
elements to retain in the matrix. Its purpose is to leave the material in the best condition for
application, dissolving most of the precipitates formed during the solidification process.

There are many types of postweld heat treatments, of which induction heat treatment
is one of the most energy-saving and high-efficiency methods. As pointed out by some
authors [12], the high heating rate and short retention time of induction heating can increase
austenitization superheating as well as the austenite nucleation rate. This is beneficial for
obtaining uniform and fine austenite grain and improving the strength and toughness of
subsequent cooling transition products [12]. In addition, unlike traditional heat treatment
methods, induction heating can be performed in situ without the need to remove the parts
and localize the heat by altering the voltage distribution at a given spot on the component.
In addition, by designing the shape and size of the induction coil, the method can produce
parts with complex structures [13]. Zhang et al. investigated the influence of induction
and treatment postweld heat treatments on the corrosion properties of SAF 2205; they
found that induction heating creates a significant thermal gradient and different corrosion
resistances along the weld bead thickness.

The literature indicates [14–16] that there is a strong relationship between the heat
treatment parameters (temperature and time) as well as the morphology, phase fraction,
and dissolution of precipitates on the material’s microstructure. Thus, the objective of this
research was to characterize and evaluate the effects of different parameters of induction
solubilization heat treatment on the microstructure of the base metal (BM), the fusion zone
(FZ), and the heat-affected zone (HAZ) of DSS type UNS S31803.

2. Materials and Methods

Samples of UNS S31803 DSS, commercially known as SAF 2205, were used on sheets
with a thickness of 2.5 mm. This DSS is generally used in the manufacture of flexible pipes.
Table 1 shows the chemical composition of the UNS S31803 sheets.

Table 1. Composition of UNS S31803 (wt %) [17].

Element C Mn Si Cr Ni P S Mo

Content 0.03 1.37 0.47 21.0–23.0 4.5–6.5 0.03 0.01 2.5–3.5

The sheets were welded by the automatic TIG process, with a pulsed direct current,
direct polarity (DC-), and without the addition of metal, thus configuring an autogenous
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process. Three samples were prepared. After the welding procedure, two of them were
subjected to induction solution heat treatment, dissolving precipitates that were formed
during the solidification process in the welding. The treatments were carried out at temper-
atures of 1050 and 1150 ◦C, for a duration of 10 s. Cooling was conducted naturally, in air,
to room temperature (RT). The two samples were compared with the condition without
heat treatment, named “reference condition” or “as-welded condition”.

The welded samples were cut in order to evaluate their microstructure along three
regions: edge, 1/4 region, and 1/2 region, as shown in Figure 1. The length and width of
the samples were 25 and 7 mm, respectively.
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The samples were then subjected to metallographic preparation, passing through the
steps of embedding, sanding, polishing, and two different etching methods, for comparison
purposes. The initial method of etching was performed by immersing the samples in
Behara I solution (0.3 g of K2S2O3 + 10 mL of Na2S2O3·5H2O in 100 mL of distilled water)
for a period of 60 s. This etching revealed only the ferrite and austenite phases. The second
method performed was the electrolytic etching, with the immersion of the samples in a
10% oxalic acid solution, current of 3 A, voltage of 3 V, and etching time ranging from 6 to
20 s. This etching revealed, in addition to the ferrite and austenite phases, the presence of
chromium nitrides (CrN e Cr2N).

Confocal (model Olympus OLS400, Shinjuku, Tóquio, Japão) and optic (model Olym-
pus BX51M, Shinjuku, Tóquio, Japão) microscopes were used in order to perform the
qualitative and quantitative microstructural characterization of the samples. The character-
ization of the microstructure was carried out to evaluate not only the microstructure of the
base metal (BM), the heat affected zone (HAZ), and the fusion zone (FZ) but also the possi-
ble precipitates, such as nitrides and carbides. In addition, it allowed quantitative analysis.

2.1. Quantitative Analysis of Phases

The quantitative analysis allowed the quantification of ferrite present in the samples.
This quantification was performed using two different methods for comparison purposes.
The first one was the manual method of counting points, specified in the ASTM E562-11 [18]
standard, superimposing a mesh of 100 points on each image of interest. We captured
20 images per sample, 10 from the HAZ and 10 from the FZ. The images, in this case,
were obtained using an Olympus OLS400 confocal microscope, (model Olympus OLS400,
Shinjuku, Tóquio, Japão) with a magnification of 1075×. This quantification method was
applied to samples with microstructures obtained after electrolytic etching with 10% oxalic
acid, which revealed the ferrite and austenite phases and the chromium nitrides. The
second method was applied through a BX51M microscope (Olympus, Shinjuku, Tóquio,
Japão), which works with Stream Essentials software (1 St. version; USA) for capturing
images and quantification. For this, Behara I etching was used. The count was automatically
performed through the difference between the tonality of the phases because this etching
makes the austenite light (white) and the ferrite dark (black/grey). The recording of the
images, in this case, was performed using an Olympus BX51M microscope (Olympus,
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Shinjuku, Tóquio, Japão) at 500× magnification. We captured 30 images per sample, 15
from the HAZ and 15 from the FZ.

