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Abstract: The welds of T-joints are prone to fatigue cracking owing to stress concentrations and
welding residual stresses. Previous studies investigated the crack propagation rate using numerical
simulations; however, most employed two-dimensional models and ignored the effect of residual
stresses. In this study, reliable temperature and residual stress fields were obtained through numerical
simulations and verified experimentally. The effects of residual stresses on crack propagation were
then investigated under different loading conditions. The residual stress field caused the direction
of crack propagation to shift towards the web and accelerated the crack propagation speed with
increasing displacement loading.

Keywords: T-joint; residual stresses; extended finite element method; fatigue crack propagation

1. Introduction

Structures subjected to cyclic loads are likely to experience fatigue damage. This is
particularly true for welded structures because the rapid warming and cooling of the metal
during the welding process causes uneven expansion and contraction. This phenomenon
leads to permanent plastic deformation and residual stresses in the welded structure,
thereby adversely affecting its integrity, durability, and appearance. Many studies have
conducted fatigue tests and numerical simulations to investigate the fatigue properties
of welded structures. Numerical simulations have been increasingly employed in fatigue
research owing to their reproducibility, low cost, and visualisation of internal structures.
The traditional method to study fatigue properties is based on the evaluation of the stress–
life curve (S–N curve). However, this method possesses several drawbacks: it only considers
the stage before crack initiation, ignores the initial material defects, and cannot describe
the stage of fatigue crack propagation. However, initial cracks often exist in welded
structures, and the crack propagation phase cannot be ignored. Therefore, an alternative
method of fatigue-life assessment based on fracture mechanics was introduced to overcome
these drawbacks.

The extended finite element method (XFEM) was first proposed by Belytschko and
Black [1] to simulate two-dimensional (2D) crack propagation; however, later, it was applied
to simulate three-dimensional (3D) crack propagation and then combined with Paris’ law
to simulate fatigue crack propagation. Accordingly, based on XFEM, various studies have
been conducted on fatigue crack propagation and fatigue properties under different initial
crack angles [2], multiple discontinuities [3], thermal cyclic loading [4,5], and residual
stresses [6]. Moreover, several effective models and improvements for the XFEM [7,8] have
been proposed.

The XFEM was first applied to crack propagation approximately twenty years ago [1],
and its use has proliferated since because it enables the model to be independent of the
mesh. Thus, the mesh does not have to be updated as the crack propagates. However, the
XFEM is typically used to analyse 2D problems; it is rarely used for the fatigue analysis of
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3D T-welded joints and has not to date included crack propagation analysis considering
the effects of the residual stress field.

Therefore, in this study, the temperature field during the welding of a T-joint was first
simulated as a simplified autogenous heat source and used as an initial condition to obtain
the residual stress field, which was then verified by comparison with previous tests in the
literature. The XFEM was then combined with Paris’ law to analyse the crack propagation
in the T-joint with and without the residual stress field as the initial stress field. The results
show that the residual stress field deflected the crack propagation along the crack length
and depth directions towards the web and accelerated crack propagation by an order of
magnitude. This acceleration was more pronounced under high displacement loads and
low-cycle fatigue. Therefore, when analysing the fatigue properties of welded structures,
residual stresses can deflect the direction and considerably accelerate the rate of crack
propagation, especially in structures subjected to high displacements and low-cycle fatigue.

2. Finite Element Analysis of the Welding Process

This section discusses the weld simulation analysis performed to obtain the resulting
residual stresses. The simulation of the welding process can be divided into two parts: in
the first part, a thermal model is used in which the heat transfer from the welding arc to the
specimen is modelled using finite element analysis; in the second part, the stresses caused
by temperature change are modelled.

2.1. Thermal Analysis
2.1.1. Geometry of the Model

The T-joint specimen used in this study, shown in Figure 1, is referenced from
Perić [9]. The specimen consisted of two plates of thickness 15 mm and dimensions
350 mm × 150 mm. In the test from Perić’s research [9], the weld was a combined weld and
partially penetrated. In the welding process simulation model, due to the problem of mesh
division, the weld was simplified and the fillet weld was used. Two welds were welded
twice and cooled for 352 s. The plates were freely welded in a T configuration without
any fixtures and secured with tack welds at each end such that the joint had a negligible
gap before the beginning of the welding process. The specimens were welded using the
buried-arc welding procedure. Table 1 lists the primary welding parameters used.

