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Abstract: Designing a material to realize the simultaneous improvement in strength and ductility
is very meaningful to its industrial application. Here, the first-principles calculations based on
density functional theory (DFT) were adopted to investigate the stability, elastic properties and Debye
temperature of binary Cu–Cr alloys; and the effect of micro-alloying elements on their mechanical
properties, including the bulk modulus B, shear modulus G, Yong’s modulus E and Poisson’s ratio σ,
was discussed. The elastic constants show that all the studied binary Cu–Cr alloys are mechanically
stable, and the Cu–0.7Cr alloy has a combination of good strength and ductility. Moreover, the
addition of Ag, Sn, Nb, Ti and Zr can improve the basic properties of Cu–0.7Cr alloy, and the
Cu–0.7Cr–1.1Sn possess a large strength combined with improved ductility and strong covalent
bonds due to the large Debye temperature. Additionally, the introduction of Y and In further
improves the mechanical properties (strength and ductility) of the excellent Cu–0.7Cr–1.1Sn alloy.
Our studied results can provide guidance for the theoretical design and experimental improvement
of Cu-based alloys.

Keywords: Cu–Cr alloy; DFT calculation; composition design; strength and ductility

1. Introduction

Due to their excellent strength, plasticity and conductivity, the Cu–Cr alloys have
been widely used in the railway transportation industries [1], electrode materials [2] and
even ultra-large-scale integrated circuit lead frames [3–5], but the industrial application of
binary Cu–Cr alloy is limited because of the poor softening resistance at high temperatures,
which is caused by the unstable and coarsening Cr precipitate of Cu matrix during aging
treatment [3,6]. To further improve the mechanical properties of binary Cu–Cr alloys, the
micro-alloying elements are added to the Cu matrix [7,8]. For instance, Xiao et al. [9] found
that the introduction of trace Ca and Sr could obviously improve the softening resistance
of Cu–0.57Cr alloy; the high-density dislocations and fine Cr precipitates resulted in the
high strengths of Cu–Cr–Ca and Cu–Cr–Sr alloys. Additionally, adding 0.28 wt% Ti into
Cu–0.45Cr alloy can inhibit its recrystallization and increase the softening temperature
of this alloy [10]. Moreover, Sn addition can realize the simultaneous improvement in
yield strength and electrical conductivity of Cu–0.67Cr alloy [11]. Apart from those micro-
alloying elements, the introduction of Nb, Mg, Zr and Hf was also demonstrated to improve
the comprehensive properties of binary Cu–Cr alloys [12–15].

Currently, many researchers also employ the experimental method to study the feasi-
bility and effectiveness of adding noble metal and rare earth (RE) into Cu–Cr alloys. For
example, Xie et al. [4] reported that a small amount of Ag could enhance the solution
strengthening and obviously restrict the chain precipitation of Cr precipitates for the Cu–Cr
alloys and revealed that the Cu–0.89Cr alloy containing 0.44 wt% Ag had the outstanding
mechanical-electrical properties. Jie et al. [5] investigated the effects of various Y content on
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the mechanical properties of Cu–0.9Cr and Cu–1.45Cr alloys and found that the addition of
Y could effectively refine the eutectic structure, inhibit the coarsening of Cr precipitates
and increase the dislocation density, which results in the good balance of tensile strength,
hardness and electrical conductivity. Moreover, the Y was also found to obviously improve
the high-temperature performance of the Cu–Cr–Zr alloy, and the minor Sc, Er had a similar
positive effect on the Cu–Cr–Zr alloy [16]. Additionally, the addition of Yb restricted the
coarsening of Cr-rich precipitates in Cu–Cr–Yb alloy, which makes this alloy possess better
softening resistance, higher strength and electrical conductivity in comparison with Cu–Cr
alloy [17]. All those studies show that the microalloying method is an effective way to
realize the improvement of strength and ductility.

