
Citation: Kim, M.-S.; Kim, H.-T.;

Choi, Y.-H.; Kim, J.-H.; Kim, S.-K.;

Lee, J.-M. A New Computational

Method for Predicting Ductile Failure

of 304L Stainless Steel. Metals 2022,

12, 1309. https://doi.org/10.3390/

met12081309

Academic Editors: Shuwen Wen,

Yongle Sun and Xin Chen

Received: 29 June 2022

Accepted: 27 July 2022

Published: 4 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

A New Computational Method for Predicting Ductile Failure of
304L Stainless Steel
Myung-Sung Kim 1 , Hee-Tae Kim 2, Young-Hwan Choi 2, Jeong-Hyeon Kim 3, Seul-Kee Kim 3,*
and Jae-Myung Lee 2,3,*

1 Department of Reliability Assessment, Korea Institute of Machinery and Materials, Daejeon 34103, Korea
2 Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Korea
3 Hydrogen Ship Technology Center, Pusan National University, Busan 46241, Korea
* Correspondence: skkim@pusan.ac.kr (S.-K.K.); jaemlee@pusan.ac.kr (J.-M.L.); Tel.: +82-51-510-7953 (S.-K.K.);

+82-51-510-2342 (J.-M.L.); Fax: +82-51-512-8836 (S.-K.K. & J.-M.L.)

Abstract: Austenitic stainless steel is useful for storing and transporting liquefied natural gas (LNG)
at temperatures below−163 ◦C due to its superior low-temperature applications. This study develops
a computational method for the failure prediction of 304L stainless steel sheet to utilize its usability as
a design code for industrial purposes. To consider material degradation in a phenomenological way
during the numerical calculation, the combined Swift–Voce equation was adopted to describe the
nonlinear constitutive behavior beyond ultimate tensile strength. Due to the stress state-dependent
fracture characteristics of ductile metal, a modified Mohr–Coulomb fracture criterion was adopted
using stress triaxiality and Lode angle parameter. The numerical formulation of the elastoplastic-
damage coupled constitutive model with fracture locus was implemented in the ABAQUS user-
defined subroutine UMAT. To identify the material and damage parameters of constitutive models,
a series of material tests were conducted considering various stress states. It has been verified that the
numerical simulation results obtained by the proposed failure prediction methodology show good
agreement with the experimental results for plastic behavior and fractured configuration.

Keywords: ductile fracture; elastoplastic constitutive model; modified Mohr–Coulomb model;
numerical implementation; austenitic stainless steel

1. Introduction

Austenitic stainless steel is recognized as a functional material in various industries
due to its excellent strength, toughness, and superior corrosion resistance even in low-
temperature environments [1–3]. In particular, 304L austenitic stainless steel, which is
generally known as 18/8 steel, is useful for storing and transporting liquefied natural
gas (LNG) at temperatures below −163 ◦C due to its superior low-temperature applica-
tions. Zheng et al. (2018) reported that the mechanical strength of low-temperature treated
304 stainless steel was increased up to 2.7 times compared to conventional as-received
samples [4]. Mallick et al. (2017) reported that 10–20% low-temperature (−196 ◦C) de-
formation leads to a higher level of strength (1306–1589 MPa) owing to the formation of
a higher volume fraction of strain-induced martensite [5]. Singh et al. (2018) reported that
the low-temperature mechanical strength was increased to 1200 MPa, which is much more
than test results under ambient conditions. In addition, in low-temperature treatment, the
micro-hardness was increased from 208 VHN to 520 VHN, which is more than double
that of the as-received sample [6]. Oh et al. (2018) reported the low-temperature fatigue
strength of 304 stainless steel was significantly improved compared to the ambient fatigue
strength [7]. Thanks to these valuable studies, it has been established that 304(L) austenitic
stainless steel is the optimal material in low-temperature applications because an enhanced
mechanical performance was observed in terms such as strength, hardness, and fatigue
strength at low temperatures.
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Due to its superior low-temperature mechanical performance, 304L stainless steel is
adopted as the main material for LNG carrier cargo holds. The primary barrier is corrugated
because it undergoes repeated thermal shrinkage and contraction during operation in the
LNG loading and unloading processes [8–11]. Therefore, some researchers have focused on
the deformation and pressure resistance of 304L stainless steel-made corrugated membranes
in experimental approaches. Kim et al. (2011) reported the pressure levels that induced
the collapse of the corrugated walls via plastic buckling were six and twelve bar for the
large and small corrugated containers, respectively [12]. Lee et al. (2015) reported the
pressure-resisting capability of 304L-made stainless steel plate. The maximum deformation
of the weakest corrugation was measured with respect to an applied exterior pressure
and the pressure at the start of buckling failure was chosen as the pressure-resisting
capability of the corrugations [13]. Jeong et al. (2021) reported the pressure-resisting
capabilities of a 304L stainless steel corrugated membrane under hydrodynamic load [14].
Those research outcomes have helped improve the shape of the corrugated membrane.
However, most evaluations of the pressure resistance performance and the deformation
of the primary barrier of the LNG CCS were all conducted at room temperature. This
is because it is very difficult to build a pressure test environment for large structures in
low-temperature environments. Even so, it is important to evaluate the primary barrier in
low-temperature environments, which is the main operating condition of 304L stainless
steel primary barriers.