The quantification performed by the two methods provided the percentage of ferrite
in each of the recorded images. From this, the average was calculated for each region of
each sample. Thus, 30 averages were obtained with each method. The values found by the
manual method were statistically compared with the values obtained with the automatic
method. This comparison was performed using Student’s t-test to verify whether the two
quantification methods were equivalent. A significance level of 5% was considered. In
addition, Student’s t-test also evidenced the variance, which measures statistical dispersion,
i.e., it shows how far the data are from the expected value (average). From this, it was
possible to determine which of the two methods presented the smallest dispersion.

2.2. Bending Test

Two bending tests were applied for each condition. The test was carried out in a P10ST
hydraulic press (SOLOTEST, São Paulo, Brazil), and for each tape, the test was repeated
toward the top and root of the weld. The ASME IX [19] standard was followed. After the
bending test, the liquid penetrant test was performed in order to assess whether there were
cracks and discontinuities in the weld resulting from the bending constraint.

2.3. Hardness Test

For hardness measurements, an automatic Tukon 250 microhardness tester (TUKON,
Berlin, Germany) was used, applying the Vickers hardness method with a load of 500 g (HV
0.5), during a period of 10 s. Six hardness test analyses were performed, and symmetry in
the weld structure was considered, with two indentations within each zone to be analyzed.
It was performed passing through the BM, HAZ, and FZ on one sample of each welded
condition. The markings performed in this test were made according to the hardness profile
shown in Figure 2.
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2.4. Corrosion Test

Corrosion tests were performed using ferric chloride, according to ASTM G48 [20]–method
A. It was necessary to remove the samples used in the metallographic test from each
condition to obtain specimens to perform the corrosion tests. Thus, 9 samples were obtained
to be tested. The three regions of the weld, of each welding condition, containing FZ, HAZ,
and part of the adjacent BM, were subjected to the test. The corrosion rate was calculated
according to the equations of NACE RP 0775 [21].

3. Results and Discussion
3.1. Qualitative Analysis

Figure 3 shows the microstructure found in the BM of UNS S31803, where the distri-
bution of elongated austenite lamellae (lighter phase) immersed in a ferritic matrix (darker
phase) in the lamination direction can be observed. This is the characteristic structure
of this type of material. It is possible to perceive an apparently equivalent distribution
between these phases. The microstructure observed is consistent with that described by
Freitas et al. [22] for laminated DSS.
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Figures 4 and 5 represent the microstructure found after the welding process (reference
condition) in the FZ and HAZ, respectively. It is possible to perceive a morphological
alteration of the present phases. The initially elongated grains of ferrite and austenite,
observed in the BM, were altered after the thermal cycle imposed by the welding process. In
addition, it is possible to observe in the images in Figures 4 and 5 the different morphologies of
austenite: grain boundary austenite (GBA), Widmanstatten austenite (WA), and intragranular
austenite (IGA), which is consistent with the microstructure found in similar work [23].
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In addition, it is possible to visually notice the imbalance in the proportion of the
phases, as cited by several authors [5,24,25]. As a result, an excessive ferrite content and
precipitation of chromium nitrides were observed in the HAZ, as described. In the FZ, there
were a lower fraction of ferrite and, consequently, a lower amount of chromium nitrides
compared with the HAZ.

In general, the microstructure characteristics seen in the BM, HAZ, and FZ of the
reference condition (as welded) were similar to those observed in the other heat-treatment
conditions applied in this work.

3.2. Microstructural Characterization
3.2.1. As Welded Condition

The as-welded condition was the reference condition, which did not receive any heat
treatment. The welding energy used was 2.81 KJ/mm. Figure 6 shows the microstructure
observed in the FZ of the as-welded condition sample.
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It is possible to observe a typical microstructure of a DSS welded with low welding
energy, presenting a ferritic and austenite matrix with a morphology of larger grains
and without preferential direction, in addition to the presence of chromium nitrides in
the ferritic matrix, as described [12]. This was seen both at the edge and in the 1/4 and
1/2 regions. A large amount of chromium nitrides was present in the microstructure in
all regions of the sheet, both in the FZ and HAZ. However, there was a greater amount
of precipitation of these nitrides in the HAZ, owing to the high amount of ferrite in this
region, which was due to the low heat input and welding without filler metal (autogenous).
The microstructure found in the HAZ can be seen in Figure 7.
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No intermetallic precipitates were identified in the microstructure other than chromium
nitride (Cr2N).