Nowadays, the first-principles calculations based on the density functional theory
(DFT) method are also an effective way to design high-performance materials, such as
Fe-based alloy [18], Al-based alloy [19] and high entropy alloys [20,21]. Compared with
the experimental method, the DFT computations possess the advantages of low cost, con-
venience and high accuracy and thus have been extensively used in the evaluation and
screening of materials. For example, Vitos et al. [18] employed quantum mechanical calcu-
lations to conduct the design of austenitic stainless steels, they found that the Fe58Cr18Ni24
alloy had the optimal combination of hardness, ductility and corrosion resistance, and
its basic properties would be further enhanced by the addition of osmium and iridium.
With the help of the DFT method, Wang et al. [22] reported that the Nd and Mn had great
strengthening potentials for the Mg alloy, and the local atomic ordering strategy could be
used to design the high-strength Mg alloys. Additionally, the high-performance high en-
tropy alloys can be effectively screened by calculating elastic and mechanical properties [20].
However, there are few pieces of literature about the theoretical design of high-strength
Cu–Cr alloys based on the DFT method.

In this work, the first-principles calculations were employed to study the lattice
constant, elastic constant and mechanical properties of different Cu–Cr alloys. The virtual
crystal approximation (VCA) approach [23] was used to construct all the Cu-based alloys
models. The stability and elastic properties of binary Cu–Cr alloys were firstly calculated
and analyzed. After the screening of the excellent binary Cu–Cr alloys, the different
micro-alloying elements, including Ag, Sn, Nb, Ti, Zr, In and rare earth (Y, Sc, Yb), were
added to this outstanding class of Cu alloys, and their elastic constants and moduli were
systematically discussed. Finally, the ternary and quaternary Cu–Cr alloys with high
strength and ductility were obtained. Our work can provide guidance for the theoretical
design and experimental improvement of Cu-based alloys.

2. Calculation Method and Details

All the calculations in this work were performed by using the Cambridge Serial Total
Energy Package (CASTEP) Code [24,25] based on the density functional theory (DFT).
The ultra-soft pseudopotential scheme [26] was used to describe the interactions of ionic-
core and valence-electrons. The exchange–correlation energy was treated by the Perdew–
Burke–Ernzerh of (PBE) of generalized gradient approximation (GGA) functional [27].
The cutoff energy of plane waves was set as 500 eV for the geometry optimization and
elastic properties calculations, and the k-points meshes of 14 × 14 × 14 sampled in the first
irreducible Brillouin zone [28] were chosen for high accuracy. The convergence thresholds
of the total energy tolerance, maximum force tolerance and maximal displacement were
5.0 × 10−6 eV/atom, 0.01 eV/Å, and 5.0 × 10−4 Å, respectively. The Broyden–Flecher–
Goldfarb–Shanno (BFGS) method was used for geometry optimization. All the Cu–Cr alloy
models were built by the virtual crystal approximate (VCA) method, which was proved to
be accurate enough for the disorder solid solution [23,29–31]. The calculated lattice constant
of fcc-Cu in this work is 3.630 Å, which matches well with experimental data (3.636 Å) and
other calculated results [32,33], indicating that our parameters are reasonable.
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3. Results and Discussion
3.1. Elastic Properties of Binary Cu–Cr Alloy

The elastic constants Cij of a compound or alloy can be used to evaluate its mechanical
property, which can be obtained by the stress–strain method based on the generalized
Hooke’s law. For the face-centered cubic crystal, the mechanical stability follows the
following conditions:

C11 > 0, C44 > 0, C11 − C12 > 0, C11 + 2C12 > 0 (1)

our calculated C11, C12 and C44 of fcc-Cu are 185.16 GPa, 113.61 GPa and 79.87 GPa, which
are consistent with the calculated results of Zhan [32]. Moreover, all the studied pure Cu
and Cu–Cr alloys are demonstrated to meet the stability conditions. According to the
elastic constants Cij, the elastic properties of Cu–Cr alloys, including bulk modulus (B),
shear modulus (G), Young’s modulus (E) and Poisson’s ratio (σ), can be determined by the
Voigt–Reuss–Hill approximation:

BH= Bv= BR = 1
3 (C 11+2C12) Gv = 1

5 (C 11−C12+3C44) GR =
5(C 11−C12)C44

4C44+3(C 11−C12)
GH = 1

2 (G v+GR)

E = 9BH GH
3(B H+GH )

σ = 3BH−2GH
2(3B H+GH )

(2)

where the BV and BR are the bulk modulus calculated by Voigt and Reuss method, respec-
tively. The GV and GR are the shear modulus calculated by Voigt and Reuss method, respectively.