If difficulties are encountered in the experimental evaluation of low-temperature
performance, failure evaluation techniques based on computational methods can be an
excellent alternative. Evaluating the failure of ductile materials requires predicting the
elastoplastic behavior and occurrence of failure. Among failure prediction approaches, the
phenomenological failure model is defined as failure occurrence when the stress or strain
of an element reaches a specific value. The strain-based failure model is more suitable
than the stress-based failure model for dealing with structures undergoing severe plastic
deformation and has proven quite useful in collision and failure problems [15–22].

Early studies to predict ductile failure explained the relationship between stress tri-
axiality and equivalent plastic strain [23–26]. In addition, it was found that the Lode
angle, defined as the third invariant of the deviation stress tensor, also affects ductile
failure [27–30]. The Mohr–Coulomb criterion is based on the maximum shear stress and is
mainly used to determine the failure of rock, soil, and concrete. To eliminate the shortcom-
ing of the absence of pressure dependency, Bai and Wierzbicki (2010) developed a modified
Mohr–Coulomb criterion that is transformed from a local representation in terms of shear
stress and normal stress to a mixed strain–stress representation of stress triaxiality, Lode
angle parameter, and equivalent plastic strain for monotonic loading conditions [28]. The
MMC criterion can predict the crack initiation point and the direction of crack propagation
and its usefulness has already been verified in many previous studies [31–37].

Several studies have been conducted to predict the ductile fracturing of 304L stainless
steel. Othmen et al. (2020) carried the prediction of the onset of rupture of austenitic
stainless steel during its forming process [38]. Various fracture criteria, implemented in the
finite element code Abaqus/Implicit via a user subroutine USDFLD, have been investigated.
Pham and Iwamoto (2018) proposed the numerical fracture prediction of 304 stainless
steel with the modified Johnson–Cook damage model [39]. Kim et al. (2013) proposed
a viscoplastic model for 304L stainless steel considering the pre-strain and temperature
effects [40]. These studies accurately predicted the occurrence of fractures and crack
propagation but provided limited failure predictions due to their lack of consideration for
various ranges of stress states.

Thus, the present study proposes the failure prediction methodology of 1.2 t 304L
stainless steel sheet. An elastoplastic-damage coupled constitutive equation was developed
to establish the failure criterion for the primary barrier and to propose a failure analysis
technique. To establish the phenomenological ductile failure criterion for 304L stainless steel
sheet, a series of material tests were performed considering various stress states. A modified
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Mohr–Coulomb model was adopted to formulate ductile fracture criteria in accordance
with the stress triaxiality and Lode angle of ductile materials. Numerical analysis with the
completed ductile fracture criterion shows good agreement with experimental results.

2. Phenomenological Ductile Fracture Criteria
2.1. Characterization of Stress State

For a certain stress state {σ1, σ2, σ3} of an isotropic material, the stress tensor can be
expressed as hydrostatic and deviatoric parts. The three main invariants of the stress tensor
can be expressed as follow.

σ = s + pI (1)

I1 = tr[σ] (2)

J2 =

(
1
2

s : s
)

(3)

J3 = det[s] (4)

where s, p is the deviatoric stress tensor and hydrostatic stress, respectively. I is the second-
order identity tensor. From principal stress space, von-Mises yield surface circumscribes
three-dimensional cylinder orthogonal to deviatoric plane (π-plane). To indicate a certain
stress state on the deviatoric plane, a cylindrical coordinate system can be used to define
the Lode angle from the hydrostatic stress and principal stress directions. The Lode angle
can be defined as the angle of the principal stress axis on the deviatoric plane. The Lode
angle is related to the normalized third invariant as follows [28].

ξ = cos(3θ) =

(
r
q

)3

(0 ≤ θ ≤ π/3) (5)

r =
[

27
2
(σ1 − p)(σ2 − p)(σ3 − p)

]1/3
=

[
27
2

det[s]
]1/3

=

[
27
2

J3

]1/3
(6)

θ =
1
3

arccos

(
27
2

J3

[3J2]
3/2

)
(7)

where ξ, r is the normalized third invariant and the third invariant, respectively. θ is the
Lode angle expressed as stress invariants. Stress triaxiality is expressed as the ratio of
hydrostatic stress (OO′) and equivalent stress (O′P) as follows.