Table 1. Main welding parameters.

Welding
Current I

Welding
Voltage U Welding Speed v Wire Diameter Wire Feed

Speed

540 A 41 V 404 mm/min 1.6 mm 10.6 m/min

2.1.2. Material Properties

The plate material was non-alloyed low-carbon steel S355J2 + N; its temperature-
dependent thermal and mechanical properties are shown in Tables 2 and 3 [10]. For any
material property in Tables 2 and 3, the value for an unlisted temperature can be obtained
by linear interpolation of two adjacent data points within the listed temperature range.



Metals 2022, 12, 1368 3 of 25Metals 2022, 12, x FOR PEER REVIEW 3 of 26 
 

 

 
Figure 1. Geometry of the subject T-joint (unit: mm). 

Table 1. Main welding parameters. 

Welding Current I Welding Voltage U Welding Speed v Wire Diameter 
Wire Feed 

Speed 
540 A 41 V 404 mm/min 1.6 mm 10.6 m/min 

2.1.2. Material Properties 
The plate material was non-alloyed low-carbon steel S355J2 + N; its temperature-de-

pendent thermal and mechanical properties are shown in Tables 2 and 3 [10]. For any 
material property in Tables 2 and 3, the value for an unlisted temperature can be obtained 
by linear interpolation of two adjacent data points within the listed temperature range. 

Table 2. Thermal properties of S355J2 + N steel. 

Temperature 
/°C 

Thermal Properties 
Thermal Conductivity 

/W∙m−1∙K−1 

Density 
/kg∙m−3 

Specific Heat 
/J∙kg−1∙K−1 

0 0.547 7850 0.394 
700   0.894 
750 0.292  1.22 
800 0.257   
850   0.611 

1450 0.311 7450 0.81 
1500 1.095   
1600 1.103 7450 0.81 

  

Figure 1. Geometry of the subject T-joint (unit: mm).

Table 2. Thermal properties of S355J2 + N steel.

Temperature
/◦C

Thermal Properties

Thermal Conductivity
/W·m−1·K−1

Density
/kg·m−3

Specific Heat
/J·kg−1·K−1

0 0.547 7850 0.394
700 0.894
750 0.292 1.22
800 0.257
850 0.611
1450 0.311 7450 0.81
1500 1.095
1600 1.103 7450 0.81

Table 3. Mechanical properties of S355J2 + N steel.

Temperature
/◦C

Mechanical Properties

Yield Stress
/MPa

Modulus of
Elasticity

/GPa

Thermal Expansion
Coefficient
/10−5 ◦C−1

Poisson’s
Ratio

0 345 206 1.217 0.307
100 332 204 0.321
200 308 201 0.335
300 278 201 0.353
400 234 164 0.385
500 188 100 0.385
600 128 61 0.398
700 69 42 0.416
800 66 30 0.448
900 46 21 0.480

1000 12 11 0.480
1450 12 11 1.412 0.480
1600 12 11 1.412 0.480
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2.1.3. Heat Input Model

In the welding process simulation model, the temperature of the specimen was mod-
elled using a transient thermal analysis in Abaqus. The thermal processes associated with
welding can be divided into three components: heat input from the welding arc, heat
transfer through the specimen, and heat loss to the environment. The governing equation
for the thermal model is given by:

∂

∂x

(
k

∂T
∂x

)
+

∂

∂y

(
k

∂T
∂y

)
+

∂

∂z

(
k

∂T
∂z

)
+ Q = ρC

∂T
∂t

(1)

where T is the temperature, t is the time, ρ is the density, C is the specific heat capacity,
Q is the internal heat-generation rate, and k is the thermal conductivity. Equation (1) is a
nonlinear differential equation because, parameters ρ, C, and k depend on the temperature,
which changes over time. The initial temperature and boundary conditions of the problem
are as follows:

T(x, y, z, 0) = T0(x, y, z) (2)

q = −k
(

∂T
∂x

+
∂T
∂y

+
∂T
∂z

)
(3)

where q denotes the heat flux at the boundary. There are typically three ways to transfer
heat during welding: heat conduction, thermal convection, and thermal radiation, which
can be, respectively, calculated using:

q = −kA
∂t
∂n

(4)

q2 = h(TS − TF) (5)

q3 = εσF12

(
T4

1 − T4
2

)
(6)

where ∂t/∂n is the temperature gradient, h is convective heat transfer coefficient, TS is the
solid surface temperature, TF is the fluid temperature, ε is the heat absorption rate, σ is the
Stefan–Boltzmann constant, F12 is the radiation surface shape factor, and T1 and T2 are the
absolute temperatures of radiation surfaces 1 and 2, respectively.