It is well known that the solubility of Cr atom in Cu is less than 1.28 wt%; thus, the
Cu-based alloys containing 0~1.3% Cr with the interval of 0.2% are taken into account, and
the calculated elastic properties are summarized in Table 1. Our calculated B (137.46 GPa)
and G (57.86 GPa) of pure Cu agree well with the previously reported results [34]. The
B of polycrystalline alloy is often in direct proportion to the cohesive energy [35], which
represents the resistance of the material to bond rupture [36], while the G of polycrystalline
alloy represents the opposition of the material to plastic deformation, which can be used
to evaluate the mechanical hardness of alloys in the annealed state [37,38]. Moreover, the
B/G ratio is closely related to the ductility of alloys, the large (small) B/G ratios mean the
ductile (brittle) alloys [36]. Figure 1 gives the calculated B, G and B/G of various binary
Cu–Cr alloys; one can see that the shear modulus gradually decreases with the increasing
Cr content, and the B/G exhibits the opposite tendency, but the bulk modulus irregularly
fluctuates. After comprehensive consideration, the Cu–0.7Cr alloy has a relatively large B
corresponding to the large G and large B/G. Therefore, the Cu alloy containing about 0.7%
Cr should have a combination of high strength, large hardness and good ductility.

Table 1. The calculated elastic constant (C11, C12 and C44, GPa), Zener’s elastic anisotropy constant
(A), bulk modulus (B, GPa), shear modulus (G, GPa), B/G, Young’s modulus (E, GPa) and Poisson’s
ratio (σ) of different Cu–Cr alloy, where the A = 2C44/(C11−C12).

Composition (wt%) C11 C12 C44 A B G B/G E σ

Pure Cu 185.16 113.61 79.87 2.23 137.46 57.86 2.38 152.23 0.32
Cu–0.1Cr 185.56 113.33 80.88 2.24 137.41 58.52 2.35 153.74 0.31
Cu–0.3Cr 182.73 113.50 83.14 2.40 136.58 58.50 2.33 153.58 0.31
Cu–0.5Cr 176.98 117.87 83.69 2.83 137.57 55.17 2.49 146.00 0.32
Cu–0.7Cr 167.57 122.21 81.23 3.58 137.33 48.89 2.81 131.11 0.34
Cu–0.9Cr 160.45 127.30 76.46 4.61 138.35 41.89 3.30 114.14 0.36
Cu–1.1Cr 153.27 127.88 71.18 5.61 136.34 36.41 3.74 100.31 0.38
Cu–1.3Cr 150.85 129.63 66.07 6.23 136.70 32.63 4.19 90.69 0.39
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Cr content.

The Poisson ratio σ can be employed to estimate the degree of the covalent bond and
predict the ductile or brittle of a material [39]; when the σ is larger than 0.26, the material
has better ductility. From Table 1, the σ values of all the alloys are changed from 0.31 to
0.39, suggesting they exhibit good ductility characteristics. The stiffness of a material can
be described by the Young’s modulus, and the E greatly decreases with the increment of
Cr content due to the very large decrease in shear modulus. Moreover, the Zener’s elastic
anisotropy constant A is in the range of 2.24~6.32. When the Cr content is more than 0.7, the
A of Cu–Cr alloys is comparable and even larger than austenite stainless steel AISI 304 [18].

The Debye temperature (ΘD) is closely related to many physical properties, such as
the melting temperature [40], specific heat [41] and strength of covalent bonds in solids [42].
The higher ΘD indicates the stronger chemical bonding. The Debye temperature (ΘD) can
be calculated by [43]:

ΘD =
h

kB

[
3n
4π

(
NAρ

M

)] 1
3
vm (3)

vm= [
1
3

(
2
v3

t
+

1
v3

l

)]− 1
3

(4)

vl =

√
(B+ 4

3 G)

ρ
vt =

√
G
ρ

(5)

where h, kB and NA are the Planck constant, Boltzmann constant and Avogadro constant,
respectively. n, M and ρ are the total atom numbers per formula, molecular weight per
formula and theoretical density, respectively. νl and νt are the longitudinal sound velocity
and transverse sound velocity. According to the above equations, the calculated result is
Figure 2. It can be observed that the Debye temperature and theoretical density of Cu–Cr
alloys gradually decreased with the increment of Cr content, indicating that the high Cr
content can decrease the melting temperature and weaken the chemical bonds of Cu–Cr
alloys. In particular, the chemical bond strength of Cu–Cr alloys was dramatically decreased
when the Cr content was larger than 0.7%. Combining the mechanical properties and Debye
temperature, the Cu–0.7Cr alloy is chosen to be further studied in the next sections.
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3.2. Mechanical Properties of Ternary Cu–Cr Alloy