η =
p
q
=

√
2

3
cot

(
arctan

O′P
OO′

)
(8)

where q is the equivalent stress. From a viewpoint of principal stress coordinates, stress
triaxiality represents the dominance of the hydrostatic stress in a certain stress state. The nor-
malized Lode angle can be expressed as follows through the modified Haigh–Westergaard
coordinate system [41].

θ = 1− 6θ

π

(
−1 ≤ θ ≤ 1

)
(9)

In the planar stress condition, it is possible to convert a three-dimensional stress space
into two dimensions.

2.2. Modified Mohr–Coulomb Model

Bai and Wierzbicki (2010) modified and extended Mohr–Coulomb (MC) fracture
criterion to describe ductile fracture of isotropic crack-free solids in terms of equivalent
plastic strain [28]. The Mohr–Coulomb fracture criterion has been widely used in rock and
soil mechanics [42,43]. This criterion states that fracture occurs at a certain plane when
the linear combination of shear and normal stress reaches a critical value [44]. Bai and
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Wierzbicki (2010) assumed that the behavior of ductile materials can be described by the
von-Mises yield condition and hardening power law [28]. The modified Mohr–Coulomb
(MMC) fracture model can be expressed as follows in terms of the stress triaxialiy and the
normalized Lode angle.

ε
p
i
(
η, θ

)
=

 A
c2

[
c3 +

√
3

2−
√

3
(1− c3)

(
sec

(
θπ

6

)
− 1

)]
×

√1 + c2
1

3
cos

(
θπ

6

)
+ c1

(
η +

1
3

sin

(
θπ

6

))
− 1

n

. (10)

where A, n are material parameters of swift equation, and ci(i = 1, 2, 3) is fracture pa-
rameters. Three fracture parameters need to be calibrated from experimental results. In
this study, with the following condition satisfied, the damage accumulation of the element
is initiated. ∫ ε

p
i

0

dεp

ε
p
i
(
η, θ

) = 1 (11)

where ε
p
i is equivalent plastic strain at damage initiation, and εp is equivalent plastic strain.

3. Elastoplastic-Damage Coupled Constitutive Model
3.1. Hardening Function

In this study, the Swift-Voce equation was adopted as a hardening function that
expresses the isotropic hardening behavior according to the equivalent plastic strain for
general ductile metal materials [41,45,46]. Swift-Voce equation can be described as follow.

σy(ε
p) = αks + (1− α)kvk (12)

ks = A(ε0 + εp)n (13)

kv = σy0 + Q(1− exp(−βεp)) (14)

where ks, kv, and α is Swift equation, Voce equation, and weight parameter, respectively. A,
ε0, n, σy0, Q, β is material parameters for Swift-Voce equation. Some ductile materials show
yield plateau after yielding. Considering yield plateau strain (εplat), Swift-Voce equation
can be described as follow.

ks =

{
A(ε0)

n

A
(

ε0 + εp − εplat

)n
εp ≤ εplat
εp > εplat

(15)

kv =

{
σy0

Q
{

1− exp
[
−β
(

εp − εplat

)]} εp ≤ εplat
εp > εplat

(16)

3.2. Damage Evolution Rules

In the present study, ductile materials undergo damage after damage initiation. For
the isotropic hardening ductile material, damage manifests itself in two forms; softening
of yield stress and degradation of elastic modulus as shown in Figure 1. Lemaitre (1985)
explained that damage to the material affects the cross-sectional area due to the growth
of pores and micro-cracks inside the material, leading to a decrease in the modulus of
elasticity [47]. In this study, in order to define the phenomenological fracture, the damage
variable is simply expressed in terms of the equivalent plastic strain rate as follows.

D =


0 (εp < ε

p
i )

Ds ×
.
ε

p
(ε

p
i ≤ εp < ε

p
f )

Dc

(
ε

p
f ≤ εp

) (17)
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where Ds, Dc is damage accumulation control parameter and critical damage, respectively.
Damage accumulation control parameter adjusts the degree of damage accumulation.
Critical damage defines the thresholds for damage. ε

p
i and ε

p
f represents equivalent plastic

strain at damage initiation and fracture, respectively.
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3.3. Constitutive Model

In this study, an elastoplastic-damage coupled constitutive model is proposed to
predict the damage of ductile material. The total strain tensor and strain rate tensor can be
decomposed into elastic part and plastic part as follows.