In the case of low-carbon steel welding, phase changes need not be considered because
they have little effect on the residual stress field and deformation [11]. In addition, owing
to the short duration of the high-temperature cycle during welding, the creep effect of
the material is minimal and can be neglected. Commonly used double ellipsoidal [12]
and Gaussian [13] heat sources need to be combined with experimental data to adjust the
associated parameters. A simplified definition of heat flux was used in the thermal analysis
conducted in this study by assuming that the total heat input to the weld flows through
the molten droplets and that the heat flux is uniformly distributed over the volume of the
weld. The heat flux during welding is given by

Q =
ηUI
VH

(7)

where Q is the effective power for welding, η is the efficiency of the welding process, VH is
the heat-source volume, and U and I are the welding voltage and current, respectively. The
efficiency of the welding process simulated in this study was estimated to be approximately
80% [14], and the heat flux introduced to the weld was therefore Q = 9.7× 1010J·m−3·s−1.
A convective heat transfer coefficient h = 10W·m−2·K−1 and an emissivity ε = 0.9 were
assumed for the outer surfaces of the welded model [15].

2.1.4. FEM Model Details

A finite element mesh of the T-joint specimen consisting of 27,450 elements is shown
in Figure 2. Heat conduction element, with a separate degree of freedom to define the
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temperature, was selected as the element type of this model. An extremely dense mesh
was created in the weld pool and surrounding area, where the thermal gradient will be
the largest; in the area away from the weld, where the thermal gradient will be smaller, a
coarser mesh was used to reduce the total number of elements. A commonly used finite
element mesh transition technique was employed to connect meshes of different scales, as
illustrated in Figure 3. In the analysis, the electrode movement and weld filler addition were
simulated by applying the element birth and death technique. Thus, no weld material was
present at the beginning of the analysis, and the necessary weld elements were activated in
the model as the thermal analysis simulation progressed. To simulate the movement of the
electrode, the weld bead was divided into 180 element sets, each 3.89 mm in length. Each
step was defined for the electrode movement and weld filler addition of each element set.
For each of these steps, the time is 0.5 s, the initial increment step is 0.05, the maximum
increment step is 0.5, and the maximum temperature change in each increment step is
1500 ◦C. Before the analysis started, all the weld elements were deactivated using the
‘model change’ command in Abaqus to define them as ‘dead’ weld elements. These dead
elements were sequentially reactivated using the ‘model change’ command as the weld
progressed, resulting in the ‘birth’ of each element as the heat source moved over it in the
model. This simultaneously simulated the heat input from the arc and the deposition of the
weld material on the specimen. Two cooling analysis steps were carried out, one between
the two welding processes, and the other after the second welding.
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2.1.5. Results of Welding Simulation

The results of the welding simulation provided the temperature field data at every
time step over the entire model. The molten zone of the weld is shown in Figure 4, assuming
that the steel material melts at approximately 1600 ◦C; temperatures greater than 1600
◦C are shown in light grey. This zone was confirmed to be reasonable by comparison
with the results of other studies. Figure 5 shows a comparison of the simulated and
measured temperature history at points 1 and 2 in the A–B cross-section (Figure 1) during
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the first 800 s of welding. The first weld was applied and cooled in the first 400 s, and
then the second one was applied and also cooled in the next 400 s. It can be observed
that the numerically simulated temperature history trends are in good agreement with the
experimental results. However, the temperatures obtained by the numerical simulation
were lower than those obtained during the experiment. This can be attributed to three
reasons.
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(1) Simplified models were employed in this study to simulate the heat flux distribution
and thermal boundary conditions using a uniform value per weld volume; in a real
welding scenario, the heat flux distribution is more complex and uneven.