3.2.2. Solution Heat Treatment for 10 s at 1050 ◦C

The microstructure found in the FZ and HAZ of the sample treated at 1050 ◦C for 10 s
is shown in Figures 8 and 9, respectively.
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Figure 9. Microstructure observed in the HAZ of the sample subjected to postwelding solution heat
treatment for 10 s at 1050 ◦C: (a) edge; (b) 1/4 region; (c) 1/2 region.

In the FZ, the edge region showed high austenite content and microstructure with no
nitrides. However, the 1/4 and 1/2 regions showed a high fraction of chromium nitrides
in a greater amount than in the welded condition, with ferrite and austenite contents
apparently close to equilibrium.

In the HAZ, the absence of nitrides was also observed in the edge region, but with a
proportion of ferrite to austenite close to equilibrium. The 1/4 and 1/2 regions showed
high volumetric fractions of chromium nitrides in a considerably higher amount than in
the welded condition. Furthermore, in these regions, the ferrite content was considerably
higher. The presence of chromium nitrides in the microstructure, even after postwelding
heat treatment, could be attributed to the low temperature of the solubilization combined
with insufficient retention time for the dissolution of these precipitates [26].

3.2.3. Solution Heat Treatment for 10 s at 1150 ◦C

The microstructure observed in the FZ and HAZ of the sample treated at 1150 ◦C for
10 s is shown in Figures 10 and 11, respectively.
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In this condition, the edge, as well as the 1/4 and 1/2 regions, did not present nitrides
in a significant amount in their microstructure, either in the FZ or HAZ. Thus, we found
that the chromium nitrides were significantly solubilized in the ferritic matrix after the
induction solution heat treatment in the different weld regions analyzed. Thus, we affirmed
that PWHT promoted the dissolution of the nitrides [26].

PWHT also caused an increase in austenite content, and this behavior was the same
for edge, 1/4, and 1/2 regions. In the FZ, the austenite content became higher than that of
ferrite but maintained a proportion considered acceptable. In the HAZ, there was a balance
between the proportions of ferrite and austenite. We also noted the presence of different
austenite morphologies: WA, IGA, and GBA.

3.3. Methods Used
3.3.1. Manual Method

In general, all samples presented ferrite percentage values within the recommended
range of 30% to 70%. The exceptions were the entire HAZ of the welded condition, which
presented a phase imbalance, as expected, and the edge of the weld zone of the sample
treated at 1050 ◦C for 10 s, which presented values very close to the lower limit of 30%
(namely, 28%).

The reference condition showed high levels of ferrite in the HAZ in all regions of the
weld (reaching 75%), corroborating what was qualitatively observed in the microstructural
characterization; while in the FZ, the percentages were close to equilibrium.

The treatment at 1050 ◦C for 10 s showed unbalanced ferrite levels in both the WZ
and HAZ. In the HAZ, with the exception of the edge, high ferrite content was found
(reaching 70% in the 1/2 region). In the FZ, a low ferrite content was observed in the
edge region (28%), which explains the absence of chromium nitrides in this region; in the
1/2 region, a higher content (58%) was observed. The trend of an increasing percentage of
ferrite was identified from the edge to the middle of the weld. Therefore, we found that the
heat treatment applied in this condition was not able to re-establish the balance between
the phases.

With the treatment at 1150 ◦C for 10 s, ferrite contents considered acceptable in
all regions were identified. In the HAZ, values very close to equilibrium (from 49% to
51%) were obtained; in the FZ, lower percentages of ferrite were obtained but within the
satisfactory limit. Thus, the heat treatment applied to this condition was able to re-establish
the balance between the phases along the joint.
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3.3.2. Automatic Method

As for the manual method, all samples showed ferrite levels within the recommended
range of 30% to 70%. The exceptions were the entire HAZ of the welded condition, which
presented a phase imbalance, as expected, and the 1/2 region of the HAZ of the sample
treated at 1050 ◦C for 10 s. Despite this, the values remained very close to the upper limit
of 70%.

The reference condition showed high levels of ferrite in the HAZ in all regions of the
weld; in the HAZ, the percentages were close to equilibrium.

With the treatment at 1050 ◦C for 10 s, in the HAZ, with the exception of the edge, a
high ferrite content was found (reaching 72% in the 1/4 region). In the FZ, a lower ferrite
content was observed in the edge region (34%), while the 1/4 and 1/2 regions maintained
values close to equilibrium. The trend of an increasing percentage of ferrite was identified
from the edge to the middle of the weld.

In the treatment at 1150 ◦C for 10 s, all percentage values of ferrite and austenite were
close to equilibrium.