ε = εe + εp (18)

.
ε =

.
ε

e
+

.
ε

p (19)

Using the concept of effective area and stress of damaged material proposed by
Lemaitre (1985) [47], the general Hooke’s law can be expressed as follows.

σ = (1−D)D : εe (20)

where σ, D represents the stress tensor and the stiffness tensor for isotropic materials,
respectively. D is damage variable. Deviatoric stress and hydrostatic stress are as fol-
lows, respectively.

s = (1−D)2Gεe
d (21)

p = (1−D)Kεe
v (22)

where εe
d, εe

v is deviatoric strain tensor and volumetric strain, respectively. G and K represent
shear modulus and volume modulus, respectively. Under the constant loading direction,
the effect of kinematic hardening can be ignored. The yield function according to the
von-Mises yield criterion is as follows.

Φ = q− (1−D)σy(ε
p) (23)

q =
√

3J2 =

√
3
2

s : s =

√
3
2
‖s‖ (24)
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where q is the von-Mises equivalent stress expressed as the deviatoric stress, and σy(ε
p)

represents the isotropic hardening function expressing according to the equivalent plastic
strain. According to the Prandtl-Reuss plastic law, flow rule is defined as follows [48].

.
ε

p
=

.
γ

∂Φ
∂σ

=
.
γ

√
3
2

s
‖s‖ (25)

where
.
ε

p,
.
γ is the plastic strain rate and the plastic multiplier, respectively. Plastic strain

rate is expressed as Prandtl-Reuss flow vector and plastic multiplier. Equivalent plastic
strain rate is defined as follows.

.
ε

p
=

√
2
3

.
ε

p :
.
ε

p
=

√
2
3
‖ .

ε
p‖ = .

γ (26)

According to Equation (25), the equivalent plastic strain rate is the same as the plastic
multiplier. The loading/unloading conditions of the constitutive model is as follows.

Φ ≤ 0,
.
γ ≥ 0,

.
γΦ = 0 (27)

3.4. Numerical Implementation Algorithm

In order to formulate the proposed elastoplastic-damage coupled constitutive model
with fracture locus, ABAQUS/STANDARD, a commercial finite element analysis software,
was adopted. ABAQUS with subroutine UMAT (user subroutine to define a material’s
mechanical behavior) provides the user to define material properties and provides values
calculated at the integration point of each element.

In this study, the elastoplastic-damage coupled constitutive model was formulated
with a fully implicit backward Euler integration scheme. A return mapping scheme with
elasticity prediction and plastic correction was adopted. When the total strain increment
(∆ε) according to the time interval [tn, tn+1] is determined at each integration point, the
subroutine UMAT calculates unknown variables σn+1, ε

p
n+1, Dn+1, tn+1 using the known

variables σn, ε
p
n, Dn, tn [48,49]. When the total strain increment is determined, the trial

stress and strain components can be expressed as follows.

εe trial
n+1 = εe

n + ∆ε (28)

ε
p trial
n+1 = ε

p
n (29)

Dtrial
n+1 = Dn (30)

strial
n+1 = (1−Dn)2Gεe trial

v n+1 (31)

ptrial
n+1 = (1−Dn)Kεe trial

v n+1 (32)

The corresponding trial yield function and trial equivalent stress are as follows.

Φtrial = qtrial
n+1 − (1−Dn)σy

(
ε

p
n

)
(33)

qtrial
n+1 =

√
3J2
(
strial

n+1
)
=

√
3
2

strial
n+1 : strial

n+1 =

√
3
2
‖strial

n+1‖ (34)

When the trial yield function is Φtrial ≤ 0, the trial stress exists within the yield
function, so it is regarded as an elastic region in which plastic increment does not occur.
The state variables are updated as Equations (28)–(32) and the stress is updated as follows.

σn+1 = strial
n+1 + ptrial

n+1 I (35)
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If the trial yield function is resulted in Φtrial > 0, plastic correction is required accord-
ing to the incremental calculation of the equivalent plastic strain. First, strain and damage
parameters can be defined by the Backward Euler method as follows.