(2) The convective heat transfer and emissivity coefficients were assumed to be constant,
whereas in reality, these values are affected by the temperature.

(3) Owing to the effect of the finite element meshing, the simulation did not use the same
measurement points as the test.

The full-field temperature distributions simulated 400 and 800 s after the start of the
welding process are shown in Figure 6.
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2.2. Mechanical Analysis

The residual stresses in the welds were simulated and analysed to establish a basis
for the subsequent numerical fracture mechanics analysis. To facilitate the introduction of
residual stress fields, the mesh generation of the residual stress analysis model was aligned
with the solid part of the crack growth model. During the analysis, temperature field data
were used as input to generate the intended field. The same time steps were applied in the
mechanical analysis as in the thermal analysis.
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2.2.1. Boundary Conditions

The mechanical boundary conditions will significantly influence the stress distribution
and formation of the residual stress field [16]. However, little information is available
regarding appropriate boundary conditions during the welding process. Therefore, the
actual welding situation was replicated used the fewest boundary conditions possible
to avoid excessive constraints that could introduce inaccuracies in the residual stress
simulation and to ensure computational convergence.

2.2.2. Results of Residual Stress Simulation

Perić [9] measured the residual stresses in a welded specimen at a depth of 0.015 mm
using X-ray diffraction and a drilling method. Thus, Figure 7 shows the longitudinal
residual stress distributions (Figure 1, lines A–B) obtained using the numerical simulations,
X-ray diffraction at a depth of 0.015mm, and the hole-drilling method. In general, the
longitudinal residual stresses measured using X-ray diffraction can be observed to follow
the same trend as those obtained from the numerical simulations. In the area close to the
weld, the longitudinal residual stresses are all tensile, with a maximum value close to the
yield strength of the base material, whereas away from the weld area, the longitudinal
residual stresses change from tensile to compressive. Generally, the longitudinal resid-
ual stress distribution exhibits an Ω shape. The transverse residual stress distributions
(Figure 1, lines A–B) obtained by the numerical simulation, X-ray diffraction at a depth of
0.015 mm, and the hole-drilling method are presented in Figure 8. Similar to the longitudi-
nal stresses, the trends of the numerical simulation and experimental measurements are in
agreement although the stress values from numerical simulation are higher than those of
X-ray detection. Compared with the study of Perić [9], the yield strength of the steel in the
finite element simulation from our research was slightly higher than that of the actual. In
addition, the temperature difference of the finite element simulation was a little larger than
that in reality. These factors resulted in the high residual stress. The numerically obtained
full-field longitudinal and transverse residual stress distributions are shown in Figure 9.
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3. Fatigue Crack Simulation

In this section, the obtained residual stress field is introduced as the initial stress, and
the XFEM and Paris’ law are used to simulate the fatigue crack propagation.

3.1. Numerical Fracture Mechanics Analysis Theory for Crack Propagation
3.1.1. XFEM

Modelling stationary discontinuities such as cracks using the conventional finite el-
ement method requires that the mesh conform to geometric discontinuities, making the
creation of a compliant mesh difficult. Modelling a growing crack is even more problematic
in this approach because the mesh must be constantly updated to conform to the discon-
tinuous geometry developed as the crack propagates. The XFEM alleviates the need to
create compliant meshes so that the mesh need not be updated as the crack progresses. It is
an extension of the conventional finite element method, based on the concept of partition
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of unity by Melenk and Babuska [17], that enables local enrichment functions to be easily
incorporated into the finite element approximation. The existence of discontinuities is
guaranteed by the special enrichment function, together with extra degrees of freedom.
An extended finite element displacement function is used in the element shape function to
reveal the discontinuity, and can be expressed as follows [18]:

u =
N

∑
I=1

NI(x)

[
uI + H(x)aI +

4

∑
α=1

Fα(x)bα
I

]
(8)

where NI(x) denotes the typical nodal shape function, the first term in the brackets (uI)
is the typical nodal displacement vector associated with the continuous part of the finite
element solution, the second term is the product of the nodal enriched degree of freedom
vector (aI) and associated discontinuous jump function (H(x)) across the surfaces of the
crack, and the third term is the product of the nodal-enriched degree of freedom vector
(bα