To improve the performance of Cu–0.7Cr alloy, the effects of the third component on
its mechanical properties are investigated. The common transition metals (X, X = Ag, Sn,
Nb, Ti and Zr) in the industrial application are taken into account. For each transition
metal, 0~1.3% X with the interval of 0.2% is added into the Cu–0.7Cr alloy due to the small
solubility of those elements in Cu. The calculated lattice parameters, B, G, and B/G, of
different ternary Cu–Cr alloys are shown in Figures 3 and 4. The Sn can obviously decrease
the lattice parameters of Cu–0.7Cr due to the small atomic radius of Sn, while the other
alloying elements have a negligible effect on it. When the Ag and Sn are introduced into
the Cu–0.7Cr alloy, the B, G and B/G are synchronously improved, and the higher Ag and
Sn concentrations lead to more excellent mechanical properties, as displayed in Figure 4a,b.
Moreover, the bulk modulus and shear modulus of Cu–Cr–Sn alloy is much larger than
those of C–Cr–Ag alloy for the same contents, which indicates that the Cu–Cr–Sn alloys
have the larger strength and mechanical hardness in comparison with Cu–Cr–Ag alloys.
However, the B/G is in the range of 2.65~2.78 and 2.80~2.83 for the Cu–Cr–Sn and Cu–Cr–
Ag alloys. Evidently, the Cu–Cr–Ag alloys exhibit better ductility due to the larger B/G.
Hence, the Cu–0.7Cr–1.1Sn and Cu–0.7Cr–1.1Ag, which have high strength and toughness,
should be the optimal compositions for the two alloys.
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When the Nb, Ti and Zr are added into the Cu–0.7Cr alloy, the B, G, and B/G undergo
great variations. With the increment of Nb, Ti and Zr contents, the shear modulus is
gradually reduced, and the B/G shows the opposite trend, as shown in Figure 4c–e. This
suggests that the large Nb, Ti and Zr concentrations are beneficial to improving the ductility
of Cu–0.7Cr alloy. In addition, the bulk modulus of Cu–0.7Cr alloy exhibits the upward
tendency with the increasing Nb, Ti and Zr, and the B of Cu–Cr–X (X = Nb, Ti and Zr)
alloys is comparable for the same X content. By comparing the B, G, and B/G, we can find
that the optimal compositions are Cu–0.7Cr–0.7Nb, Cr–0.7Cr–0.7Ti and Cu–0.7Cr–0.5Zr for
the ternary Cu–Cr–Nb, Cu–Cr–Ti and Cu–Cr–Zr alloys, respectively.

In order to conduct the screening of excellent Cu-based alloys, the elastic and me-
chanical properties of the optimal ternary Cu–Cr–X alloys are further compared and
discussed, as listed in Table 2 and Figure 5. One can see that the bulk modulus (180.76
GPa) and shear modulus (65.06 GPa) of Cu–0.7Cr–1.1Sn are much larger than those of
the other alloys, suggesting that the Cu–0.7Cr–1.1Sn alloy has the largest strength and
mechanical hardness. While the Cu–0.7Cr–1.1Sn alloy has a relatively small B/G value
and A (Figure 5), which is much smaller than that of Cr–0.7Cr–0.7Ti. Additionally, the five
ternary alloys have the comparable Poisson’s ratio σ (higher than 0.26), and thus, they all
exhibit the feature of good ductility. Moreover, the Debye temperature ΘD follows the order:
Cu–0.7Cr–1.1Sn > Cu–0.7Cr–1.1Ag > Cu–0.7Cr–0.5Zr > Cu–0.7Cr–0.7Nb > Cr–0.7Cr–0.7Ti,
Therefore, we can conclude that the covalent bonds in Cu–0.7Cr–1.1Sn is stronger than
other alloys. The ΘD of these alloys is smaller than that of pure Cu (574.65 K); this is
because the addition of alloy elements increases the molecular weight of pure copper,
as illustrated in Equation (2). Based on the above discussion, should has the optimum
compositions with good mechanical properties is the Cu–0.7Cr–1.1Sn alloy, followed by
the Cu–0.7Cr–1.1Ag alloy.