εe
n+1 = εe trial

n+1 − ε
p
n+1 = εe trial

n+1 − ∆γ

√
3
2

sn+1

‖sn+1‖
(36)

ε
p
n+1 = ε

p
n + ∆γ (37)

Dn+1 = Dn + Ds∆γ (38)

εe
d n+1 = εe trial

d n+1 − ∆γ

√
3
2

sn+1

‖sn+1‖
(39)

εe
v n+1 = εe trial

v n+1 (40)

According to the definition of the strain tensor in the next step shown in Equation (36),
deviatoric strain tensor and the volumetric strain of the next step are defined in Equations (39)–(40).
The deviatoric stress and the hydrostatic stress are defined as follows.

sn+1 = (1−Dn+1)2Gεe trial
d n+1 − (1−Dn+1)2G∆γ

√
3
2

sn+1

‖sn+1‖
(41)

pn+1 = (1−Dn+1)Kεe
v n+1 (42)

In order to represent the plastically corrected yield function at tn+1, the deviatoric
stress of the next step shown in Equation (43) must be calculated. This can be expressed
as Equation (43) using the trial deviatoric stress shown in Equation (33), and because
the trial deviation stress is proportional to the deviatoric stress of the next step, it can be
summarized as Equation (44).

sn+1 =
1−Dn+1

1−Dn
strial

n+1 − (1−Dn+1)2G∆γ

√
3
2

sn+1

‖sn+1‖
(43)

sn+1 = (1−Dn+1)

(
1

1−Dn
− 3G∆γ

qtrial
n+1

)
strial

n+1 (44)

The yield function in the next step is defined as follows because it must satisfy the
consistency condition.

Φn+1 = qn+1 − (1−Dn+1)σy

(
ε

p
n + ∆γ

)
(45)

qn+1 = (1−Dn+1)

(
1

1−Dn
qtrial

n+1 − 3G∆γ

)
(46)

The yield function can be expressed as a function of the plastic multiplier and the
damage of the next step, and the return mapping method must be performed to calculate
the plastic multiplier and the damage of the next step.

With Equation (38), Equation (45) can be simplified as Equation (47). The plastic mul-
tiplier is calculated through the Newton-Raphson method. The simplified yield function
does not require the process of estimating the initial value of the plastic multiplier [48] in
calculating the damage energy release rate like Lemaitre’s damage composition equation.

Φn+1 =
1

1−Dn
qtrial

n+1 − 3G∆γ− σy

(
ε

p
n + ∆γ

)
(47)

σn+1 = sn+1 + pn+1I (48)
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When all stress and state variables are updated, the yield function of the next step
reaches an elastic region as a value close to zero. In finite element analysis, in order to
calculate the tangent stiffness matrix of each element, a consistent tangent modulus of the
material reaching the last updated plastic region is required. Through the relationship
between stress and strain tensor, the consistent tangent modulus (Dep) of the elastoplastic
region is defined as follows [48].

Dep ≡ ∂σn+1

∂εe trial
n+1

(49)

σn+1 =

[
De − ∆γ6G2

qtrial
n+1

Id

]
: εe trial

n+1 (50)

De = 2GId +

(
K− 2

3
G
)

I⊗ I (51)

Id = Is −
1
3

I⊗ I (52)

Is = Iijkl =
1
2

(
δikδjl + δilδjk

)
(53)

where Is and Id represent the fourth symmetric identity tensor and the deviatoric projection
tensor, respectively, and δij is Krönecker delta. De is the consistent tangent modulus derived
through Hooke’s law in the elastic region where plastic correction was not performed. Dep

can be expressed as follows by partial unification of Equation (50).

Dep = De − ∆γ6G2

qtrial
n+1

Id −
6G2

qtrial
n+1

εe trial
d n+1 ⊗

∂∆γ

∂εe trial
n+1

+
∆γ6G2(
qtrial

n+1
)2 εe trial

d n+1 ⊗
∂qtrial

n+1

∂εe trial
n+1

. (54)

Dep = De − ∆γ6G2

qtrial
n+1

Id + 6G2

 ∆γ

qtrial
n+1
− 1

3G +
dσy
dεp

∣∣∣
ε

p
n+∆γ

 strial
n+1

‖strial
n+1‖

⊗
strial

n+1

‖strial
n+1‖

. (55)

Dep = 2G

(
1− ∆γ6G2

qtrial
n+1

)
Id + 6G2

 ∆γ

qtrial
n+1
− 1

3G +
dσy
dεp

∣∣∣
ε

p
n+∆γ

 strial
n+1

‖strial
n+1‖

⊗
strial

n+1

‖strial
n+1‖

+ KI⊗ I. (56)

4. Comparison with Experimental Results
4.1. Specimen

In order to perform the failure analysis of the primary barrier of Mark-III type LNG
CCS, a series of material tests were performed on the same material applied to the primary
barrier. 304L stainless steel was collected from 3500 mm × 1271 mm × 1.2 t of STS304L,
and the chemical composition is presented in Table 1. As shown in Figure 2, five types
of tensile specimen were prepared. The DB specimen, which means dogbone type tensile
specimen, was fabricated to obtain the flow stress of 304L stainless steel. The width is 6 mm
and the length of the reduced area is 30 mm. For NT05, NT10, and NT15 specimens, the
radius of curvature of the notch in the middle was 5 mm, 10 mm, and 15 mm to obtain
high-stress triaxiality. The minimum width at the center of the NT specimen is 6 mm. The
CH03 specimen has a radius of curvature of 3 mm in the center hole. The central width of
the NT and CH specimens is equal to 16 mm. The total length of all specimens is 110 mm,
and the length and rolling direction of the specimens are the same.