I ) and associated elastic asymptotic crack-tip function (Fα(x)). The first term on the
right-hand side applies to all nodes in the model, the second is valid for nodes whose shape
function supports being cut by the inner side of the crack, and the third is only used for
nodes whose shape functions support being cut by the tip of the crack. Figure 10 illustrates
the discontinuous jump function across the surfaces of the crack (H(x)), which is given by

H(x) =
{

1, if (x− x∗)·n ≥ 0
−1, otherwise

(9)

where x is a sample (Gauss) point, x∗ is the point on the crack closest to x, and n is the
outwards unit normal to the crack at x∗. Figure 10 illustrates the asymptotic crack tip
functions (Fα(x)) in an isotropic elastic material, calculated as follows:

Fα(x) =
[√

rsin
θ

2
,
√

rcos
θ

2
,
√

rsinθsin
θ

2
,
√

rsinθcos
θ

2

]
(10)

where (r, θ) is a polar coordinate system that has its origin at the crack tip and θ = 0 is
the tangent to the crack at the tip. Equation (10) span the asymptotic crack-tip function of
elastostatics, and

√
rsin(θ/2) considers the discontinuity across the crack face.
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3.1.2. Simulation Method of Fatigue Crack Propagation

Abaqus uses the direct cyclic method for fatigue analysis simulations of fatigue crack
propagation under cyclic loading. The direct cyclic method is a computational method that
combines the quasi-Newton method, Fourier series representation, and residual vector to
solve the response of a structure under cyclic loading. Solving nonlinear equations using
this method is less computationally intensive than solving them using the full Newtonian
method. In linear elastic fracture mechanics (LEFM) theory and the virtual crack closure
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technique (VCCT), the Paris equation is commonly used to analyse the fatigue crack
extension under cyclic loading; it is expressed as follows [19]:

da
dN

= C(∆K)m (11)

where a is the crack length, N is the cycle number, da/dN is the crack growth rate, C and
m are material constants, and ∆K is the stress intensity factor amplitude. In Abaqus, the
Paris equation is expressed in terms of the crack propagation and energy release rates,
as follows:

da
dN

= c1∆Gc2 (12)

where ∆G is the strain energy release rate amplitude and c1 and c2 are material param-
eters set to extremely low values to immediately begin crack growth. According to the
relationship between the energy release rate (G) and stress intensity factor (K) in the LEFM,
Equation (11) can be converted into Equation (12) and expressed as:

G =


K2

E , plane stress
(1−v2)K2

E , plane strain
(13)

where v is Poisson’s ratio and E is the elastic modulus of the material.
The fatigue crack growth in the Paris regime is only possible when the following

condition in Equation (14) is met:

Gthresh < ∆G < Gpl (14)

where Gthresh and Gpl are the threshold and upper limit values of the energy release rate,
respectively. If the condition in Equation (14) is met, the following equation can be used to
determine whether fatigue crack growth has begun:

f =
N

c1∆Gc2
≥ 1.0 (15)

Thus, as shown in Figure 11, the Paris regime is bounded by the energy release rate
threshold (Gthresh), below which there is no consideration of fatigue crack initiation or
growth, and the energy release rate upper limit (Gpl), above which the fatigue crack grows
at an accelerated rate. Defining Gc as the critical Mode I energy release rate, the values of
Gthresh/GC and Gpl/GC must be determined in conjunction with the experiment. Default
values of Gthresh/GC = 0.01 and Gpl/GC = 0.85 were used in this study. If the amount of
energy in the element is greater than Gthresh, the element cracks.

Stable crack growth in an element was calculated using:

da
dN

= c3∆Gc4 (16)

where c3 and c4 are material parameters.
After an element cracked, the stress field was recalculated and the next element to

crack was calculated. Elements in the enriched region cracked first and required the least
number of cycles. This process was repeated, and each step led to the expansion of an
element over a certain number of load cycles.