3.3.3. Statistical Analysis for Comparison of Methods: Student’s t-Test

After 30 tests, 15 hypotheses were accepted at a significance level of 0.05 (α = 5%).
Thus, the manual and automatic methods for phase quantification were equivalent for 50%
of the comparisons, with a confidence level of 95%.

The test also showed that the variance of the quantification of the automatic method, in
general, was smaller than that of the manual method. Of 30 tests performed for comparison,
the variance of the automatic method was significantly lower than that of the manual
method in 77% of cases. Although the methods were equivalent, the low dispersion
between the values obtained in the automatic method showed greater precision, as well as
the accuracy and reliability of data extracted from the images.

3.4. Bending Test

After evaluation, we found that all specimens subjected to the bending and penetrating
liquid test obtained results considered satisfactory according to the ASME IX criterion [19],
which defines that the test is acceptable if there are no cracks and discontinuities greater than
3.2 mm. None of the welded conditions presented cracking and/or opening in the weld.

3.5. Hardness Test

The hardness results ranged from 247 to 303 HV, with a mean value of 269.58 ± 12.07 HV
overall. According to NACE Standard MR0103-2016 [27], for welded DSSs, the average
hardness should not exceed 310 HV, and no individual reading should exceed 320 HV. We
found that all the values found were within the acceptable limit. Table 2 shows the mean of
the results for each sample.

Table 2. Average hardness value for each sample.

Sample Hardness

A- welded condition 276.78 ± 6.44
10 s at 1050 ◦C 278.61 ± 11.45
10 s at 1150 ◦C 262.72 ± 9.43

It can be seen that the as-welded condition and treatment for 10 s at 1050 ◦C presented
the highest hardness values, showing very close values. This was possibly due to the greater
precipitation of chromium nitrides in these samples. In addition, these were the samples
that presented higher ferrite contents, and an increase in the amount of ferrite increased
the hardness of the DSS because ferrite has a microstructure with greater hardness [3].

The hardness results showed that the change in the investigated heat treatment param-
eters did not cause significant effects. Therefore, all welded conditions were satisfactory.
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3.6. Corrosion Resistance

Table 3 shows the results found for the corrosion rate under each of the conditions.

Table 3. Average corrosion rate of each sample.

Corrosion Rate As-Welded 10 s at 1050 ◦C 10 s at 1150 ◦C

(mm/a) 2.2379 7.0744 0.1485
(g/m2d) 45.7234 152.8710 3.1920

It can be seen that the treatment at 1050 ◦C for 10 s showed the highest corrosion rate,
even higher than the as-welded condition. This findings confirms the results previously
seen because this was the sample that presented the highest amount of chromium nitrides,
in addition to a large proportion of ferrite. The high corrosion rate was attributed to the
high number of nitrides in the ferritic matrix. These results showed that PWHT was not
effective because the corrosion rate values found in this group were close to or even worse
than those in the condition without PWHT. In addition, we observed that the highest
incidence of corrosion occurred in the 1/2 region of the weld.

The lowest corrosion rate was found for the sample treated at 1150 ◦C for 10 s, which
presented a microstructure free of chromium nitrides and with proportions of ferrite and
austenite within the expected limit. This confirmed the results previously seen in the
microstructure, with the absence of nitrides and a close-to-equilibrium phase ratio.

4. Conclusions

For the sample treated at 1050 ◦C for 10 s, the postweld heat treatment (PWHT) was
considered partially efficient, being effective at the edge but not effective in the other regions.
Compared with the welded condition, it presented similar hardness values but was not
able to significantly reduce the ferrite content in all regions. Only the edge microstructure
showed the solubilization of chromium nitrides, while the 1/4 and 1/2 regions showed
high proportions of this precipitate. The corrosion rate in this condition was higher, with a
value about three times higher than in the welded condition, confirming that the PWHT
under these parameters was not efficient.

For the sample treated at 1150 ◦C for 10 s, the PWHT was considered efficient. The mi-
crostructure along the entire weld (edge, 1/4, and 1/2 regions) became free of nitrides, with
ferrite and austenite contents close to equilibrium and considered acceptable. Hardness
was also reduced compared with that in the welded condition. Thus, the microstructure
after heat treatment resulted in a low rate of pitting corrosion.

The automatic method of phase quantification showed less dispersion of results
compared with those of the manual method. In addition, the need for considerably less
time for analysis is considered adequate.

We found that postweld solution heat treatment, in general, was able to reduce the
hardness and provide acceptable welds, with no cracks or discontinuities, according to the
results of the bending test. The results of the corrosion test confirmed what was seen in
the microstructural analyses: the corrosion rate was higher for higher ferrite contents and
increased precipitation of chromium nitrides.
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