Table 1. Chemical composition of 304L stainless steel.

C Si Mn P S Cr Ni

0.0152 0.379 1.130 0.0227 0.0017 18.653 10.178
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Figure 2. Material test specimens of 304L stainless steel sheet. DB specimen is used to acquire flow
stress of 304L stainless steel, which has 6 mm width and 30 mm the length of reduced area. Other
specimens are to identify the fracture strain. NT specimens have the radius of curvature of the notch
to obtain high-stress triaxiality. The CH specimen has a radius of curvature of 3 mm in the center hole.

4.2. Experimental Set-Up

In this study, a universal testing machine was adopted to perform material testing.
The maximum load capacity of UTM is 50 kN, and the speed of the crosshead can be
controlled from 0.001 to 400.0 mm/min. In this study, the speed of the crosshead was
controlled at 1.5 mm/min so that the initial strain rate for the DB specimen was 0.001/s.
The displacement of all specimens was measured using an extensometer, and the gauge
length was set to 25 mm. All material tests were performed at room temperature (13 ◦C).
To verify repeatability, all tests were repeated three times and the results were shown as an
average value.

4.3. Experimental Results

Figure 3a shows the results of the tensile test of the DB specimen at room temperature
in terms of engineering stress and strain relationship. The elongation of the DB specimen
was 0.7464, the 0.2% offset yield strength was 282 MPa, and the tensile strength was 679 MPa.
The experimental result of the DB specimen was adopted only as a flow stress calculation.
Figure 3b shows the force–displacement relationships of all specimens performed at room
temperature. The smaller notch radius of the NT specimen increased the stress triaxiality
and resulted in rapid failure. The CH03 specimen had a higher load because of the larger
cross-sectional area at the center of the specimen.
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In order to observe the failure pattern of each specimen, the picture just before failure
in the material test is shown in Figure 4. In the NT specimen, localized necking was
observed in the center of the specimen, after which fracture progression was observed in
the outer direction of the specimen. The CH03 specimen also begins to crack on both sides
of the center hole and propagates outward. The fracture angle of all STS304L specimens
was observed irregularly and it was judged that there was no tendency. As the purpose of
the material test is to establish the ductile fracture criteria, no examination of the fracture
surface of the specimen was conducted, nor was the effect of the notch radius on the
material behavior analyzed through experimental results.
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5. Calibration of Ductile Fracture Model
5.1. FE Model

In order to establish a ductile fracture model, the equivalent plastic strain at the
fracture location is required during material testing. Bao-Wierzbicki (2004) proposed the
procedure of comparing experimental results with detailed numerical simulations because
it is difficult to obtain experimentally [50]. This procedure is very useful and easy to
predict in evaluating the failure of a structure through a commercial finite element analysis
program. With recent technological advances, many researchers are adopting a method of
obtaining the strain contour of a material using a digital image correction technique without
comparing numerical simulation and experimental results [31,51,52]. In this study, in order
to evaluate the effectiveness of the proposed elastoplastic-damage coupled constitutive
model, the DIC method is not adopted, and the equivalent plastic strain is obtained by
comparing the experimental results and the numerical analysis results, and the ductile
fracture model is formulated.

Parallel numerical simulations of all material tests were carried out using commercial
finite element code ABAQUS/Standard. Material specimen modeling was performed as
shown in Figure 5. Although all specimens had symmetry conditions in the thickness
direction, width direction, and length direction, no symmetric model (1:1 modeling) was
considered for the failure prediction. The modeling range was to be included from the
center point of the specimen to 25 mm. Since the length of the reduced section of the DB
specimen exceeded 25 mm, the entire specimen was modeled only for the DB specimen.
Displacement control was performed by applying coupling constraints as reference points
to the upper and lower surfaces of the finite element analysis model.
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Figure 5. Finite element model for material test of 304L stainless steel. In order to accurately predict
the ductile fracture at the failure location of all specimens, the element size was differentiated. In
the region of interest, the element size was selected as 200 µm, and the number of elements in the
thickness direction of the specimen was 6. To reduce computational cost, a coarse mesh was made
outside the region of interest.