The value of Gc can be specified using various mixed-mode models in Abaqus. The
power law, was used to do so in this study as follows:

Geq

GeqC
=

(
GI

GIC

)am

+

(
GI I

GI IC

)an

+

(
GI I I

GI I IC

)a0

(17)
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where GI , GI I , GI I I are the Mode I, I I, I I I energy release rates; GIC, GI IC, GI I IC are the
critical Mode I, I I, I I I energy release rates; Geq is the equivalent strain energy release rate
calculated at a node; GeqC is the critical equivalent strain energy release rate calculated
based on the user-specified mode-mix criterion and bond strength of the interface; and am,
an and ao are exponents. In this study, am = an = ao = 1.
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The crack propagation procedure, based on a combination of Paris’ law and the VCCT,
is illustrated in Figure 12. In this procedure, the VCCT was applied to compute the amount
of energy required to propagate the crack. If the amount of energy was higher than Gthresh,
the element was considered to crack. The stable crack growth of the element was then
calculated using Paris’ law, from which the propagation direction, propagation length
(∆ak), and cyclic number increment (∆Nk) were computed. Subsequently, the crack length
(∆ai) is updated as ∆ai + ∆ak, and the cycle number (∆Ni) was updated as ∆Ni + ∆Nk.
After an element cracked, the stress field was recalculated and the next element to crack
was calculated based on the VCCT and Paris’ law. The elements in the enriched region
cracked first and required the least number of cycles. This process was repeated; each step
corresponded to the propagation of the crack though an element over a certain number of
load cycles.



Metals 2022, 12, 1368 13 of 25

Metals 2022, 12, x FOR PEER REVIEW 14 of 26 
 

 

region cracked first and required the least number of cycles. This process was repeated; 
each step corresponded to the propagation of the crack though an element over a certain 
number of load cycles. 

 
Figure 12. Illustration of XFEM propagation progress. 

  

Figure 12. Illustration of XFEM propagation progress.

3.2. Loading Model and Material Properties

A crack extension analysis was performed in Abaqus using the direct-cycle method.
Periodic displacement loads of 0.3, 0.35, 0.4, and 0.5 mm were applied to the model using
the cyclic function shown in Figure 13, in which one full cycle requires one second. Only
the elastic material properties E = 206 GPa and v = 0.3 were used for the crack extension
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analysis. The parameters related to Paris’ law were adjusted according to the relevant
literature [20,21], as shown in Table 4.
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Table 4. Paris law parameters.

c3 c4 GI GII GIII am/n/o

3.0 × 10−5 1.5 6.5 6.5 6.5 1

4. Results and Discussion
4.1. Crack Propagation

The initial crack was assumed to be semi-elliptical with a semi-short axis length (a) to
long axis length (2c) ratio of 2.5 mm/10 mm. It was located at the mid-length toe of the first
weld, as shown in Figure 14. The propagation patterns of cracks in the length and thickness
directions with and without the residual stress field are shown in Figures 15–18 (Figure 1,
lines A–B). When displacement loads of 0.4 mm and 0.5 mm were applied, the simulation
terminated before completing 100,000 cycles owing to the specificity of the XFEM; that is,
the crack propagation path could not pass through the cell nodes.

Metals 2022, 12, x FOR PEER REVIEW 15 of 26 
 

 

3.2. Loading Model and Material Properties 
A crack extension analysis was performed in Abaqus using the direct-cycle method. 

Periodic displacement loads of 0.3, 0.35, 0.4, and 0.5 mm were applied to the model using 
the cyclic function shown in Figure 13, in which one full cycle requires one second. Only 
the elastic material properties E = 206 GPa and v = 0.3 were used for the crack extension 
analysis. The parameters related to Paris’ law were adjusted according to the relevant lit-
erature [20,21], as shown in Table 4. 

 
Figure 13. Direct cycle time. 

Table 4. Paris law parameters. 𝒄𝟑 𝒄𝟒 𝑮𝑰 𝑮𝑰𝑰 𝑮𝑰𝑰𝑰 𝒂𝒎/𝒏/𝒐 
3.0 × 10−5 1.5 6.5 6.5 6.5 1 

4. Results and Discussion 
4.1. Crack Propagation 

The initial crack was assumed to be semi-elliptical with a semi-short axis length (a) 
to long axis length (2c) ratio of 2.5 mm/10 mm. It was located at the mid-length toe of the 
first weld, as shown in Figure 14. The propagation patterns of cracks in the length and 
thickness directions with and without the residual stress field are shown in Figures 15–18 
(Figure 1, lines A–B). When displacement loads of 0.4 mm and 0.5 mm were applied, the 
simulation terminated before completing 100,000 cycles owing to the specificity of the 
XFEM; that is, the crack propagation path could not pass through the cell nodes. 