3.3. Mechanical Properties of Quaternary Cu-Cr Alloy

Based on the above discussion, the optimum ternary composition with good perfor-
mance is the Cu–0.7Cr–1.1Sn. In this section, the fourth alloying elements are introduced
into this alloy to further improve its mechanical properties. The calculated B, G and B/G
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ratios of Cu–0.7Cr–1.1Sn alloy with different contents of In, Y, Sc and Yb are shown in
Figure 6. One can see that Sc, Y and In can increase the bulk modulus of Cu–0.7Cr–1.1Sn
alloy, while the Yb can slightly decrease its bulk modulus (Figure 6a). Whereas the addition
of all the alloying elements can result in the increment of shear modulus for the Cu–0.7Cr–
1.1Sn alloy, as depicted in Figure 6b. This implies that these alloying elements can further
improve the strength and mechanical hardness, which is consistent with the experimental
observation that a small amount of Y, Sc and Yb significantly improves the strength of
Cu–Cr alloy [5,16,17]. In particular, the enhancement effects of Y are much more significant
than that of the other elements for both B and G, and the larger Y content leads to the
greater enhancement. However, most of the B/G of Cu–0.7Cr–1.1Sn alloy is decreased after
the introduction of these alloying elements, meaning that its ductility is weakened to a
different degree. By contrast, adding about 0.1% Y or 0.7% In can improve the ductility of
the Cu–0.7Cr–1.1Sn alloy, as shown in Figure 6c, which matches well with the experimental
results of Wang [5]. Therefore, the overall effect of Y or In on the Cu–0.7Cr–1.1Sn alloys
realizes the goal of simultaneously increasing the bulk and shear modulus as well as B/G.
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Table 2. The calculated bulk modulus (B), shear modulus (G), B/G, Poisson’s ratio (σ), elastic
anisotropy constant (A) and Debye temperature (ΘD) of the optimal ternary Cu–Cr–X alloys.

Composition (wt%) B, GPa G, GPa B/G σ A ΘD, K

Cu–0.7Cr–1.1Sn 180.76 65.06 2.78 0.34 2.37 491.41
Cu–0.7Cr–1.1Ag 140.40 49.67 2.83 0.34 3.79 433.00
Cu–0.7Cr–0.7Nb 138.62 42.13 3.29 0.36 4.66 398.82
Cr–0.7Cr–0.7Ti 138.55 41.38 3.35 0.36 4.77 396.05
Cu–0.7Cr–0.5Zr 138.00 45.92 3.01 0.35 4.12 414.95

4. Conclusions

In this work, the DFT method was employed to investigate the stability, elastic prop-
erties and Debye temperature of binary Cu–Cr alloys, and the effect of different alloying
elements on the mechanical properties, including Cij, B, G, E and σ, of Cu-based alloys,
was discussed. The results show that all the binary Cu–Cr alloys exhibit ductility charac-
teristics, and the Cu–0.7Cr alloy has a combination of high strength, large hardness and
good ductility due to the relatively large B, G and B/G. Moreover, the addition of Ag, Sn,
Nb, Ti and Zr can improve the strength and toughness of Cu–0.7Cr alloy, and the optimal
compositions are Cu–0.7Cr–0.7Nb, Cr–0.7Cr–0.7Ti and Cu–0.7Cr–0.5Zr for the ternary
Cu–Cr–Nb, Cu–Cr–Ti and Cu–Cr–Zr alloys, respectively. Among these ternary Cu–Cr
alloys, the Cu–0.7Cr–1.1Sn has the largest strength, mechanical hardness and covalent
bonds. Furthermore, the overall effect of Y or In on the Cu–0.7Cr–1.1Sn alloys realizes the
goal of simultaneously increasing the bulk and shear modulus. Thus, the Cu–0.7Cr–1.1Sn
alloys containing a certain Y or In should have excellent mechanical properties. Those
results illustrate that the theoretical modeling of Cu alloys based on DFT computations can
be an effective method in modern copper alloy design.
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