Eight-node brick element with reduced integration (C3D8R) was adopted for the finite
element analysis model. When the ductile material undergoes plastic deformation and
enters the necking range, the cross-sectional area decreases and the stress in the thickness
direction cannot be ignored. Therefore, for precise prediction, the FE model was established
using solid elements, not shell elements. The element size of the region of interest of each
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element was selected as 200 µm, and the number of elements in the thickness direction of
the specimen was 6. To simulate the specimen’s fracture pattern, it is necessary to select
a smaller element size [53–55]. However, this requires considerable computation cost, and it
was difficult to observe a regular fracture pattern in the material test of 304L stainless steel.

5.2. Calculation of Flow Stress

Flow stress is calculated through the experimental results of 304L stainless steel. The
engineering stress-strain relation obtained through the tensile test was converted into
a true stress-strain relation, which was expressed by the Swift-Voce equation, a hardening
function of the constitutive model proposed in this study. The experimental results and
hardening equation fitting results are shown in Figure 6. Material parameters of 304L
stainless steel are listed in Table 2.
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Figure 6. Flow stress of 304L stainless steel. Experimental results with engineering stress-strain
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estimated through Swift equation and Voce equation.

Table 2. Material parameters of 304L stainless steel. In this study, 304L stainless steel did not show
a yield plateau, so the yield plateau was set to zero.

Swift equation
part

A ε0 n εplat

1610.0 0.0496 0.6 0.0

Voce equation
part

α σy0 Q β

1.0 282.0 1300.0 1.95

The Swift equation and Voce equation just estimate the post-necking behavior. The
necessity of stress correction was reviewed by comparing the experimental results and the
finite element analysis results applying flow stress. Figure 7 shows the comparison between
the analysis result and the experimental result applying hardening equations. Through the
flow stress calculated by the Swift equation, it was shown that the mechanical behavior
of all specimens was well simulated. No yield plateau was observed in the tensile test at
room temperature for 304L stainless steel, and failure occurred immediately after reaching
the tensile strength.
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Figure 7. Comparison between experimental and simulation results of 304L stainless steel: (a) NT05
specimen, (b) NT10 specimen, (c) NT15 specimen, and (d) CH03 specimen. The flow stress using
the Voce equation showed a strength drop before reaching the maximum strength. The flow stress
calculation using the Swift equation is most appropriate.

5.3. Loading Path to Failure

To calibrate the ductile fracture model, the loading history at the predicted point of
failure was investigated. In this study, when damage was initiated in the material test,
the position of the largest equivalent plastic strain of the FE model was regarded as the
predicted point of failure. The position of the highest equivalent plastic strain for the FE
model is shown in Figure 8. This phenomenon can be observed at the same location in the
experimental results shown in Figure 4.

As the equivalent plastic strain increases, the stress state is shown in Figure 9. If the
growth of the equivalent plastic strain grows with a uniform stress triaxiality and Lode
angle parameter, the fracture model can be easily calibrated. However, the stress triaxiality
and Lode angle parameter of most ductile materials constantly fluctuate. Therefore, to
consider the history of stress triaxiality and Lode angle parameter that appears as the
specimen is deformed, and to reduce the sensitivity to fluctuations, the average value was
introduced as follows.

ηav =
1
ε

p
i

∫ ε
p
i

0
η(εp)dεp (57)

θav =
1
ε

p
i

∫ ε
p
i

0
θ(εp)dεp (58)
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where ηav, θav are average stress triaxiality and average normalized Lode angle, respectively.
ε

p
i is the equivalent plastic strain at damage initiation and εp is the equivalent plastic strain of

the element. The average stress triaxiality, average normalized Lode angle, and equivalent
plastic strain at damage initiation according to the specimen are listed in Table 3.
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Figure 8. Equivalent plastic strain contour at damage initiation; (a) NT05 specimen, (b) NT10 spec-
imen, (c) NT 15 specimen, and (d) CH03 specimen. In the NT specimen, when the stiffness drop 
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Figure 9. Equivalent plastic strain in accordance with (a) stress triaxiality and (b) Lode angle pa-
rameter. Black line white dot indicates equivalent plastic strain at damage initiation. As plastic strain 
accumulates, the stress triaxiality and Lode angle parameters were continuously changed. 

  

Figure 8. Equivalent plastic strain contour at damage initiation; (a) NT05 specimen, (b) NT10
specimen, (c) NT 15 specimen, and (d) CH03 specimen. In the NT specimen, when the stiffness drop
occurred rapidly, the maximum equivalent plastic strain appeared at the center of the specimen.
In the CH specimen, the maximum equivalent plastic strain was observed in the direction of the
hole diameter due to symmetric structure of specimen. A decrease in thickness was observed in the
numerical analysis model of all specimens.
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Table 3. Average stress triaxiality, average normalized Lode angle, and equivalent plastic strain
at damage initiation of 304L stainless steel. The average values were derived considering the
loading history.