 

(a) (b) 

Figure 14. Initial Crack Location and Shape: (a) Crack Location; (b) Crack Shape (unit: mm). Figure 14. Initial Crack Location and Shape: (a) Crack Location; (b) Crack Shape (unit: mm).



Metals 2022, 12, 1368 15 of 25Metals 2022, 12, x FOR PEER REVIEW 16 of 26 
 

 

  
(a) 

  
(b) 

Figure 15. Crack propagation under a maximum displacement load of 0.3 mm: (a) without residual 
stress field at 100,000 cycles; (b) with residual stress field at 100,000 cycles. 

  
(a) 

  
(b) 

Figure 16. Crack propagation under a maximum displacement of 0.35 mm: (a) without residual 
stress field at 100,000 cycles; (b) with residual stress field at 100,000 cycles. 
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field at 31,514 cycles; (b) with residual stress field at 9618 cycles.
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Figure 18. Crack propagation under a maximum displacement of 0.5 mm: (a) without residual stress
field at 14,653 cycles; (b) with residual stress field at 37 cycles.

As shown in Figures 15–18, when there is no residual stress field, the crack propagates
in the length direction along the weld. With the residual stress field, the crack propagation
path begins to deflect in the direction of the web and is more noticeable under larger
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loading displacements. Thus, under the applied displacement loads, the crack propagation
path passed directly through the web. Furthermore, the crack propagation in the thickness
direction without the residual stress field was approximately orthogonal to the surface,
whereas the crack propagation with the residual stress field deflected to form a ‘J’ shape.
Clearly, the crack propagated for a much shorter length and depth without the residual
stress field than with the residual stress field. Indeed, the number of damaged elements
was recorded according to the applied cycle count, as shown in Figures 19–21, and their
relationship can be used to approximate the crack propagation rate.
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Figure 21. Relationship between the number of cracked elements and number of load cycles for with
a maximum displacement load of 0.4 mm.

Under the 0.3 mm displacement load, crack propagation with no residual stress field
and with the residual stress field exhibited approximately the same rate below 70,000
cycles; above 70,000 cycles, the crack propagated faster with the residual stress field than
without. Furthermore, twice as many elements were eventually damaged by the crack
propagation with the residual stress field than without. Under the 0.35 mm maximum
displacement load, a significant difference in crack propagation rate was exhibited after
only 18,000 cycles, and the final difference in crack propagation rate was five-fold. Indeed,
it can be observed that the residual stress field accelerated the crack propagation rate,
and this trend is more noticeable under large loading displacements. Under the 0.4 mm
displacement load, crack propagation with the residual stress field damaged more than 200
elements after only 9618 cycles, whereas crack propagation without the residual stress field
damaged only 50 elements after 30,000 cycles. Under the 0.5 mm displacement load, crack
propagation with the residual stress field expanded to damage more than 400 elements after
only 37 cycles, tens of times faster than that without the residual stress field. Indeed, the
rate and direction of the crack propagation changed owing to the tensile residual stresses
in the weld area; the residual stress field deflected crack propagation into the web in both
the longitudinal and thickness directions and resulted in a propagation rate several to tens
of times faster than that without the residual stress field.

4.2. Effect of Residual Compression Stress

Figure 22 shows the distribution of the maximum absolute values of the three principal
residual stresses. An element is shown as black if the principal stress corresponding to the
maximum absolute value of three principal stresses is compressive. It can be observed that
the previous crack propagation analysis remained in the residual tensile stress region.
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Figure 22. Main principal stress cloud of residual stress (unit: MPa).

The initial crack was therefore placed in the residual compressive stress region at either
the start or end of the weld joint in order to study the influence of residual compressive
stress on crack propagation. The maximum displacement of the cyclic load was 0.35 mm,
and the initial crack size was shown as in Figure 14. The crack propagation patterns in
the length and thickness directions with and without the residual stress field are shown in
Figures 23 and 24 for the cracks in the start and end of the weld, respectively.
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Figure 23. Crack propagation under a maximum displacement load of 0.35 mm when the initial crack
is located in the start of the weld: (a) without a residual stress field at 81,566 cycles; (b) with residual
stress field at 100,000 cycles.
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Figure 24. Crack propagation under a maximum displacement load of 0.35 mm when the initial crack
is located in the end of the weld: (a) without a residual stress field at 100,000 cycles; (b) with residual
stress field at 100,000 cycles.

It can be observed that without a residual stress field, the crack at either end propa-
gated along the weld length direction, though there was a tendency to propagate to the
web. The previous scenario indicated that under the influence of residual tensile stress,
the crack propagating along the length direction began to propagate in the web direc-
tion. However, in the present scenario, the crack propagated outward under the influence
of residual compressive stress. In the thickness direction, when there was no residual
compressive stress, the crack basically propagated vertically downward, while it hardly
propagated in the thickness direction under the influence of residual compressive stress.
Furthermore, crack length did not obviously increase under the influence of the residual
tensile stress, even in the thickness direction, whereas it decreased under the influence of
residual compressive stress.

The numbers of damaged elements according to the applied cycle count are shown
in Figures 25 and 26 to approximate the crack propagation rate. Under any number of
cycles, the number of cracking elements without residual compressive stress was always
greater than that with residual compressive stress, whether the crack was initiated in the
start or end of the weld. Particularly for the crack in the start of the weld, the larger the
number of cycles, the greater is the gap between the number of damaged elements without
residual compressive stress than with residual compressive stress. Contrary to the previous
influence of residual tensile stress on the crack growth rate, under the influence of residual
compressive stress, the crack growth rate does not accelerate or even decrease. In other
words, residual compressive stress can slow down crack growth.
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4.3. Effects of Three Principal Residual Stresses on Crack Propagation

In this section, the three principal stresses of the complete residual stress field were
individually evaluated to further explore the effect of residual stress on crack propagation.
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The distributions of tensile and compressive stress in the X, Y, Z directions are shown
in Figure 27. The colour distribution of tensile and compressive stresses is similar to those
in Figure 22.
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The maximum cyclic load displacement was set to 0.35 mm. As the initial crack was
placed in the middle of the first weld (Figure 14), all residual stresses in the X, Y, and Z
directions were tensile. The crack propagation rates are shown in Figure 28, which indicates
that when the number of cycles reached the maximum, more elements were damaged
when considering the residual stresses in the X, Y, or Z directions than without considering
them because the initial crack was located in a region of tensile residual stress no matter
the direction. The residual stress in the Y direction (weld length direction) had the least
effect on the crack growth rate because it was parallel to the initial crack direction. The
residual stresses in the X and Z directions had considerable influence on the crack growth
rate because these stresses acted perpendicular to the initial crack length direction, thereby
applying a force pulling the crack open. However, compared with the crack propagation
under the complete residual stress (Figure 20), the effects of the individual X, Y and Z
direction stresses on the crack propagation rate were not notable.
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Therefore, the influence of residual tensile stress on crack propagation in T-joint
welded joints is a result of the combined effect of multiple directions of residual stresses,
rather than a single dominant principal stress.

5. Conclusions

In this study, fracture mechanics theory and the XFEM were applied to numerically
simulate fatigue crack extension in a T-joint. Using the sequential coupling method, the
temperature and residual stress fields of the T-joint were successively simulated and
verified against existing test results. After confirming that reliable residual stress fields
were obtained, fatigue crack propagations with and without residual stress fields were
compared. The following conclusions can be drawn based on the results of this analysis.

• During the welding process, a large residual tensile stress is induced at the weld toe
of the T-joint, the value of which is close to the yield strength of the base material,
providing the basis for fatigue crack propagation.
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• The presence of the residual stress field was observed to shift the crack in the length
and depth directions towards the web and accelerate its propagation. The crack
propagation rate increased twofold at a displacement loading of 0.3 mm and tens of
times at a displacement loading of 0.5 mm.

• The effect of residual stress on the direction and rate of crack propagation was more
pronounced at large displacement loads and low-cycle fatigue loads. Therefore, the
effect of residual stress should be carefully considered when evaluating the fatigue
properties of T-joints, subjected to large displacement and low-cycle fatigue.
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