Specimen Average Stress
Triaxiality, ηav

Average Normalized

Lode Angle,
¯
θav

Equivalent Plastic Strain at

Damage Initiation,
¯
ε

p

i

NT05 0.442 0.665 0.987

NT10 0.399 0.799 0.900

NT15 0.395 0.817 1.053

CH03 0.343 0.936 1.262

5.4. Determination of Fracture Parameters

The fracture parameters of the modified Mohr–Coulomb fracture model were deter-
mined using the average stress triaxiality, average normalized Lode angle, and equivalent
plastic strain at damage initiation for each specimen shown in Table 3. Fracture parameters
were selected as the value with the least error from experimental data among fracture loci.
The finally determined fracture parameters are summarized in Table 4. Figure 10 shows the
3D modified Mohr–Coulomb fracture locus of 304L stainless steel projected on the η − εp

plane and θ − εp plane.

Table 4. Fracture parameters of the modified Mohr–Coulomb fracture model for 304L stainless
steel sheet.

Fracture
parameter

c1 c2 c3

0.016 961 1.05
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triaxiality and (b) Lode angle parameter of 304L stainless steel.

6. Prediction of Ductile Fracture

A ductile fracture simulation was performed to verify that the completed fracture
locus was valid. The analysis model and boundary conditions are the same as those shown
in chapter 5.1 FE model. Damage accumulation control parameter (Ds) and critical damage
(Dc), which are damage parameters related to damage evolution, were set to 2.0 and 0.9,
respectively. Figure 11a–d shows the comparison of the experimental results and analysis
results for each test piece. In the deformed configuration shown in Figure 11e–h, the
simulation results are shown after removing the element whose critical damage reached
0.9. All of the simulations show good agreement with experimental results.
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Figure 11. Comparison of force–displacement curve of (a) NT05, (b) NT10, (c) NT15, and (d) CH03 
specimens and deformed configuration of (e) NT05, (f) NT10, (g) NT15, and (h) CH03 between ex-
Figure 11. Comparison of force–displacement curve of (a) NT05, (b) NT10, (c) NT15, and (d) CH03
specimens and deformed configuration of (e) NT05, (f) NT10, (g) NT15, and (h) CH03 between exper-
imental and simulation results (SDV1: equivalent plastic strain). With the Modified Mohr–Coulomb
fracture criterion satisfied, crack propagation of the specimen occurs and complete failure follows.
The fractured configurations between the numerical analysis and experiments are almost consistent.
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7. Conclusions

In the present study, the failure prediction methodology was numerically developed
to predict the ductile fracture of 304L stainless steel sheet. First of all, an elastoplastic
constitutive model for a 304L stainless steel sheet was developed. To describe the con-
stitutive behavior after diffuse necking, the combined Swift-Voce equation was adopted
as a hardening function. The modified Mohr–Coulomb criterion based on the equivalent
plastic strain was also adopted to describe the sudden fracture of the 304L stainless steel
sheet. Numerical formulation of the elastoplastic-damage coupled constitutive model with
fracture locus was implemented into ABAQUS user-defined subroutine UMAT.

To identify elastoplastic behavior and establish ductile fracture criterion, a series of
material tests considering various stress states was performed. Five types of specimens
were processed with 1.2 t 304L stainless steel, the raw material of the primary barrier
of Mark-III type LNG CCS. Due to the ductility of 304L stainless steel, a considerable
deformation occurred, and then a fracture was reached. After localized necking, fracture
propagation was observed from the center point of the specimen. Since the modified
Mohr–Coulomb model defines ductile fracture based on equivalent plastic strain, the
equivalent plastic strain was obtained by comparing numerical analysis and experimental
results in parallel. As plastic deformation accumulates, the stress triaxiality and Lode angle
parameters fluctuate. To correct this problem, the average stress triaxiality and average
Lode angle parameters were introduced. The modified Mohr–Coulomb fracture locus of
304L stainless steel was determined based on the material test results. Numerical analysis
with ductile fracture criterion shows good agreement with experimental results.

The stainless steel exhibits outstanding mechanical performance in terms of the yield
and tensile strength under cryogenic temperatures rather than at room temperature. How-
ever, ductility at a cryogenic temperature significantly decreases compared to room temper-
ature. A fairly optimistic fracture analysis was performed based on fracture criteria based
on equivalent plastic strain to the actual conditions in a LNG cargo tank. Therefore, the
fracture criterion based on the experimental results at room temperature considered in this
study is a fairly optimistic failure assessment result. Further studies will include failure
prediction of the primary barrier of Mark-III type LNG CCS using the proposed numerical
methodology in this study.
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